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Spatio-temporal analysis of 
association between incidence 
of malaria and environmental 
predictors of malaria transmission 
in Nigeria
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Malaria still poses a significant threat in Nigeria despite the various efforts to abate its transmission. 
Certain environmental factors have been implicated to increase the risk of malaria in Nigeria and other 
affected countries. The study aimed to evaluate the spatial and temporal association between the 
incidence of malaria and some environmental risk factors in Nigeria. The study used malaria incidence 
and environmental risk factors data emanating from 2015 Nigeria Malaria Indicator Survey accessed 
from the Demographic and Health Survey database. A total of 333 and 326 clusters throughout the 
country were used for malaria incidence study and environmental variables respectively. The spatial 
autocorrelation of malaria incidence and hotspot analysis was determined by the Moran’s diagram 
and local Moran’s I index, respectively. The relationships between the malaria incidence and the 
ecological predictors of transmission were analysed in all the six geopolitical zones of Nigeria from 
2000–2015 using ordinary least square (OLS), spatial lag model (SLM), and spatial error model (SEM). 
Annual rainfall, precipitation and proximity to water showed significant positive relationship with the 
incidence rate of malaria in the OLS model (P < 0.01), whereas aridity was negatively related to malaria 
incidence (P < 0.001) in the same model. The rate of incidence of malaria increased significantly with 
increase in temperature, aridity, rainfall and proximity to water in the SEM whereas only temperature 
and proximity to water have significant positive effect on malaria incidence in the SLM. The modelling 
of the ecological predictors of malaria transmission and spatial maps provided in this study could aid 
in developing framework to mitigate malaria and identify its hotspots for urgent intervention in the 
endemic regions.

Malaria is a major public health concern and has continued to be one of the major focus of Sustainable 
Development Goals1. Efforts channeled towards reducing malaria incidence have yielded some positive results 
as reports have shown decrease in incidence and mortality rates by 37% and 60% globally, respectively2. A lot 
is still however needed to be done to further scale down the incidence of malaria as over 200 million cases and 
more than 400,000 malarial-associated deaths were reported in 2017 alone3. Reports showed that 15 countries 
shared the highest burden of malaria as 80% of the deaths are concentrated in these countries2. Sub-Saharan 
African countries account for 92% of the global malarial burden4. Nigeria is one of the most affected countries in 
the world with estimated 53.7 million cases and 79,800 deaths corresponding to one-fourth and one-fifth of the 
overall global picture, respectively3.

A number of environmental and ecological factors are known to influence transmission of malaria. Chief 
among these are rainfall and temperature. Rainfall especially when it is heavy washes-off many of the breeding 
sites of mosquito vectors of malaria parasites while temperature determines the duration of development of mos-
quito larvae in the environment and parasite development within the vector5,6. Precipitation is directly related 
to rainfall and it is an important factor that influences the bionomics of mosquito vectors of malaria parasites7. 
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Modification of environment caused by impoundment for dam construction and irrigation schemes can influence 
the type and distribution of mosquito breeding sites8.

The application of spatial analysis of risk factors including environmental factors that aid transmission is very 
important in the fight against several vector borne diseases including malaria. Three environmental variables 
including stream density, road density, and land surface have been observed to be significantly associated with 
West Nile Virus using least squares regression (LSR) spatial analysis9. Visceral leishmaniasis transmission hot-
spots were also identified using global and local autocorrelation analyses10. In Bangladesh, spatial models showed 
normalized difference vegetation index (NDVI) as the best leading indicator of incidence of malaria transmis-
sion. Vegetation greenness was negatively correlated with incidence of malaria11. Despite the burden of malaria 
in Nigeria, the use of spatial statistics to examine interrelationship between incidence of malaria and prevailing 
environmental factors are still relatively understudied. This method is very useful in identifying disease hotspots 
within a specific region for possible intervention.

The identification of malaria transmission hotspots through the use of spatial statistics for targeted inter-
vention is important because if interventions are not targeted, residual malaria transmission are likely to persist 
in hotspots12. Studies in East and West African countries have supported the observations on malaria hotspots 
persistence following overall reduction in malaria transmission13,14. This can have a serious implication in malaria 
control as transmission hotspots may stall intervention programmes. So, a logical and viable control intervention 
will focus more on malaria hotspots. Given the problem of low availability of resources in many malaria endemic 
regions, spatial analysis for identification of hotspots for targeted control becomes more cost-effective. The study 
therefore attempts to investigate the spatial and temporal variation in malaria incidence rates using a nationally 
representative Malaria Indicator Survey of 2015 which covered 326 clusters in the six geopolitical zones of Nigeria 
for the period 2000–2015. It is proposed that certain environmental factors significantly influence the incidence 
rate of malaria in Nigeria in space and time. To establish this, a number of exploratory and spatial statistical mod-
els were used. It is expected that the models will identify malaria transmission clusters in Nigeria for necessary 
interventions.

Results
Malaria incidence in Nigeria.  The incidence rate of malaria was presented in Table 1. Generally, the inci-
dence of malaria was higher in the Northern than in the Southern region of Nigeria. The result showed that the 
incidence of malaria was significantly higher in the North Central region of Nigeria than the rest of the country 
(P < 0.05). No significant variation in incidence of malaria was observed in the three geopolitical zones of Nigeria 
including the South East, South South and South West (P > 0.05). Malaria incidence rate in rural residential areas 
(0.430 ± 0.103) was significantly higher than in urban settings (0.368 ± 0.123) (P < 0.05) (Table 2).

Between 2000 and 2005, there was no significant difference in the incidence rate of malaria in Nigeria. 
However, a significant drop in mean incidence from 0.436 ± 0.112 in 2005 to 0.377 ± 0.120 in 2010 was observed 
(Table 3). In 2015, a further significant decrease in mean incidence of malaria was observed (P < 0.05). The var-
iations in mean incidence rate of malaria and environmental factors (from 2000–2015) that influence malaria 
incidence in the six geopolitical zones in Nigeria is presented in Table 2. The mean incidence of malaria was 
consistently higher from 2000 to 2005 in all the geopolitical zones of Nigeria except in the North West where the 
incidence was significantly lower in 2005 (0.428 ± 0.092) compared to the value reported (0.476 ± 0.113) in 2010.

Generally, the Southern Nigeria recorded lower mean temperature, ranging from 31.253 °C ± 0.209 in the 
South South in 2005 to 31.887 °C ± 0.412 in the South West in 2010. There was no specific pattern in mean tem-
perature variation in the six regions in Nigeria. Aridity increased generally in the Northern part of Nigeria from 

Geo-political 
zones Number Percentage

Mean malarial
Incidence (±SD)

North Central 236 18.7 0.451 ± 0.095a

North East 192 15.2 0.423 ± 0.090b

North West 248 19.6 0.442 ± 0.105ab

South East 180 14.2 0.369 ± 0.132c

South South 212 16.8 0.356 ± 0.120c

South West 196 15.5 0.346 ± 0.130c

Total 1264 100.0

Table 1.  Malarial incidence rate in the six geopolitical zones of Nigeria. Note: Mean ± SD with different 
superscript are significant at 5% level with a > b > ab > c.

Residence type Number Percentage
Mean malarial 
incidence (±SD) T-statistic P value

Rural 740 58.5 0.430 ± 0.103
9.750 0.0001

Urban 524 41.5 0.368 ± 0.123

Total 1264 100.0

Table 2.  Distribution and incidence of malaria by residence type.
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2005–2015 but a significant increase in aridity from 2010 to 2015 was particularly common in all the Northern 
regions (Table 3). The South South with aridity index 58.175 ± 7.759 in 2000 and 52.22 ± 8.050 in 2015 was the 
most humid. There was direct relationship between aridity and decrease in rainfall. The Northern regions with 
increase aridity also recorded lower mean rainfall. There was no significant difference in the mean rainfall pat-
terns in the North East region between 2000 and 2015. The South South region with the highest mean rainfall 
(2698.811 mm ± 610.783) in 2010 also recorded the highest mean precipitation (196.391 mm ± 15.62).

Non-spatial relationships between incidence of malaria and environmental variables.  A signif-
icant positive correlation occurred between the incidence rate of malaria and maximum temperature (r = 0.094, 
P < 0.05), and proximity to water (r = 0.216, P < 0.01). A significant negative correlation, however, was recorded 
between malaria incidence rate and aridity (r = −0.133, P < 0.01), rainfall (r = −0.094, P < 0.05) and precipita-
tion (r = −0.100, P < 0.05). Rainfall correlated negatively with maximum temperature (r = −0.791, P < 0.001).

Non-spatial versus spatial regression on impact of environmental variables on incidence rate 
of malaria.  The predictors such as annual rainfall, precipitation and proximity to water have positive and 
significant effect on the incidence rate of malaria (P < 0.01) in the OLS model whereas aridity was negatively 
related to malaria incidence rate (P < 0.001) in the same model. The rate of incidence of malaria increased sig-
nificantly with increase in temperature in the SLM and SEM spatial models (Table 4). In addition to negative and 
significant impact of precipitation on incidence of malaria in SEM, the coefficient of temperature, aridity and 
proximity to water were also positive and significant. The SEM model with smallest information criteria value 
(AIC = −2686.945, BIC = −2645.809) provide best explanation on impact of selected environmental factors on 
malaria incidence. The non-spatial OLS perform poorly compared to the spatial models.

Moran’s I statistics for determination of spatial autocorrelation.  A significant Moran’s I statistics of 
0.440 was observed (P < 0.05) Fig. 1. Figure 2 showed the Moran’s I scatter plot of incidence rate of malaria. Points 
in quadrant I showed clusters with high malaria incidence rate (relative to average of the 344 clusters) was sur-
rounded by clusters of high malaria incidence rate (HH), quadrant II showed regions with low malaria incidence 
rate surrounded by clusters with high malaria incidence rate (LH), quadrant III showed regions with low malaria 
incidence rate surrounded by clusters of low incidence rate of malaria (LL), and quadrant IV showed regions with 

Region Year
Malaria 
Incidence

Maximum 
Temperature (°C) Aridity (%) Rainfall (mm) Precipitation (mm)

North-Central

2000 0.503 ± 0.076a 32.389 ± 0.973b 27.364 ± 5.831a 1267.546 ± 156.595b 109.973 ± 14.933a

2005 0.498 ± 0.061b 32.571 ± 0.947b 26.22 ± 4.634a 1187.632 ± 140.722c 103.717 ± 15.556b

2010 0.415 ± 0.109c 33.016 ± 0.941a 26.736 ± 5.985a 1348.328 ± 134.733a 107.707 ± 14.716ab

2015 0.387 ± 0.069c 32.649 ± 0.966b 22.598 ± 4.743b 1184.479 ± 156.579c 91.889 ± 13.082c

North-East

2000 0.455 ± 0.078a 33.77 ± 1.565c 14.616 ± 7.62ab 887.503 ± 370.037a 72.482 ± 24.003a

2005 0.482 ± 0.077a 34.526 ± 1.642ab 15.944 ± 5.908a 877.478 ± 300.362a 79.214 ± 17.352a

2010 0.393 ± 0.087b 34.757 ± 1.704a 15.719 ± 6.507a 909.753 ± 342.482a 80.129 ± 18.389a

2015 0.364 ± 0.065b 34.051 ± 1.584bc 12.572 ± 5.859b 882.297 ± 284.656a 62.516 ± 17.136b

North-west

2000 0.453 ± 0.115ab 33.831 ± 1.348c 11.857 ± 4.573b 762.318 ± 276.245b 64.966 ± 18.075b

2005 0.428 ± 0.092bc 34.505 ± 1.324ab 14.111 ± 4.87a 808.942 ± 215.029b 77.34 ± 17.991a

2010 0.476 ± 0.113a 34.935 ± 1.301a 13.599 ± 4.132a 909.479 ± 271.744a 75.53 ± 14.85a

2015 0.412 ± 0.089c 34.13 ± 1.275bc 10.09 ± 3.435c 753.936 ± 212.556b 55.264 ± 12.364c

South-East

2000 0.448 ± 0.133a 31.627 ± 0.253ab 51.793 ± 6.446a 2116.939 ± 279.463a 165.393 ± 10.932a

2005 0.447 ± 0.115a 31.541 ± 0.303b 48.366 ± 7.53b 1957.35 ± 344.272b 150.984 ± 13.98b

2010 0.295 ± 0.088b 31.748 ± 0.294a 51.655 ± 9.055a 2182.786 ± 330.793a 168.111 ± 18.447a

2015 0.285 ± 0.083b 31.721 ± 0.269a 44.222 ± 7.402c 1762.955 ± 232.558c 146.53 ± 15.752b

South-South

2000 0.449 ± 0.101a 31.397 ± 0.200b 58.175 ± 7.759b 2590.655 ± 592.732ab 172.195 ± 16.292b

2005 0.388 ± 0.131b 31.253 ± 0.209c 56.564 ± 8.01b 2411.414 ± 505.343b 164.158 ± 17.919c

2010 0.304 ± 0.085c 31.482 ± 0.258ab 65.096 ± 7.114a 2698.811 ± 610.783a 196.391 ± 15.62a

2015 0.283 ± 0.073c 31.511 ± 0.236a 52.22 ± 8.050c 2131.962 ± 417.486c 161.662 ± 19.145c

South-west

2000 0.351 ± 0.154ab 31.687 ± 0.455b 33.611 ± 5.158b 1352.185 ± 213.771b 111.014 ± 14.541b

2005 0.375 ± 0.128a 31.448 ± 0.43c 32.291 ± 4.516b 1318.17 ± 206.948b 101.556 ± 11.173c

2010 0.349 ± 0.120ab 31.887 ± 0.412a 41.962 ± 6.087a 1561.039 ± 221.844a 135.169 ± 16.022a

2015 0.311 ± 0.112b 31.776 ± 0.455ab 29.371 ± 4.003c 1298.87 ± 184.795b 98.691 ± 10.864c

Overall

2000 0.444 ± 0.121a 32.498 ± 1.397b 32.00 ± 18.449b 1468.399 ± 736.554b 113.937 ± 44.39b

2005 0.436 ± 0.112a 32.705 ± 1.702b 31.468 ± 16.835b 1403.174 ± 651.458bc 111.353 ± 36.823b

2010 0.377 ± 0.120b 33.044 ± 1.727a 34.828 ± 20.02a 1577.219 ± 738.002a 124.939 ± 47.366a

2015 0.344 ± 0.097c 32.694 ± 1.449b 27.719 ± 16.544c 1315.455 ± 546.891c 100.779 ± 42.274c

Table 3.  Variations in mean malarial incidence rate and environmental factors in Nigeria (2000–2015). Note: 
Mean ± SD with different superscript are significant at 5% level with a > b > ab > bc > c.
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Ordinary 
Least Square

Spatial Lag 
Model

Spatial Error 
Model

Max. Temperature 0.070 0.250** 0.599***

Aridity −0.114*** 0.025 0.734***

Annual rainfall 0.068** 0.010 0.045

Precipitation 0.131** 0.002 −0.697***

Proximity to water 0.029*** 0.014*** 0.016***

Intercept −0.889 −1.149** −1.399**

Rho 0.886***

Lambda 0.981***

Sigma 0.084*** 0.079***

R-square 0.107 0.473 0.528

AIC −1996.753 −2586.866 −2686.945

BIC −1965.900 −2545.730 −2645.809

Table 4.  Spatial models showing correlation between incidence rate of malaria and environmental variables.

Figure 1.  Mean Moran’s I values for local spatial autocorrelation for malaria incidence at varying spatial lags.

Figure 2.  LISA cluster map.

https://doi.org/10.1038/s41598-019-53814-x


5Scientific Reports |         (2019) 9:17500  | https://doi.org/10.1038/s41598-019-53814-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

high incidence rate of malaria surrounded by clusters of low incidence rate of malaria (HL). The plots showed 
more cluster points in quadrant I and III.

LISA significance map of Local Moran’s I test for local spatial autocorrelation patterns of incidence rate of 
malaria was presented in Fig. 3. The bright green and green shade clusters represented regions of malaria inci-
dence rate which showed significant local spatial autocorrelation (P < 0.05).

Spatio-temporal distribution of malaria.  The spatio-temporal distribution of malaria is presented in 
Fig. 4. Further analysis of LISA showed that there were 344 hotspots locations distributed across the six geo-
political zones. The distribution of these hotspots locations revealed that the Northern geopolitical zones have 
larger proportion with North Central, North West and North East having 33.7%, 29.1% and 18.0%, respectively. 
Whereas, the proportion of hotspots in the South South, South East, and South West were 8.4%, 7.0% and 3.0%, 
respectively (Table 5). The distribution of hotspots of malaria incidence depicted in Fig. 5 showed similar pat-
tern across the geopolitical zones over time with the North Central taking the lead and immediately followed 
by the North West. However, there was a systematic decrease in the number of hotspots clusters in each of the 
geo-political zone from year to year. In general, the hotspots clusters reduced by 51.5% between 2000 and 2010.

Discussion
Malaria continues to be a serious threat in all regions of Nigeria. Studies across Nigeria have attributed higher 
prevalence of malaria as high as 70–99% to the South15–17. The reasons in support of this are the higher rainfall 
patterns, more water bodies and heavy forest which are predominant environmental factors that characterise 
the South, and which aid malaria transmission in the region18. However, this study showed that the incidence of 
malaria which is the number of new malaria cases during 2000–2015 period of time was significantly higher in 
the Northern than in the Southern Nigeria. The North East Nigeria although recorded higher incidence than all 
the Southern regions, the incidence in the region was lower than the two other geopolitical zones in the North. 

Figure 3.  LISA significance map.

Figure 4.  Spatial-temporal distribution of malaria.
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This lower incidence could be attributed to larger coverage of insecticide treated nets (ITNs) in the region com-
pared to the rest. In a report by the Nigeria Malaria Indicator Survey in 2010, 67.4% of individuals from the North 
East claimed ownership of at least one ITN, while 32.7% and 59.7% were reported for North Central and North 
West respectively19.

Although the prevailing climatic conditions appeared to be negatively correlated with malaria transmission 
in Northern Nigeria, areas surrounding the confluence of the Rivers Niger and Benue in the North Central and 
many isolated areas of the North East and North West parts of Nigeria have been reported to have as high as 70% 
prevalence of malaria18. Poor access to health care and public health services in isolated areas of the North and 
impact of Rivers Niger and Benue could be responsible for such high endemicity of malaria in the regions. Higher 
malaria incidence in the rural areas of Nigeria could be attributed to the prevailing cultural practices in the areas 
that could predisposed the people to infection by malaria parasites. Many of the rural areas both in the North and 
South are isolated and very difficult to access. Besides, poor socio-cultural development of the areas and lack of 
basic social amenities often discourage health workers posted to the places. Because of these fundamental prob-
lems, health service delivery in those areas is often poor and it usually undermines the people’s access to good 
health care services. Although malaria incidence in urban centers is lower in this study, there is however, stable 
transmission of malaria in Nigerian urban regions. One important reason is that some urban centers in Southern 
Nigeria are located in the coastal regions thus providing suitable breeding sites for mosquito vectors of malaria 
parasites. Urban agricultural development involving irrigation is common in the North and this could facilitate 
malaria transmission in the region. Poor drainage systems and creation of artificial vector breeding sites like 
ditches and tyre tracks during heavy downpour are common in Nigerian urban centers.

The Roll Back Malaria (RBM) Partnership initiated in 2000 seemed not to have yielded any significant posi-
tive result as malaria incidence in some of the regions in Nigeria either remained the same or rose significantly 
between 2000 and 2005. The failure of RBM Partnership necessitated the development of the Global Malaria 
Action Plan in 2008. It appeared that the new initiative yielded some positive results in Nigeria as there were sig-
nificant reduction in the incidence of malaria between 2010 and 2015 in all the six geopolitical zones of Nigeria. 
This is further supported by the overall significant decrease in incidence of malaria between 2010 and 2015.

Malaria is a disease whose transmission is greatly influenced by environmental factors. These factors are 
good predictors of transmission but could share non-linear relationship with mosquito abundance and malaria 
transmission18. The impact of environmental variables on malaria transmission can be adequately established 
by spatial statistical models which can predict the transmission of malaria both in space and also in time. Rise 
in temperature shortens the blood meals-seeking behaviour of female Anopheles mosquito, therefore causing 
a corresponding decrease in ovulation and production of juvenile mosquitoes. The temperature of as high as 
34 °C which is the average upper limit temperature recorded in the Northern Nigeria has been reported to cause 
reduction in the gonotrophic cycle length of mosquitoes20. The general temperature range (27–29 °C) in many 

Region No Clustering (%) High-High (%) Low-Low (%) Low-high (%) High-low (%) Total (%)

North Central 83 (17.1) 116 (33.7) 5 (1.9) 30 (25.9) 2 (3.6) 236 (18.7)

North East 81 (16.7) 62 (18.0) 26 (9.9) 20 (17.2) 3 (5.5) 192 (15.2)

North West 106 (21.8) 100 (29.1) 13 (4.9) 22 (19.0) 7 (12.7) 248 (19.6)

South East 55 (11.3) 24 (7.0) 73 (27.8) 17 (14.7) 11 (20.0) 180 (14.2)

South South 41 (8.4) 29 (8.4) 101 (38.4) 24 (20.7) 17 (30.9) 212 (16.8)

South West 120 (24.7) 13 (3.8) 45 (17.1) 3 (2.6) 15 (27.3) 196 (15.5)

Total 486 (100) 344 (100) 263 (100) 116 (100) 55 (100) 1264 (100)

Table 5.  Analysis of local indicator of spatial autocorrelation (LISA) by geopolitical Zones.

Figure 5.  Spatial-temporal distribution of incidence of malaria by geopolitical zones.
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areas of Nigeria falls within the optimum value for the development of sporozoites within the mosquitoes21. The 
daily survival of mosquitoes is also influenced by temperature. Mosquitoes’ daily survival rate of about 90% has 
been attributed to temperatures between 16 °C and 36 °C21. Whichever way, it is clear that temperature is a very 
important factor that aids transmission of malaria both in the Northern and the Southern parts of Nigeria. This 
claim was supported by a positive correlation between incidence of malaria and temperature. More importantly, 
the very significant relationships the SLM and SEM spatial models showed with temperature makes the later a 
significant predictor of malaria transmission in Nigeria. In fact, the positive and significant spatial lag coefficient 
in the SLM indicates that malaria incidence rate in one cluster depends directly on the rate of incidence in its 
neighboring clusters affected by temperature.

Rainfall and precipitation are also two factors that affect incidence of malaria in Nigeria. However, because 
of the variation in the rainfall patterns of the Northern and Southern parts of Nigeria, these may affect malaria 
transmission dynamics differently. The Southern regions enjoy a longer duration of rainfall than the North. So, 
transmission is usually higher at the onset of rainy season and the beginning of dry season22. The characteristic 
rainfall patterns in the Southern Nigeria create shallow water pockets suitable for breeding of Anopheles gambiae 
which is the main mosquito vector of malaria parasite in Nigeria23. The negative correlation in the non-spatial sta-
tistical analysis is suggestive of a negative impact continuous heavy rainfall especially during the peak rainy sea-
son may have on malaria parasites vectors and eventual transmission of the disease. This could explain the reason 
the incidence of malaria is relatively lower in the region compared to the Northern part of Nigeria. Precipitation 
has been considered to be the most important climatic factor that influence incidence of malaria in the low-
lands24. Our study showed that precipitation is strongly correlated with rainfall. The impact of precipitation in 
malaria transmission is both direct and indirect especially where dams are situated. It raises reservoir’s water 
level and creates potential mosquito breeding sites along the shorelines24. Previous findings from Nepal using 
generalized additive mixed models (GAMM) however, showed that maximum temperature and rainfall were not 
significantly associated with malaria incidence25. The same was observed with rainfall in Bangladesh11 but our 
study was similar to reports from India and Sri Lankan which reported negative correlation between rainfall and 
incidence of malaria26,27. The difference in the sign and significance of the parameters between the OLS and the 
spatial models confirms the assertion that OLS models remain unbiased in the presence of spatial autocorrelation 
but remain inefficient and inconsistent in SEM and SLM models, respectively. Misleading conclusion is inevitable 
when OLS technique is used in analysing sample data collected for regions or points I space. The significance of 
the spatial autoregressive parameter ρ (Rho) in the SLM and λ (Lambda) in the SEM indicated that spatial auto-
correlation exists in the data and that the spatial model is more appropriate than standard aspatial model which 
is prone to misleading result and under or over estimation of the parameters. This result agreed with Anselin28 
and LeSage and Kelly29 that OLS result is inconsistent and inefficient in the SLM and SEM models, respectively

Aridity is higher in the North than in the South and its increase influences malaria transmission by reducing 
mosquito biting rate and the adult lifespan than the extrinsic incubation period for malaria parasite24,30. Using the 
work of De Martonne31, the North East and North West zones of Nigeria are semi-arid, while the North Central 
is semi-humid. The South West, South East and South South regions of Nigeria are humid, very humid, and 
extremely humid respectively.

A significant Moran’s I statistics also denotes the same and justifies that malaria incidences in the nearby clus-
ters are more related than those far away. The univariate Moran’s scattered plots showed more points in quadrant 
I and III denoting a positive spatial autocorrelation pattern in incidence of malaria among clusters in different 
regions of Nigeria. The extent of this autocorrelation was tested by LISA model which is a class of spatial statis-
tics that provides information specific to clusters and estimates the extent of spatial autocorrelation of malaria 
incidence in a particular cluster in relation to its neighbours. The over 700 clusters with significant local spatial 
autocorrelation patterns in incidence of malaria as revealed by the LISA significance plots shows that there are 
indeed presence of spatial association in incidence of malaria in Nigeria. The reduction in malaria hotspot clus-
ters from 2000–2015 indicated that the various interventions from government and international agencies to 
combat malaria in the country has been productive.

One limitation of spatial modelling is that while infectious disease data has a lot of intra- and inter-annual 
variability depending on epidemic and non-epidemic periods, the regression analysis assumes the association 
between exposure and outcome to be stationary over time32.

Conclusion
Our study has shown that malaria is still a serious problem in all the regions of Nigeria with environmental factors 
like rainfall, temperature and aridity playing important roles in transmission of the disease. There is more malaria 
incidence in the North than in the South and rural than urban areas. The spatial statistical models adopted are 
important to design a prompt and early malaria transmission mitigation support system in suspected regions. The 
models can help to generate malaria risk map and spatially channel available resources to the disease hot spots.

Materials and Methods
Study area.  The study was carried out in Nigeria, a country in sub-Saharan African region, located between 
latitudes 4°16′ and 13°53′ North and longitudes 2°40′ and 14°41′ East. The country has a total surface area of 
approximately 923,768 square kilometers and density of 212.04 individuals per square kilometers. One of the 
country most severe public health problems is malaria and the climatic conditions of the country make it suitable 
for recurrent malaria transmission. There have been various interventions from government and international 
agencies to mitigate the burden of this tropical disease.
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Data source.  The Demographic and Health Survey Programme (DHSP) assists countries worldwide in the 
collection and use of data to monitor and evaluate population, health, and nutrition programmes. Data emanat-
ing from the survey are processed and made available upon request for download through the Demographic and 
Health Surveys (DHS) Programme website. The data often come with geospatial covariates and it is often difficult 
to link these covariates with the DHS Programme’s data to determine the impact of location on health outcomes. 
To alleviate the difficulty, the DHS Programme Geospatial Team developed a set of standardised files of the most 
commonly used geospatial covariates already linked with the dataset.

The covariate variables came from two types of data: raster and vector. Raster data, such as images and mod-
eled surfaces, rely on pixels or cells to convey their data values. On the other hand, vector data, such as points, 
lines, and polygons, show the discrete location or boundary of a feature. Because of the differences in the data 
types, the methods needed to extract meaningful values varied. Firstly, Geospatial covariate layers (i.e. modeled 
surfaces) that are relevant to the DHS Programme indicators were acquired from Digital Globe (~35 cm resolu-
tion) remotely sensed imagery. GPS coordinates representing the location of a survey cluster were obtained from 
the DHS programme. In addition to modeled surfaces, vector (polygon and line) data, which were obtained from 
various publicly available sources were also included. Secondly, Raster and vector datasets were imported and 
linked to GPS using a standalone Python programming language script and ArcGIS, respectively.

The study used data emanating from 2015 Nigeria Malaria Indicator Survey (NMIS) accessed at the DHS 
website. The 2015 Nigeria Malaria Indicator Survey was implemented by the National Malaria Elimination 
Programme (NMEP), the National Population Commission (NPC), and the National Bureau of Statistics (NBS) 
and other international agencies from October 2015 through November 2015. The International Classification 
of Functioning, Disability and Health provided technical assistance as well as funding to the project through the 
DHS Programme; a project funded by the United States Agency for International Development (USAID)19.

Rainfall data was obtained from a satellite-based rainfall product called the Climate Hazards Group InfraRed 
Precipitation with Stations (CHIRPS) which has high temporal and spatial resolution33. Maximum temperature 
and precipitation data were obtained from the Climate Research Unit (CRU) of the University of East Anglia, UK, 
which produces a range of global climate time series gridded data, derived from meteorological stations across the 
world’s land areas. The datasets were provided on high resolution (0.5 × 0.5 degrees) grids over the period 1901–
201634,35. Aridity was modeled using data available from the WorldClim Global Climate Data and was updated for 
the period of 2000, 2005, 2010 and 2015 using high resolution grids obtained from the CRU datasets35. Proximity 
to water data was extracted from lakes dataset (L2) at full resolution and the shoreline dataset (L1), also at full 
resolution, in the Global Self-consistent, Hierarchical, High-resolution Shoreline (GSHHG) database. The data-
sets used were based on the World Vector Shorelines, CIA World Data Bank II, and Atlas of the Cryosphere36,37.

Sampling procedures.  A two-stage sampling strategy was adopted for the 2015 NMIS. In the first stage, 
nine clusters (EAs) were selected from each state, including the Federal Capital Territory (FCT). The sample 
selection was done in such a way that it was representative of each state. The result was a total of 333 clusters 
throughout the country, 138 in urban areas and 195 in rural areas. The geospatial covariates of 2015 NMIS housed 
data on malaria incidence (defined as the average number of people per year who show clinical symptoms of 
Plasmodium falciparum malaria within the 2 km (urban) or 10 km (rural) buffer surrounding the DHS survey 
cluster location) as well as the environmental variables measured using remote sensing within the 2 km (urban) or 
10 km (rural) buffer surrounding the DHS survey cluster location for 326 clusters within the country over interval 
of five years (2000, 2005, 2010 and 2015) were used. To ensure completeness of the dataset, all empty cells and 
inconsistent cases were removed and the retained samples became 1264 as against original cases of 1304 which 
amount to 96.9% of the total cases. The distribution of the retained samples by geopolitical zones and residence 
type are shown in Tables 1 and 2.

Statistical and spatial analyses.  Descriptive statistical analysis, mean difference and association between 
malaria incidence and the environmental variables were done using frequency counts, percentages, independent 
t-test, Pearson’s Product Moment Correlation (PPMC) and one-factor analysis of variance (ANOVA).

The main motivation for applying spatial statistical model is the existence of spatial autocorrelation. This 
is analogous to time series serial autocorrelation except that it is multidirectional while serial autocorrelation 
is unidirectional. Global spatial autocorrelation is commonly detected in georeferenced data by the Moran’s I 
test-statistics28 and it is given as;
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Where n is the n × 1 vector of a random variable which has been standardised such that the mean and variance 
are 0 and 1, respectively. W is an n × n row standardised (row sum equal to 1) spatial weight matrix and So is the 
sum of the elements of W. W captures the nature of connected among the spatial units in the data and this can be 
conceived in the topological notion of neighbourhood. In this study, Queen Contiguity criterion is adopted, 
which stipulates that two areas are neighbours when they share a common side or vertex. A first order queen 
contiguity matrix is defined as =W 1ij  if clusters i and j share common side or vertex and zero if otherwise. The 
diagonal element of W is constraint to be zero so as to prevent a cluster from being a neighbour to itself. 
Torres-Preciado et al.38 reported that such matrix facilitates the interpretation of neighbourhood phenomenon 
underlying the administrative breakdown and improves the efficiency algorithms during the estimation process. 
Moran’s I index takes value between −1 and 1 and it can be interpreted as a product moment correlation coeffi-
cient. The positive values of Moran’s I indicate that observation of similar values occurs as neighbour whereas 
negative values signify that both high and low value observations occur as neighbours. A Moran’s I value of zero 
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signifies a random spatial distribution. A local indicator of spatial autocorrelation (LISA)34 or the so-called local 
Moran’s I, test for local spatial autocorrelation. The LISA indicates significant spatial clustering and sums up pro-
portional to the global Moran’s I39. It is possible for the dataset to have significant local spatial clustering but no 
global spatial autocorrelation.

Based on the likelihood that malaria incidence in a given cluster might be influenced by the similar incidence 
in a nearby cluster, Moran’s diagram was employed to have a rapid and global knowledge of the global spatial 
autocorrelation in malaria incidence while LISA was used to detect the hot and cold spots clustering location in 
the sample. As earlier described, the positive value of Moran’s I will be interpreted as high values of malaria inci-
dence and are grouped together in space whereas its negative signified that the dissimilar values of malaria inci-
dence come together geographically. If it is zero, then spatial dependence is absent in the variable and in this case 
the assumption of independence holds. The cluster and significant map showed the hot and cold spot locations.

Prior to the production of the diagram and map, connectivity matrix among the clusters was created using the 
coordinates of the cluster displaced by up to 2 kilometers (for Urban points) and 10 kilometers (for Rural points)40 
based on the first order queen contiguity criterion earlier illustrated. In the diagram, the values of malaria inci-
dence on the x-axis was plotted against the average values of the malaria incidence for the neighbouring obser-
vations Wy (lagged malaria incidence) in the y-axis. The diagram has four quadrants as shown in Fig. 1. The 
value above the diagram is the global Moran’s I index. If the value is close to zero, it means malaria distribution is 
spatially random, while a positive value indicates spatial clustering41.

Due to the spatial nature of the data and the possibility that malaria incidence in one location may be influ-
enced by similar values in another location, three regression specifications were used to model the relationship 
between incidence of malaria and environmental factors. The non-spatial regression, Spatial Lag Model (SLM), 
and Spatial Error Model (SEM) as shown in Eqs 2–4. Ordinary Least Square (OLS) estimation method was used 
for equation while Eqs 3 and 4 were estimated by maximum likelihood method because OLS estimation of Eq. 3 
has been reported to be inconsistent42,43 while in the case of Eq. 4, it remained unbiased but inefficient29.

OLS y X; (2)β ε= +

SLM y Wy X; (3)ρ β ε= + +

SEM y X W u; ; (4)β ε ε λ ε= + = +

The OLS model is aspatial and it behaves well under the assumptions of independence of observations and 
homoskedastic error terms. Sample data collected for regions or points in space are not independent, but rather 
spatially dependent44. Firstly, data records at proximal locations appear to be either positively or negatively corre-
lated, which is called spatial dependence. Secondly, in spatial data setting the homoskedastic assumption cannot 
hold due to lack of structural stability across space such as varying parameters or functional forms. Due violation 
of classical statistics assumption regarding independence and of observation and homoskedastic error terms the 
need for models that can account for spatial structure in their specification is necessitated. The most common 
way of adjusting model 2 to accommodate spatial structure is to add spatial lag of the dependent variable or the 
disturbance term to the model. Models 3 and 4 are spatial regression models in that the spatial lag of the depend-
ent variable (Wy) and that of the disturbance term (Wε) have been added to their specification. The two models 
revert to aspatial model (model 1) when the spatial effect parameters (ρ and λ) are equal to zero.

Maximum likelihood estimation technique was derived and suggested for SLM and SEM models28,45,46. In 
this approach, the probability of the joint distribution (likelihood) of all observations is maximized with respect 
to a number of relevant parameters. If the regularity conditions for the log-likelihood functions are satisfied, the 
obtained ML estimation will achieve the desirable properties of consistency, asymptotic efficiency, and asymptotic 
normality. Moreover, in most situations, the resulting estimates for the regular parameters of the models are also 
unbiased28.

Data availability
Data will be made available on request.
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