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Assembly of chromosome-scale contigs by
efficiently resolving repetitive sequences with
long reads
Huilong Du1,2 & Chengzhi Liang 1,2*

The abundant repetitive sequences in complex eukaryotic genomes cause fragmented

assemblies, which lose value as reference genomes, often due to incomplete gene sequences

and unanchored or mispositioned contigs on chromosomes. Here we report a genome

assembly method HERA, which resolves repeats efficiently by constructing a connection

graph from an overlap graph. We test HERA on the genomes of rice, maize, human, and

Tartary buckwheat with single-molecule sequencing and mapping data. HERA correctly

assembles most of the previously unassembled regions, resulting in dramatically improved,

highly contiguous genome assemblies with newly assembled gene sequences. For example,

the maize contig N50 size reaches 61.2Mb and the Tartary buckwheat genome comprises

only 20 contigs. HERA can also be used to fill gaps and fix errors in reference genomes. The

application of HERA will greatly improve the quality of new or existing assemblies of complex

genomes.
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Assembly of highly continuous and complete genome
sequences is crucial for identifying structural variations, as
well as for gene mapping and cloning. Complex eukar-

yotic genomes contain a large number of repetitive sequences
which complicates the genome assembly process1. In the past
decade, next generation sequencing assisted the assembly of
hundreds of draft animal and plant genomes. Improvements in
sequencing read lengths to tens of kb by single-molecule
sequencing (SMS) technologies from Pacific Biosciences2 (Pac-
Bio) and most recently from Oxford Nanopore3 have enabled the
assembly of many complex eukaryotic genomes. However, these
assemblies are still fragmented and generate incomplete draft
genomes usually consisting of thousands of contigs with many
unresolved regions caused by segmentally duplicated repeats or
other complex repeats4–6. The missing repeats in a genome
assembly may have important functional implications. For
example, segmental duplications account for ~5% of the human
genome and are associated with structural variations and genetic
diseases, as well as showing large impact on human evolution and
adaptation7–9.

The SMS long reads are currently assembled using String
Graph (SG)10 or -like assemblers such as FALCON11 and Celera
Assembler12 (CA). CA represents the traditional Overlap-Layout-
Consensus (OLC) assemblers and uses overlap graph13 to store
reads and sequence overlaps between them. OLC is now used in
several genome assemblers including PBcR14, CANU15, and
MECAT16. A string graph10 reduces an overlap graph using a
transitive reduction step to collapse identical or similar sequences.
Tiling paths of reads are identified and joined together to form
contigs, but multiple copies of similar repeats are also com-
pressed. The approach assembles unique sequences reliably but
repeats longer than the read length lead to branching paths and
thus form fragmented contigs. As a result, the current assemblers
can generate a set of well-assembled unique sequences, but many
of these sequences are fragmented in the form of very short
contigs due to their surrounding by unassembled regions.
Therefore, accurate assembly and resolution of large repeats and
highly similar haplotypes in heterozygous genomes still remains a
major challenge in genome assembly efforts.

Genome assembly projects often generate chromosome-scale
pseudomolecules to anchor the assembled contigs/scaffolds with
genetic maps or Hi-C data17. However, the approaches often
leave many misordered and misoriented contigs in pseudomole-
cules, as well as unanchored orphan contigs. The genome maps
from BioNano Genomics18 covering megabases (Mb) in length
can be used to link contigs to hybrid scaffold sequences. However,
the method cannot improve the contig lengths and often leaves
unfilled gaps of up to hundreds of kb and many unmapped
contigs due to lack of labeling enzyme recognition sites.

To improve the quality of the assembled genomes, one key
step is to assemble the unassembled regions into contiguous
sequences by focusing on repeat resolution. In our previous
work5, we applied a combination of experimental and compu-
tational method by using fosmid clone sequencing to assist the
assembly of SMS sequencing data. However, the relatively high
cost of construction and sequencing of a fosmid library inhibits
the wide application of this method to a large number of gen-
omes. On the other hand, several algorithms have been devel-
oped in the past to assemble the highly repetitive regions19,20.
However, these methods have not been optimized to explore the
full potentials of SMS long reads in assembling repeats in
complex genomes. Recently, a method SDA was developed based
on polyploid phasing21 to accurately assemble the different
paralogs of many segmental duplications in human genome22.
However, the usage of SDA depends on reference sequences and
the majority of the assembled paralogs were not linked to

their flanking unique sequences, i.e., still remaining orphan
contigs.

Here we report a highly efficient genome assembly method
using SMS data to resolve repeats called HERA (Highly Efficient
Repeat Assembly), which enables the assembly of highly con-
tiguous genomes by assembling each individual repeat separately
and correctly connecting it to its true flanking sequences. With
the help of BioNano genome maps and chromosomal anchoring
information, HERA can generate ultra-long, even chromosome-
scale, contigs. We test the method on the genomes of rice, maize,
human, and Tartary buckwheat, and show that it dramatically
improves the sequence contiguity of the assemblies produced by
existing assemblers. We generate a high-quality reference genome
for maize and Tartary buckwheat with filled gaps and error
corrections. The application of HERA will greatly improve the
quality of new or existing assemblies of complex genomes.

Results
Overview of HERA algorithm. The goal of HERA is to assemble
the missing DNA sequences between a set of existing DNA
sequences in a genome. The locations of these existing DNA
sequences on chromosome can be either known or undetermined
but they are assumed to be distributed relatively evenly. In this
work, HERA utilizes the contigs generated from other assemblers
to delimit the genome regions to be assembled. We call two
contigs adjacent if there are no other contigs being present
between them on chromosome. HERA works by assembling as
many missing regions as possible to connect the adjacent contigs
into longer contigs. This process includes two interconnected
questions: (1) which pairs of contigs are adjacent and (2) which
pairs of contigs can the regions between be correctly assembled?
The answer to either of them will help answer the other.

HERA constructs an undirected overlap graph consisting of
two types of nodes: anchoring nodes to represent pre-assembled
contigs and read nodes to represent SMS reads. For simplicity, we
use the term sequence to represent a DNA sequence of any length
throughout this work. Two sequences are called overlapping if
they contain similar sequences (Supplementary Fig. 1a). Since
each sequence has two ends, every node in the overlap graph is
assigned with two ends which emanate two separate groups of
incident edges, i.e., the nodes have two directions of in and out
which are exchangeable in graph traversal. We do not explicitly
specify the node end (sequence direction) in the following text
unless it is necessary. At present, the noisy raw SMS reads are
self-corrected by using the self-correction module in CANU. The
overlaps between all sequences including the contigs and the
corrected reads are identified by using a sequence aligner such as
BWA23. Using overlap graph, the key issue in HERA is to
maximize the number of identified anchoring node pairs that
represent adjacent contigs.

We used an example in Fig. 1 to illustrate the HERA algorithm,
which is fully described in Methods. Assume that two similar
segmentally duplicated repeat copies R1 and R2 are located
between two pairs of unique sequences C1/C2 and C3/C4,
respectively (Fig. 1a). Note that the relationship between the
four sequences is not known beforehand. The part of overlap
graph is shown in Fig. 1b. For simplicity we use symbols C1–C4
to also represent the nodes. Clearly there must be a path from C1
to C2 in the overlap graph under high sequencing depth. Further,
an anchoring node such as C1 (in one direction) is often
connected to multiple anchoring nodes (such as C2 and C4) due
to the presence of repeats (Fig. 1b).

By graph traversal, HERA builds a set of high-scoring paths
(representing tiling read paths) from every anchoring node to a set
of ending anchoring nodes (Fig. 1c). Further, HERA constructs a
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Fig. 1 Overview of HERA. a Two copies of repeats (R1 and R2) are similar to each other but they also contain sequence variations which can be found in the
reads originating from them. The alignments of junction reads (across the boundary between repeat and unique sequences) to a different repeat copy form
overhangs of unaligned, unique sequences. b A subgraph of an overlap graph corresponding to the genome segments and sequencing reads shown in (a).
The sequencing reads can be classified into three types: unique reads (U), repeat reads (R) and junction reads (UR). c The path extension from contig
end C1

h can reach a set of other contig ends, which include C2
h, the true target, and C4

t, the false target, and possibly others (Cj
h) from background noise.

d A connection graph showing the number of paths (NP) between each pair of contig nodes. e A subgraph of a connection graph with examples of
conflicting connections. The conflicting indices of two contig ends were: CI54t= 211/215= 0.98; CI78h= 211/218= 0.97. These conflicting connections can
be resolved because the number of paths between C365

t-C55
h was very small, so that C78

h-C365
t can be connected first. f Sequence alignments showing a

fragment of at least 36 kb in C78 being similar to the connecting sequence between C54
t and C55

h and 18 kb of highly similar sequence in C365
t overlapping

C78
h. g The alignments to BioNano genome maps confirmed that the connections of C54

t-C55
h and C78

h-C365
t were correct.
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new graph, which is here called a connection graph, consisting of
only the anchoring nodes from the overlap graph. The edge length
of the connection graph is set to the number of high-scoring paths
between each pair of anchoring nodes (Fig. 1d). With the help of
connection graph, HERA identifies the adjacent sequences such as
C1/C2 and C3/C4 and finishes each local assembly by using a
consensus sequence to connect each adjacent contig pair.
Obviously, if one anchoring node is connected to only one other
anchoring node, then the genome region is considered to be a
unique sequence whose assembly is trivial.

To assemble segmentally duplicated sequences, HERA fully
takes advantage of the sequence variations between different
repeat copies to distinguish them from each other (Fig. 1a and
Supplementary Fig. 1b, c). Note that the read overlapping a contig
end is usually either a repetitive sequence or a junction sequence
consisting of partial unique sequence and partial repetitive
sequence. During the path extension process toward the repetitive
direction, the overlapping reads originating from the same repeat
copy usually have a higher chance of being selected than those
from different repeat copies due to the higher sequence similarity
of the former. This leads to the separation of most repeat copies
with sequence identity below a pre-defined threshold (currently it
is ~99%), which is dependent on the nucleotide accuracy in
the reads.

For two nearly identical repeat copies (e.g., sequence identity
>99.5%) (Supplementary Fig. 1d), it is expected that many reads
originating from them will be selected rather randomly during the
path extension process. This leads to two incident edges of a node
end with similar length in the connection graph, i.e., conflicting
connections (Fig. 1e, f). HERA does not connect a contig end to
other contigs if it has conflicting connections. As a result, HERA
ensures that repetitive sequences be assembled with its true
flanking sequences to minimize the number of chimeric contigs
and the error rate in the assembled sequences. There are several
ways to resolve the conflicts: first, by removing one of the
connected anchoring nodes when it can be more confidently
connected to another anchoring node (Fig. 1e); Second, by using
BioNano genome maps or mate-pair scaffolding information to
identify the correct pair (Fig. 1g); Third, by using the
chromosomal grouping information derived from genetic map
or Hi-C data to identify the correct pair.

In addition to assemble unique sequences and segmentally
duplicated repeats, HERA is also able to identify tandem repeats
or complex repeats (Fig. 2a, b) by identifying multiple peaks in
the path length distribution plot (Fig. 2c, d) and select the correct
one as the assembled sequence (Fig. 2e). HERA is also extremely
useful to fill known gaps and fix errors in the scaffolds or
pseudomolecules assembled with genome maps, genetic maps or
Hi-C data. On one hand, the known gap length is helpful for
selecting the correct path. On the other hand, the connection
information (number of paths and the average overlap sequence
similarity in the paths) between contigs is helpful to determine
the order and orientation of the contigs in pseudomolecules.

To fully explore the potential of HERA in assembling highly
contiguous sequences, we incorporated HERA into an assembling
pipeline which integrates single-molecule, real time (SMRT)
sequencing data, BioNano genome maps and contig grouping
information based on Hi-C clustering, genetic maps, or reference
genomes (Supplementary Fig. 2). We assembled the genomes of
rice, maize, human, and Tartary buckwheat (Table 1, Supple-
mentary Tables 1, 2) with the pipeline to evaluate the
performance of HERA.

Validation of HERA using rice R498 genome. First, we tested
HERA using indica rice R4985 (Table 1). We used CANU to

assemble the genome into 402.5 Mb sequences with a contig
N50 size of 1.3 Mb. After HERA assembly, the contig N50 size
was increased to 13.2 Mb. With the help of BioNano genome
maps, which resolved a total of 61 conflicting connections, the
contig N50 size was further increased to 14.4 Mb, with chromo-
some 8 assembled to a single contig. The non-rice genome
sequences were filtered out by comparing them to the R498
reference genome5 (R498_ref1) and the remaining contigs formed
pseudomolecules. After further gap filling, only 40 contigs were
left with a contig N50 size of 15.38Mb (R498_HERA1). The
R498_HERA1 assembly contained approximately 1.5 Mb more
sequences than R498_ref1. Comparison between the two assem-
blies showed that 95% of the newly increased sequences were
centromeric or subtelomeric repeats. For example, R498_HERA1
contained a previously unidentified missing sequence of 387 kb in
R498_ref1 located close to the centromere of chromosome 8
(Supplementary Fig. 3a). Notably, the CANU assembly contained
several chimeric contigs which were easy to identify after HERA
assembly due to the increased contig length, by comparison to
genome maps or by using the genetic map we constructed
previously5.

In R498_ref1, there were 14 known potential InDels (inserted
or deleted sequences) >10 kb5. Using HERA to find paths in the
overlap graph, we found that at least 8 of the InDels could be
fixed using a minimum sequence identity of 97% as a cutoff
during path extension (Supplementary Fig. 3b-g). Almost all of
the regions were found to contain tandemly repetitive sequences
with multiple peaks in their path length distribution plot. These
results indicated that our assembly method for tandem repeats
is valid.

HERA assembled 525 repeat regions with a total size of 6.4 Mb
and a max length of 268.7 kb. Among the 495 (94.28%) regions
that are covered by BioNano genome maps, we found only 19
(3.83%) containing InDels >10 kb, which set a max InDel error
rate of 3.83% for the HERA assembly. As a comparison, we also
found 20 InDels >10 kb in the CANU assembled contigs.
Although we did not try to fix all of these potential errors, we
believe that the majority of them can be fixed under the guidance
of BioNano genome maps with known length based on our tests
in the tandem repeat regions.

The nucleotide quality of all the HERA assembled sequences
was validated with both corrected SMRT reads and Illumina short
reads (Supplementary Fig. 4a–f) as well as rice BAC (bacterial
artificial chromosome) sequences downloaded from GenBank
nucleotide database. The short reads had a mapping ratio of
97.21% to the whole genome. The short reads covered 99.11% of
the HERA assembled regions; as a comparison, they covered
99.45% of the rest of the genome. The mapping identity of the
short reads on the HERA assembled regions is 99.67% (vs. 99.71%
on the rest of the genome). The mapping identity and coverage of
corrected SMRT reads in the CANU assembled regions are
98.84% and 99.94%, respectively, while they are 98.71% and
99.83% in the HERA assembled regions, respectively. These
results suggest that the sequence quality of HERA assembled
regions is almost the same as that of CANU assembled regions.
Among the BACs downloaded from GenBank, we found eight
BACs aligned to HERA assembled regions with a total length of
1,291,323 bp (Supplementary Table 3). These HERA and CANU
assembled sequences were 481,929 bp and 809,394 bp, with an
average sequence identity of 99.48% and 99.45% to the BAC
sequences, respectively. These results further confirmed the high
quality of the HERA assembled sequences.

Improving maize B73 genome assembly. To demonstrate the
power of HERA in assembling more complex genomes, we
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improved the previously published maize B73 reference genome
RefGen_v46 (Table 1). The RefGen_v4 assembly contained many
unfilled gaps (a total of 30.7 Mb of ‘N’s but the exact gap length is
unknown) in the pseudomolecules (Supplementary Table 4), as
well as a large number of small contigs (90.55 Mb in total length)
that were not anchored on chromosomes. The HERA-improved
assembly B73_HERA1 had a contig N50 size 61.2 Mb, a nearly
47x increase from 1.28Mb. The longest contig in B73_HERA1
was 142.5 Mb, a 20-fold increase from 7Mb. Owing to the
improved contig length, the total length of the contig sequences
anchored on chromosomes was increased from 2075.6 Mb to
2103.9 Mb (Supplementary Table 4), with only 2.8 Mb sequences
remaining unanchored. The HERA assembled pseudomolecules
contained only 76 gaps, a dramatic reduction from the 2,523 gaps
in RefGen_v4 (Fig. 3a, b and Supplementary Table 4).

HERA assembled 2632 sequence regions, with a total length of
33.2 Mb and a maximum length of 276.7 kb, out of which 2,588
(98.33%) were covered and validated by BioNano genome maps
(Supplementary Fig. 5a). We found that 47 (1.81%) HERA
assembled sequences contained InDels >10 kb (Supplementary
Table 5), most likely due to complex repeats (Supplementary
Fig. 5b). As a comparison, the contigs in RefGen_v4 contained
140 InDels >10 kb (Supplementary Table 5). The gaps filled by
HERA, with a length being up to ~586 kb (Supplementary Fig. 5c,
d), included both missing sequences and unanchored sequences
in RefGen_v4. The newly anchored sequences in the HERA
assembly contained 815 of 837 genes not placed on chromosomes
in RefGen_v46. Meanwhile, the HERA assembled sequences also
contained several important genes such as PWZ53301.124,
ACG34567.125 and PWZ29282.124 that were absent in
RefGen_v4 (Supplementary Fig. 6a-c).

By assembling the short contigs into ultra-long contigs, HERA
automatically corrected several inverted and misplaced sequences
in RefGen_v4 (Supplementary Figs 5c and 7a, b). These errors

were not identified using BioNano genome maps most likely due
to the short contig length in RefGen_v4. These results also
indicated that even after intensive curation, the reference genome
can still contain structural errors other than InDels26. We did not
fix the InDels originally present in the contigs of RefGen_v4 in
the HERA assembled sequences we provided here (Supplemen-
tary Fig. 7c). To test HERA’s potential to fix these InDels, we
randomly selected 37 of them and split the regions to form gaps
with a length up to 126 kb. Among them, 31 (83.78%) could be
correctly assembled as validated with genome maps (Supplemen-
tary Fig. 7d). These results indicated that HERA can be used as a
curation tool to fix existing problems in reference genomes.

Improving human HX1 genome assembly. Similarly, we applied
HERA to improve the previously published human genome
HX1_FALCON4 (Table 1). The HX1_HERA1 assembly had a
contig N50 size 54.4Mb, a tremendous increase from 8.3Mb. The
longest contig in HX1_HERA1 was 109.8Mb, almost 3 times of the
max length of 38Mb in HX1_FALCON. Comparisons between
HX1_HERA1, HX1_FALCON and human GRCh38 showed that
several gaps in GRCh38 which remained open in HX1_FALCON
could be filled in HX1_HERA1 (Supplementary Fig. 8a–f), and that
GRCh38 contained some potential errors that could be fixed with
the help of HERA (Supplementary Fig. 9a–c and Supplementary
Table 6).

We examined the sequence quality of HERA assembled regions
in HX1_HERA1 by comparing to 10 other genomes (including
GRCh38) downloaded from GenBank nucleotide database, which
has a contig N50 size of 16–57Mb (Supplementary Table 7). We
aligned the HERA assembled sequences along with a 50-kb
flanking sequence on both sides in HX1_HERA1 to the 10
genomes. For each HERA assembled sequence in HX1_HERA1,
we selected only the best matched location which included at least
one flanking sequence aligned together in each genome. We
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found that 70–85% of the HERA sequences were covered by each
of the 10 genomes with mapping identity of 98.97–99.30%, while
the mapping identity of the flanking sequences was 98.40–99.37%
(Supplementary Table 7). This suggested that the HERA
assembled sequences were very similar to the other regions in
their sequence quality. These results demonstrated the potential
application of HERA to improving the complex regions in human
genome assembly.

De novo assembling Tartary buckwheat Pinku1 genome.
Finally, we applied HERA to improve the Tartary buckwheat
genome (Table 1). The previously published Tartary buckwheat
genome was assembled using only ~30x SMRT sequence data27.
In this study, we added more SMRT data to a total sequencing
depth of ~70×. We used both PBcR and CANU pipelines to
generate two different assemblies, which had a contig N50 size of
0.45Mb and 1.1 Mb, and a total size of 587.7 Mb and 452.1 Mb,
respectively (Supplementary Table 2). After HERA assembling
based on the PBcR-assembled contigs, the contigs N50 size was
increased to 22.24 Mb, with a total genome size of 453.4 Mb, very
close to the assembled size of CANU. The hybrid scaffolding with
BioNano genome maps resulted in only 14 scaffolds for all
chromosomes with five chromosomes in single scaffold. Further
gap filling with HERA in the hybrid scaffolds resulted in a total of
20 contigs on eight chromosomes in the final assembly Pin-
k1_HERA1, with a contig N50 size of 27.85 Mb and a single-
contig chromosome 8. The assembly of the highly contiguous
Tartary buckwheat genome clearly demonstrated the power of
HERA in generating chromosome-scale contigs in the assembly
of complex plant genomes.

The running time of HERA. The running time of HERA can be
divided into three parts: finding sequence overlaps, building the
overlap graph and running the graph traversals. The graph con-
struction and traversals take O(V+ E) time due to limited
number of paths constructed starting from each anchoring node,
and bounded path length between anchoring nodes. For finding
sequence overlaps, we primarily used BWA23. The running of
HERA for assembling the four genomes above was performed
on Lenovo ThinkSystem SD530 with Xeon Gold 6130 CPU
(2.1 GHz). The total CPU core hours used for the genomes were
listed in Table 2. The results showed that the running time of
HERA was mainly spent on finding overlaps with BWA (con-
suming 88.59–96.02% of the total time). Therefore, one of the
major ways of improving the speed of HERA is to use a more
efficient sequence aligner than the current BWA.

Discussion
We have reported a highly efficient assembly method, HERA, to
resolve repetitive sequences, which is the central objective for all
genome assemblers. We demonstrated that HERA could drama-
tically improve the contiguity and completeness of genome
assembly by assembling the previously unassembled repeats
including many tandemly repetitive sequences. HERA can gen-
erate super-long contigs using SMS data only, and enables the
assembly of chromosome-scale contigs by further integrating
BioNano genome maps and Hi-C data for filling gaps and
resolving repeats. Compared with the simple usage of genome
maps and Hi-C data28, the benefits of using HERA in genome
assembly are multifold: as contig lengths increase, it is more likely
for a contig being aligned to genome maps as well as being

Table 1 The summary of genome assemblies.

Genome Method Seq Num N50 (Mb) Max Len (Mb) Total Len (Mb)

R498 CANU 811 1.31 5.43 402.5
CANU+HERA 206 13.24 25.88 399.2
BioNano map 453 1.22 5.78 406.1
BioNano+CANUa 105 5.67 18.25 388.9
BioNano+HERAa 32 17.51 32.2 390.2
BioNano+HERA+GF 89 14.42 30.03 391.1
On Chromosome 73 14.42 30.03 390.5
R498_HERA1b 40 15.38 30.03 391.6

B73 RefGen_v4 (PBcR) 2,790 1.28 7.26 2106.3
PBcR+HERA 416 31.53 121.28 2118.2
BioNano map 1271 2.51 12.45 2079.7
BioNano+ PBcRa 319 10.2 45.88 2060.3
BioNano+HERAa 68 107.5 194.6 2110
BioNano+HERA+GF 130 61.2 142.5 2105.8
B73_HERA1c 86 61.2 142.5 2103.9

HX1 HX1_FALCON 2,710 8.33 38.18 2873.2
FALCON+HERA 850 32.53 109.81 2840.3
BioNano map 2,487 1.68 11.41 2890.7
BioNano+ FALCONa 325 24.05 83.66 2724.4
BioNano+HERA+GF 1,518 54.41 109.81 2871.3
HX1_HERA1c 815 54.41 109.81 2841.7

Pinku1 CANU 839 1.1 10.83 452.1
PBcR 6,033 0.45 2.11 587.7
PBcR+HERA 48 22.24 43.19 453.4
BioNano map 374 1.71 6.85 461.3
BioNano+ PBcRa 550 5.43 15.04 451.9
BioNano+HERAa 22 51.77 61.99 453.7
BioNano+HERA+GF 30 27.85 49.83 453.2
Pinku1_HERA1c 20 51.77 62.08 453.5

Seq Num the total number of contigs or scaffolds, BioNano maps do not have sequences, +GF with gap filling, On Chromosome the HERA contigs anchored on nuclear genome chromosomes
aHybrid scaffolds included unfilled gaps
bWith gap filling after anchoring on chromosomes
cOnly the contigs anchored on chromosomes were included here (no gap filling after anchoring on chromosomes). The unanchored sequences may include contaminations from other species. The
sequences on chromosomes were corrected using Illumina short reads, which changed the sequence length
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anchored or positioned or oriented correctly onto chromosomes,
and thus the constructed chromosomal sequences contain fewer
gaps as well as fewer errors.

The key difference in dealing with repeats between HERA and
SG assemblers such as CANU and FALCON is that HERA
assembles a repeat by identifying and scoring the sequence as a
whole with aim to separate different repeat copies from each other,

while the SG assemblers compress all similar reads above a
threshold into one, which makes many different repeat copies
unresolvable. In the absence of sequence errors, HERA and SG
will likely generate the same results. However, in the presence of
sequence errors which are unavoidable under the current
sequencing technologies, the transitive reduction in SG often
generates branching nodes from repeat compression, and thus
fragments a repeat into many small contigs. HERA is superior in
that an overlap graph is transformed to a connection graph in
which the repeats are not compressed. HERA is relatively insen-
sitive to unevenly distributed sequencing or self-correction errors.
Based on its function, HERA is naturally complemented to current
long-read assemblers so that direct integration of the HERA
method is highly recommended. The way an assembler deals with
repeats can affect its speed and memory usage, and thus various
tradeoffs are often implemented to balance the contig length and
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Fig. 3 Comparison of maize B73 HERA assembly and RefGen_v4. a The comparison of HERA assembled B73 genome with the published B73 RefGen_v4.
The top green horizontal bar represents RefGen_v4 and the bottom blue horizontal bar represents the HERA assembly. Each black triangle represents a
sequence gap. The red vertical bars represent the >10 kb InDels that were present in the contigs of RefGen_v4. The purple vertical bars represent the >10
kb InDels introduced by HERA with the orange vertical bars showing the positions of the corresponding gaps in RefGen_v4. b An example of gap filling and
sequence correction by HERA. The green horizontal bars represent the maize genome sequences and the blue horizontal bars represent BioNano maps.
The upper panel is the alignment between RefGen_v4 and BioNano maps, and the lower panel is the alignment between the HERA assembly and BioNano
maps. The gaps (right red box in the upper panel) in RefGen_v4 were filled with ‘N’s, which were correctly assembled by HERA. The inserted sequence in
the left red box was not present in the HERA assembly.

Table 2 The running time of HERA.

Genome Overlap (BWA) hour Total hour BWA ratio

R498 2515 2641 95.23%
Pinku1 2922 3043 96.02%
B73 14,409 16,265 88.59%
HX1 17,657 20,141 87.67%
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program efficiency1,11,15,29. By using the HERA method we
described here as the second stage in an assembler, the assembly of
unique sequences can use a conservative approach by assembling
only the high-confidence regions in the first stage. We expect that
this strategy will decrease the complexity of the program imple-
mentation and increase the speed of new assemblers.

The major limitation of HERA is inherent to all assemblers that
when two repeat regions are highly similar (e.g., >99.5% in
sequence identity), the current implementation of HERA does not
try to resolve the repeat aggressively by default due to potential
sequencing errors (the current sequence accuracy is 98.5–99%
after self-correction of CANU). HERA can distinguish two seg-
mentally duplicated repeats based on small percentage of
sequence variations (<1–2%) by selecting the best paths to con-
nect the pairs of true adjacent flanking sequences. For this reason,
the HERA method and the SDA method22 are complementary to
each other in that the long contigs/paths generated by HERA (not
yet connected to their flanking sequences) can be used by SDA as
reference sequences to retrieve the reads for further identification
of paralogous sequence variants. In the future, this limitation may
be removed by using the CCS reads from PacBio, which has
sequence accuracy >99%30. HERA’s performance is also depen-
dent of the sequence aligners (the sequence overlappers in
assemblers). We primarily used BWA23 to do sequence alignment
for our assembled genomes, but we found that some overlaps
between reads could be missed. Therefore, an optimized sequence
aligner will be helpful for improving the performance of HERA.

For filling known gaps detected by genome maps or present in
existing genomes, HERA is a preferred method compared to the
existing gap-fillers since HERA performs local genome assembly
instead of simple sequence extension. We filled 96.9% of the gaps
(only 76 left) of B73 and anchored additional sequences and
genes onto chromosomes. We also showed that more than 80% of
the InDels detected by BioNano genome maps in PBcR-
assembled B73 sequences could be fixed by HERA. Compar-
isons between the HERA assembly of HX1 and the human
GRCh38 reference genome showed that many gaps in GRCh38
could also be filled, and that GRCh38 contained some potential
errors that could be fixed. These results suggest that HERA can
serve as a local genome assembly method or curation tool to
improve the contiguity and completeness of complex genomes,
including the correction of existing assembly errors.

Methods
The problem description for HERA algorithm. Given a set of known DNA
sequences (KDSs) of unknown genome location and a set of WGS long sequencing
reads, with two KDSs being called adjacent if there are no other KDSs being present
between them on chromosome, our objective is to connect as many adjacent KDSs
as possible by assembling the missing regions between them using the reads
without introducing chimeric error, which occurs when two non-adjacent KDSs on
genome are connected by an assembled sequence.

Input data types and definitions in HERA. HERA uses self-corrected WGS SMS
reads and pre-assembled contigs as input data. The contigs can be generated by any
of existing assemblers such as PBcR, CANU, MECAT, or FALCON. The raw SMS
reads were corrected with the self-correction module of CANU. Obviously, each
contig has an assumed genome location even though it is unknown. Here we call the
pre-assembled contigs anchoring sequences (A-seqs) as they delimit the genomic
regions to be assembled with read sequences (R-seqs). Two contigs are called
adjacent if there are no other contigs being present between them on chromosome.

All A-seqs and R-seqs are compared to each other to identify their sequence
overlaps. A piece of DNA sequence, either an A-seq or an R-seq, has two ends.
Given Lse, a sequence end is defined to be a sequence that is up to Lse kb from the
end. A sequence can be extended at one end by another sequence if they are
overlapping and the latter is not entirely covered by the former, i.e., the overlap is
shorter than the latter. A sequence end can be extended iteratively to form a tiling
path of overlapping sequences.

Given a pair of overlapping sequences S1 and S2 that are not entirely covered in
either way, each contains an overlap region with lengths OL1 and OL2, sequence
identity SI, overhang lengths OH1 and OH2, and extension lengths EL1 and EL2

(Supplementary Fig. 1a). We define the following scores: the overlap score of S1
and S2 OS= (OL1+OL2)*SI/2, the extension score of S2 extending S1 ES2=
OS+ EL2/2 - (OH1+OH2)/2, and similarly for the extension score of S1
extending S2. For a tiling path containing more than one overlaps, the score (either
overlap or extension) of a tiling path is the average of all overlaps in the path. The
extension score between a pair of A-seq and R-seq is always the score of the R-seq
extending the A-seq.

Due to sequencing errors or variations between repeat copies, the pair of
sequences in an overlap may not be the same. We therefore define a global
minimum sequence identity cutoff parameter SImin for filtering out low-confidence
overlaps. The average base accuracy (α) of all reads is estimated using the average
sequence identity of all high-confidence overlaps by allowing the number of
overlapping sequences for each sequence to be at most the average sequence depth.
SImin is typically set to a value smaller than but close to α. The average sequencing
error rate in all reads is ε= 1-α.

Overlap graph construction in HERA. HERA implements an undirected overlap
graph, Go(V, E), with V representing sequences and E representing sequence
overlaps. The set V (V= {A,R}) consists of two types of nodes: anchoring nodes
(A= { a0,…, ai }) for A-seqs, and read nodes (R= { r0,…, rj }) for R-seqs. Note that
since each node represents a sequence, a node must store the sequence ends (d for
head h or tail t) explicitly inside (i.e., each node has a direction). An edge from E
represents the overlap between two sequences. The edges incident on a node are
divided into two groups, one on each end of the node. For simplicity, we do not
always explicitly indicate the node ends if it is clear in the text. Each read node end
is allowed to connect to at most one anchoring node with the highest overlap score
(randomly selecting one for equal scores). In Go, the connection of two anchoring
nodes can be found by traversing the graph using depth-first-search to generate
traversal paths (or simply paths) that represent sequence tiling paths. To generate a
valid tiling path, a traversal of the graph must obey the following rule: whenever it
goes into a node from one end ah, it must exit from the other end at, and vice versa.

We denote two anchoring nodes adjacent if they represent two adjacent contigs.
We denote two anchoring nodes ‘directly connected’ if they are connected through
a path in Go not including any other anchoring nodes. A path pijx= {aid, rix0, …,
rixk, ajd} between two adjacent anchoring nodes (AANs) (ai, aj) represents an
assembled contig that connects them. The score of a path p in Go is the same as the
score of the tiling path represented by p. Therefore, the key issue in the assembly
problem described above is to identify the largest possible number of AAN pairs in
Go, for which a heuristic algorithm is described as follows.

Finding paths between anchoring nodes in HERA. An anchoring node, ai∈A
can be directly connected to more than one anchoring nodes, Ai= {ai0,…, aij} ⊂ A,
from which we try to identify the AAN of ai. There are generally multiple paths
from ai to each aij (Pij= {pij0, …, pijx}). Intuitively, the overlaps between the reads
originating from the same repeat copy should generally have larger score than
those between the reads originating from different repeat copies. Therefore, the
path scores between the AANs should be higher than those between non-AANs.
Hence, a naïve method is to select the highest-scored path among all paths Pi=
{Pi0, …, Pij} from ai to every aij and choose the ending anchoring node on the best-
scored path as the AAN of ai. However, this can easily lead to incorrect selections
due to sequencing errors. On the other hand, the traversal will not likely pass from
the reads of one repeat copy to those of another unless the sequence similarity
between the two repeat copies is higher than the pre-defined threshold. Since the
sequencing errors occur randomly, we can reasonably assume that the number of
paths between a pair of AANs is generally higher than that between two non-
AANs. Therefore, a better way is to use the high-scoring path number (instead of
only path score) for identifying the AAN of ai.

It is computationally expensive to enumerate all allowed paths emanating from
ai during graph traversal, and thus we limit the paths chosen for the algorithm. We
only consider paths representing sequences whose length is at most a predefined
value, denoted as Lme. We also require that each read node (or read for simplicity)
can be used only once in constructing a path. A path extension always stops when
reaching at a read node that connects to another anchoring node which defines the
path end. To control the computational time and maximize the chance to find a
correct path in the presence of sequencing errors, we utilize a combination of fixed
scoring schemes and a graph random walk approach to construct a set of high-
scoring paths Pi that directly connect ai to other anchoring nodes.

Approach I. In the first extension step, all reads connecting to ai are selected to
extend ai. For further extension, only the read with the highest overlap score is
selected. If scores for two reads are tied, the read with higher sequence identity or
the longer read is selected or randomly selected for the rest. Note that not all paths
generated in the first step can eventually reach to another anchoring node. In the
case of dead end where no more connected read nodes can be found, the extension
step goes back to the previous node, and then is extended by the next top-scored
read. This step generates a set of paths Pi1.

Approach II. Similar to approach I, except that in each extension step, a read
with the highest extension score is selected. This step generates a set of paths Pi2.

Approach III. A random walk approach is used to randomly select a connected
read for each extension. The probability of a connected read being selected is
proportional to its extension score. When a path extension stops no matter whether
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an anchoring node is reached, the trial for constructing a path is finished, and a new
trial can start over. For each starting anchoring node ai, a limited number of trials
may be performed to control the running time. This step generates a set of paths Pi3.

Approaches I and II generate a fixed number of paths while the approach III
can generate arbitrary number of paths. By default we require that the approach III
generates more paths than approaches I and II. All the paths are put together and
duplicated paths are removed to obtain a non-redundant set of paths Pij⊂ Pi=
{Pi1, Pi2, Pi3}= { Pi0, …, Pij } from ai to each anchoring nodes aij.

Generation of consensus sequences in HERA. Among all paths Pij between a pair
of anchoring nodes, we need to find a representative or consensus sequence sij as a
candidate assembled sequence. Note that not all these paths have the same length
due to sequence errors and variations between different repeat copies. If the path
lengths are distributed within a small range, such as <10 kb, then all the paths are
put into one group. Otherwise, all sequences were sorted according to their lengths
from short to long and divided into 1-kb windows. Comparing each window with
the ones immediately before and after it, the window with the largest sum of the
path frequencies is designated as a peak window, and the window with the smallest
sum of the path frequencies as a valley window. If the lowest path length frequency
in a valley window is less than a predefined proportion, such as 90%, of the highest
path length frequency in its right peak window, then the path length of the lowest
frequency in the valley windows (left-inclusive) is used to divide the whole set of
paths to separate groups, and finally we have Pij= { Pij0, …, Pijg }.

In each group Pijg, all paths with length frequency less than half of the highest path
length frequency are discarded. The sequences of the remaining paths are aligned to
each other. Only the alignments between a pair of sequences with minimum mutual
coverage of 95% are considered to be valid. Finally, one of the paths with the highest
length frequency matching to the largest number of other paths is selected as the
consensus sequence sijg. The number of paths nijg matching to the consensus sequence
sijg is designated as the high-scoring path number in this group.

When multiple groups of paths are found between a pair of anchoring nodes, a
consensus sequence will be generated for each group. The multiple consensus
sequences Sij= { sij0, …, sijg } of different length indicate the presence of multiple
similar repeat units. If the length of the region to be assembled is known (e.g. for
gap filling), the consensus sequence corresponding to the known length was
selected. Otherwise, starting from the group with the highest path length frequency,
its high-scoring path number is compared with that of next immediate group with
longer paths, iteratively. If there are only two groups or the high-scoring path
number in the longer path group is more than half of that in the shorter path
group, then the longer path group will be selected. Otherwise, the shorter path
group will be selected. Finally the selected group of paths Pijk with consensus
sequence sijk is used as the paths between the pair of anchoring nodes.

If the paths in the set Pijk have a wide length distribution (>100 kb) and cannot
be divided into separate groups, the repeat underlying the paths is viewed as a
complex repeat. By default, these kinds of repeats are not used to connect the
anchoring sequences, i.e., the region is not assembled.

Construction of connection graph in HERA. After a consensus sequence is
determined between every pair of connected anchoring nodes, a connection
graph Gc(V’, E’) (Fig. 1d) is constructed, consisting of only the anchoring nodes
of Go (V’=A), and the consensus sequences of the paths between each pair of
anchoring nodes as edges. The edge length is the sum of high-scoring path
numbers (NP) on both directions between each pair of anchoring nodes.

To identify segmentally duplicated sequences with high sequence similarity, we
define a conflict index (CI) for each end of each anchoring node. For any anchoring
node end aid with connected anchoring nodes Aij, by selecting its longest incident
edge length NPim and second longest edge length NPin, we define the conflict index
for aid as CIid=NPin/NPim. We denote that an anchoring node end has conflicting
connections if its conflict index is larger than a predefined threshold, CImax.

Final sequence assembly in HERA. For an anchoring node end without con-
flicting connections, its AAN is the node connected with its longest incident edge
on the connection graph. The anchoring node ends with conflicting connections
are not connected to the consensus sequence obtained above unless the conflict is
resolved. The final sequence assembly is straightforward: the non-conflicting
anchoring node ends are connected to their AANs using the consensus sequences
between them to generate super-contigs.

SMRT sequencing. The leaf DNA of Tartary buckwheat cultivar Pinku1 was used
to prepare SMRTbell libraries (20 kb inserts) with the standard protocol provided by
PacBio (Pacific Biosciences, USA), and the sequencing was conducted on a PacBio
Sequel system. Sequence reads with a quality score below 0.8 were discarded.

Assembly of rice, maize, human, and Tartary buckwheat genomes. The raw
SMRT reads of R498, Tartary buckwheat, B73, and HX1 were corrected using the
CANU pipeline with default parameters. The corrected reads of R498 were further
assembled into sequence contigs using CANU with default parameters. The CANU
assembled R498 contigs and the published contigs in B73 RefGen_v4 and HX1
(HX1_FALCON) were used for HERA assembly with the corrected SMRT reads.

The raw reads of Pinku1 were assembled using both the CANU and PBcR pipeline
with default parameters and the assemblies were improved with HERA. For each
genome, the contigs of at least 50 kb were used as anchoring contigs to construct
overlap graphs with the corrected reads and the contigs <50 kb. All contigs and the
corrected reads were aligned all-against-all with Minimap2 (https://github.com/
lh3/minimap2) and BWA23 with default parameters to identify the sequence
overlaps. To reduce memory usage and computational cost, a reduced overlap
graph was constructed. The reads that are aligned to the middle of the contigs with
both coverage and identity >99.5% or fully contained by other reads were discarded
and overlaps with sequence similarity <97% were also discarded (SImin set to 97%).
The newly assembled Pinku1 scaffolds were clustered onto chromosomes to form
pseudomolecules using 3D-DNA software31.

The genomes were assembled using HERA with Lse set to 25 kb, Lme set to 800
kb, and CImax set to 0.75. The HERA assembled super-contigs were combined with
BioNano genome maps to generate hybrid maps, and HERA was used again to fill
in the gaps in the hybrid maps. The resulting contigs were further connected with
HERA and validated with genome maps. The contigs were mapped to reference
genomes by BWA23 for clustering except those in Pinku1 which were clustered
using 3D-DNA. The order and group information of the contigs based on reference
genomes were used to resolve conflicts during the process of HERA assembly, but it
is not used for determining gaps between contigs. This generated super-contigs. For
simplicity, the final order of the HERA assembled super-contigs on chromosomes
was determined based on their alignment to reference genome. Except the R498
genome, no further gap filling was performed after the super-contigs were
anchored onto chromosomes.

Sequence alignments to genomes. The BAC sequences and human genomes
downloaded from GenBank nucleotide database, Illumina short reads, and the
corrected SMRT reads were aligned to the assembled genome using BWA-mem
(http://bio-bwa.sourceforge.net/) default setting. After alignment, only one of the
best matched alignments for each read was selected to compute the sequence
identity and genome coverage.

Cleaning of the Tartary buckwheat assembly. The HERA assembled Tartary
buckwheat contigs were aligned to cpDNA and mtDNA, microbial and human
DNAs with BWA-mem and the contigs with alignment length >500 bp were dis-
carded. The remaining contigs between 20–50 kb were aligned to the longer ones
and those with sequence coverage >90% were also discarded.

BioNano map assembly and gap filling. The de novo and hybrid assembly of the
BioNano genome maps were performed using the IrysView software (BioNano
Genomics). A minimum length of 150 kb was used as a cutoff in de novo assembly.
To fill a gap with known length in hybrid scaffolds, HERA selected a path whose
length was the closest to the gap length and whose enzyme nicking sites matching
the genome map.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Rice data (R498) were previously published5 with the sequence reads available at GSA
database (http://gsa.big.ac.cn/index.jsp) under project PRJCA000313. The maize data
were downloaded from NCBI under BioProject number PRJNA10769 and SRA
accessions SRX1472849. The human data were downloaded from http://hx1.wglab.org/
and NCBI under BioProject PRJNA301527. The sequence reads of Tartary buckwheat
was deposited into GSA database under project PRJCA000402. The HERA assembled
genome sequences of B73, HX1, and Pinku1 were deposited into BIG Data Center
(http://bigd.big.ac.cn/gwh) under accession numbers GWHAAEN00000000,
GWHAAEM00000000 and GWHAAEO00000000. The HERA assembled genome
sequences are also available at http://mbkbase.org/R498, /http://mbkbase.org/B73, http://
mbkbase.org/HX1 and http://mbkbase.org/Pinku1.

Code availability
The HERA software is coded in Perl and can be freely downloaded at https://github.com/
liangclab/HERA. HERA is free for academic and research use.
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