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Characterizing large-scale quantum computers via
cycle benchmarking
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Esteban A. Martinez1,4, Philipp Schindler1, Thomas Monz1,5*, Joseph Emerson2,3 & Rainer Blatt1,6

Quantum computers promise to solve certain problems more efficiently than their digital

counterparts. A major challenge towards practically useful quantum computing is char-

acterizing and reducing the various errors that accumulate during an algorithm running on

large-scale processors. Current characterization techniques are unable to adequately account

for the exponentially large set of potential errors, including cross-talk and other correlated

noise sources. Here we develop cycle benchmarking, a rigorous and practically scalable

protocol for characterizing local and global errors across multi-qubit quantum processors.

We experimentally demonstrate its practicality by quantifying such errors in non-entangling

and entangling operations on an ion-trap quantum computer with up to 10 qubits, and total

process fidelities for multi-qubit entangling gates ranging from 99:6ð1Þ% for 2 qubits to

86ð2Þ% for 10 qubits. Furthermore, cycle benchmarking data validates that the error rate per

single-qubit gate and per two-qubit coupling does not increase with increasing system size.
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Practical methods to characterize quantum processes acting
on large-scale quantum systems are required to assess
current devices and steer the development of future, more

powerful devices. In principle, quantum processes can be fully
characterized using, for example, quantum process tomography1

or gate set tomography2–4. However, any protocol for fully
characterizing a quantum process requires a number of experi-
ments and digital post-processing resources that grows expo-
nentially with the number of qubits, even with improvements
such as compressed sensing5,6. As a result, the largest quantum
processes that have been fully characterized to date acted only on
three qubits7.

The exponential resources required for a full characterization
can be circumvented by extracting partial information about
quantum processes. A partial characterization typically yields
some figure of merit comparing the noisy implementation of a
quantum process to the desired operation. We will consider the
process fidelity (also known as the entanglement fidelity), which
is equivalent to the average gate fidelity up to a dimensional factor
that is approximately 18,9.

The process fidelity can be efficiently estimated by randomized
benchmarking10–12 or direct fidelity estimation13–15. Direct
fidelity estimation can be efficient and hence has been imple-
mented for up to 7 qubits16 but conflates state preparation and
measurement (SPAM) errors with the process fidelity, limiting its
value for realistic systems. SPAM errors increase with the system
size and so robustness to SPAM is increasingly important for
many qubits. Randomized benchmarking decouples the SPAM
errors from gate operation errors by applying multiple random
elements of the N-qubit Clifford group11,12. However, imple-
menting each Clifford operation requires OðN2=logeNÞ primitive
two-qubit operations17, so that randomized benchmarking pro-
vides very coarse information about the primitive operations.
Furthermore, for error rates as low as 0:1% per two-qubit
operation, a single 10-qubit Clifford operation will have a
cumulative error rate on the order of 10%, which substantially
increases the number of measurements required to accurately
estimate the process fidelity.

Owing to these practical limitations, randomized benchmark-
ing has only been applied on operations involving three or less
qubits18. While randomized benchmarking can be performed on
small subsets of the qubit register19, such experiments do not
explore the full Hilbert space and therefore will not detect
important performance-limiting error mechanisms such as cross-
talk. Moreover, errors in operations must be characterized in the
context in which they are used because control sequences for a
specific gate are often distorted by other gates performed in
parallel. One method to achieve this is to only perform gates in
fixed modes of parallel operation. We refer to a parallel set of
gates as a cycle, in analogy with a digital clock cycle. In typical
architectures, there are two types of cycles, namely, cycles of
single-qubit gates and cycles of multi-qubit gates. Undetected
calibration and cross-talk errors will typically lead to coherent
and spatially correlated errors that can lead to substantially larger
algorithmic errors and can require higher overheads in fault-
tolerant quantum error correction schemes20. Such errors can be
converted to stochastic Pauli errors by randomizing the cycles of
single-qubit gates in such a way that the overall ideal circuit
remains unchanged, a technique known as randomized compiling
(RC)21. The error rate due to the resulting stochastic Pauli errors
can then be accurately quantified by the process fidelity.

In this paper, we introduce cycle benchmarking (CB), a pro-
tocol for estimating the process fidelity of a global noise process
affecting a quantum device that occur when a cycle of operations
is applied to a quantum register. Under the assumption of Mar-
kovian noise such that the noise on each cycle of independent

single-qubit gates is independent of the specific gates being
implemented (see Supplementary Note 1), we prove that CB is
robust to SPAM errors and that the number of measurements
required to estimate the process fidelity to a fixed precision is
approximately independent of the number of qubits. We
demonstrate the practicality of CB for many-qubit systems by
using it to experimentally estimate the process fidelity of both
non-entangling Pauli operations and the multi-qubit entangling
Mølmer–Sørensen (MS) gate22,23 acting on up to ten qubits. We
also confirm that the protocol and analysis methods, derived
under theoretical assumptions, produce consistent results in our
experimental system.

Results
The CB protocol. We now outline how the CB protocol can
quantify the effect of global and local error mechanisms affecting
different primitive cycle operations of interest.

Mathematically, the ideal operation of interest is described by
the corresponding unitary matrix G. Its action is expressed by a
map G : ρ ! GρGy that acts on the state of the quantum register,
described by the density matrix ρ. We denote the map of an ideal
operation by capital calligraphic letters, such as G, and their noisy
experimental implementations will be indicated by an overset
tilde, such as ~G. We denote the composition of gates by the
natural matrix operations for the map representation, so, e.g., RG
means first apply G then apply R, and Gm means apply G a total
of m times. A particularly important class of processes are Pauli
cycles P, where the unitary matrix of the process is the N-qubit
Pauli matrix P.

We evaluate the quality of a noisy process ~G by its process
fidelity to the ideal target G, which can be written as13

Fð~G;GÞ ¼
X

P2fI;X;Y;Zg�N

4�NFPð~G;GÞ; ð1Þ

where

FPð~G;GÞ ¼ 2�NTr GðPÞ~GðPÞ� �
: ð2Þ

Each quantity FPð~G;GÞ can be experimentally estimated by
preparing an eigenstate of P, applying the noisy gate ~G, and
then measuring the expectation value of the ideal outcome
GðPÞ. The process fidelity may be estimated by averaging
FPð~G;GÞ over a set of Pauli matrices. However, a sampling
protocol (as in direct fidelity estimation13,14) for estimating
these individual terms is not robust to SPAM errors.
Robustness to SPAM is particularly important because SPAM
errors can dominate the gate errors.

Inspired by randomized benchmarking10, SPAM errors can be
decoupled from the process fidelity by applying the noisy
operation of interest ~G a total of m times and extracting the
process fidelity from the decay of FPð~G

m
;GmÞ as a function of the

sequence length m. Extracting a meaningful error per application
of the gate of interest is nontrivial for generic noise channels24.
However, decay rates can be extracted straightforwardly for Pauli
noise channels, that is, classical mixtures of Pauli operations that
are applied to the register randomly with given probability.
Mathematically, a Pauli noise channel is a map

E : ρ !
X

P2fI;X;Y;Zg�N

μðPÞPρPy
ð3Þ

for some probability distribution μ. Such channels cannot exactly
describe, for example, small over-rotation errors or amplitude
damping channels.

Since the noise in our system is generic, we want to engineer
the noise such that it can be described well by a Pauli noise
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channel. It has been shown that this can be accomplished by
introducing a random Pauli cycle R at each time step between
each application of the cycle of interest G25,26. This additional
random Pauli cycle R comes with an additional overhead that
will increase the number required gates to implement a given
algorithm. RC has been developed to eliminate this overhead21.
The resulting noise channel when using RC is then associated
with the composition of G with a random Pauli cycle R, called a
dressed cycle GR, which is an important characterization
primitive for any algorithm implemented via RC21. Therefore
CB estimates the average of the process fidelities of the dressed
cycle ~G ~R

FRCð~G;GÞ ¼
X

R2fI ;X ;Y;Zg�N

4�NFð~G ~R;GRÞ: ð4Þ

In addition to the dressed cycle fidelity, the process fidelity of the
noisy gate ~G alone is of interest. The process fidelity of a specific
gate ~G may be estimated by taking the ratio of the estimates
obtained for ~G and the identity process ~I , in analogy to
interleaved benchmarking27. It should be noted that this method
of estimating the fidelity of the noise on ~G alone is generally
subject to a large systematic uncertainty28, so the CB method is
most precise in the important context of characterizing errors on
dressed cycles21.

CB can be used to efficiently characterize non-Clifford gates by
selecting random gates and correction operators using RC21.
However, the general protocol for non-Clifford gates is more
complex, so a simplified version for characterizing the errors
occurring under a fixed cycle of Clifford gates G composed with a
random Pauli cycle R is as follows (the protocol is illustrated in
Fig. 1, where we explain the motivation for each step further
below):

1. Select a set of N-qubit Pauli matrices P with K ¼ jPj
elements.

2. Select two lengths m1 and m2 such that the multiple
application of G composes to the identity Gm1 ¼ Gm2 ¼ I .

3. Perform the following sequence for each Pauli matrix
P 2 P, length m 2 ðm1;m2Þ, and l 2 ð1; ¼ ; LÞ, where L
describes the number of random sequences per Pauli.

3a. Select mþ 1 random N-qubit Pauli cycles
R0;R1; ¼ ;Rm, and define the randomized circuit

CðPÞ ¼ RmGRm�1G¼R1GR0 ð5Þ
as illustrated in Fig. 1.

3b. Calculate the expected outcome of the sequence CðPÞ
assuming ideal gate implementations.

3c. Main experiment: Implement CðPÞ and estimate the
overlap

f P;m;l ¼ Tr½CðPÞ ~CðρÞ� ð6Þ
between the expected outcome and the noisy imple-
mentation ~CðρÞ for some initial state ρ that is a
þ1-eigenstate of P. State preparation and measurement
are realized by applying the operations ~BP and ~By

CðPÞ
that are described in Supplementary Note 2.

4. Estimate the composite process fidelity via

FRCð~G;GÞ ¼
X
P2P

1
jPj

PL
l¼1f P;m2;lPL
l¼1f P;m1;l

 ! 1
m2�m1

: ð7Þ

Step 1 ensures that the action of the N-qubit process is
accurately estimated. In Supplementary Note 5, we prove that the
uncertainty of the fidelity estimate is independent of the number
of qubits N , and the number of Pauli matrices K that need to be
sampled depends only on the desired precision. This highlights
the scalability of the protocol for large quantum processors.

Step 2 ensures that the measurement procedures for circuits in
Eq. (8) with two different values of m are the same. Having the
same measurement procedures for the two values of m is crucial
to decouple the SPAM errors from the decay in the process
fidelity via the ratio in Eq. (7). In our experiment, we always
choose m1 ¼ 4 and m2 to be an integer multiple of 4, as, for the
considered gates, applying the operation four times subsequently
yields the identity process G4 ¼ I .

In step 3a, we choose random Pauli cycles to engineer an
effective Pauli noise process across the L randomizations. This
enables us to extract a process fidelity from the decay ofPL

l¼1f P;m;l=L with the sequence length m. Note that unlike typical

1. Select     random
Paulis 

2. For each length
m ∈ [m1, m2], do step 3

3. Select    sequences of
m + 1 random gates  

0

m times

0

0

4. Estimate process
fidelity via Eq. (6)

Estimate overlap
between ( ) and ( )... ... ... ...

,1

i,2

i,1

i,

,2
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0,1

0,2 ,2( )

,1( )

Fig. 1 Schematic circuit implementation of the experimental cycle benchmarking protocol. The protocol can be subdivided into three parts, depicted by the
different colors. The green gates ~B describe basis changing operations for the state preparation and the measurement (SPAM) procedure. The red gates ~G
are the noisy implementations of some gate of interest (in this work, the global Mølmer–Sørensen gate acting on all qubits). The blue gates are random
Pauli cycles that are introduced to create an effective Pauli channel per application of the gate of interest, where ~Ri;j denotes the jth tensor factor of the ith
gate. Creating an effective Pauli channel per application enables errors to be systematically amplified under m-fold iterations for more precise and SPAM-
free estimation of the errors in the interleaved red gates ~G. The blue and the red gates together form the random circuit ~C. The sequence of local operations
before the first and last rounds of random Pauli cycles are identified as conceptually distinct but were compiled into the initial and final round of local gates
in the experiment. The experimental parameters K;m, and L of this work and the exact definitions of ~B and ~R are given in Supplementary Note 7.
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randomized benchmarking protocols, the above protocol does not
have an inversion gate. Formally, the final random Pauli can be
regarded as a correction gate for the random Pauli gates in the
rest of the circuit composed with another random Pauli that we
use to isolate exponential decays as in character benchmarking29.

In step 3b, for any Clifford cycle G, Pauli matrix P, and Pauli
cycles R0; ¼ ;Rm, the expected outcome of the ideal imple-
mentation CðPÞ is a Pauli matrix that can be efficiently calculated.
Note that only the sign of CðPÞ depends on the random Pauli
cycles. This sign is accounted for when estimating the expectation
value with the procedure outlined in Supplementary Note 2.
Incorporating the sign engineers a measurement of the expecta-
tion value of CðPÞ that is robust to SPAM errors, as otherwise the
expectation values result from a multi-exponential decay24,29.

In step 3c, we experimentally prepare an eigenstate of a Pauli
matrix P, apply a circuit ~C with interleaved random Pauli cycles,
and measure the expectation value of CðPÞ. The explicit
procedures we use for preparing the eigenstate and measuring
the expectation value are described in Supplementary Note 2. As
discussed in Supplementary Note 5, the number of measurements
required to estimate the expectation value to a fixed additive
precision is independent of the number of qubits.

As we prove in Supplementary Note 4, the expected value of
FRCð~G;GÞ in Eq. (7) for two values of m1 and m2 as in step 2 is
equal to the composite process fidelity FRCð~G;GÞ in Eq. (4) up to

Oð½1� FRCð~G;GÞ�
2Þ and always provides a lower bound.

Experimental results. We demonstrate the practicality of CB for
multi-qubit systems by using it to experimentally estimate the
process fidelity of cycles acting globally on quantum registers
containing 2, 4, 6, 8, and 10 qubits. The specific cycles we con-
sider consist of simultaneous local Pauli gates and multi-qubit
entangling MS gates22,23 combined with simultaneous local Pauli
gates. We confine 40Caþ ions in a linear Paul-trap and encode a
single qubit in the electronic states of each atomic ion. The
encoding utilizes the 0j i ¼ 4S1=2ðmj ¼ �1=2Þ ground-state and
the 1j i ¼ 3D5=2ðmj ¼ �1=2Þ metastable excited state. Our
quantum computing toolbox comprises independent arbitrary
single-qubit operations and fully entangling N-qubit MS gates,
acting on all N qubits in the register simultaneously (see Sup-
plementary Note 7). An experimental run consists of: (i) Doppler
cooling, (ii) sideband-cooling of the two motional modes with
lowest frequencies, (iii) optical pumping to the initial state 0j i�N ,
(iv) coherent manipulation, and (v) readout of the ions. Each
sequence is repeated 100 times to gather statistics (for experi-
mental details, see Supplementary Note 7 and ref. 30).

Under Markovian noise, the estimate of the process fidelity
from Eq. (7) is independent of the sequence lengths m1 and m2
used to estimate it (see Supplementary Note 3). We tested
whether our experimental apparatus satisfied this assumption by
performing measurements at three values of m (4, 8, and 12) on
a register containing 6 qubits and comparing the results
obtained from pairs of sequence lengths against each other.
The data are tabulated in Supplementary Table 2, where the
variation of the estimated fidelities is within 0.1%, which is
smaller than the corresponding uncertainties of 0.4%. This
suggests that the errors are Markovian and the estimated process
fidelity is independent of the chosen sequence lengths for our
system and henceforth we only use two sequence lengths to
estimate the process fidelity.

The CB protocol is practical to implement on large processors
because the fidelity can be accurately estimated using a number of
Pauli matrices that is independent of the number of qubits N (see
Supplementary Note 5). To illustrate the rapid convergence under

finite sample size, we performed CB of local Pauli operations on a
4-qubit register by exhaustively estimating all 44 � 1 ¼ 255
possible decay rates. We estimate the average fidelities via Eq.
(7) for multiple subsets P of the set of all Pauli matrices. For each
K ¼ 1; ¼ ; 100, we evaluate the fidelity for 30 randomly chosen
subsets P containing jPj ¼ K Pauli matrices. The mean and
standard deviation of the estimated fidelities as functions of the
subset size are shown in Fig. 2. In Fig. 2b, we introduce two
boundaries between which the observed standard deviation
should lie if we are choosing appropriate sequence lengths and
sample sufficiently many random circuits per sequence length.
For the lower bound, we assume quantum projection noise to
be the only noise source. We evaluate the shot noise for the
measured data and perform error propagation to calculate the
lower bound σ lower ¼ 0:00375ð1Þ= ffiffiffiffi

K
p

. This lower limit could be
reached if the noise in the system is completely isotropic (e.g.,
global depolarizing). Biased noise or drift (see Supplementary
Note 10) will lead to uncertainties bigger than those originating
from quantum projection noise. We furthermore test that the
fluctuations between different Pauli channels is bounded by an
error model that assumes worst-case fluctuations between
channels. This bound does not depend on the register size but
only on the fidelity F and can be estimated via σPauli ¼ ð1�
FÞ= ffiffiffiffi

K
p ¼ 0:0275ð8Þ= ffiffiffiffi

K
p

(see Supplementary Note 5).
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Fig. 2 Experimental evidence demonstrating rapid convergence under finite
sample size with favorable constant factors. a Mean fidelity estimates from
30 randomly sampled subsets of Pauli matrices as a function of the size K
of the subset. The error bars illustrate the standard deviation of the
30 samples, that is, the standard error of the mean. The green line
describes the mean fidelity F ¼ 97:25ð8Þ% calculated from the complete
data set. b The standard deviation of the fidelity from plot a against K
including a bound due to finite sampling of Pauli channels σPauli ¼
0:0275ð8Þ= ffiffiffi

K
p

in orange, a fit of the standard deviation σ ¼ 0:0127ð2Þ= ffiffiffi
K

p
in green, and a fit of the expected projection noise σ lower ¼ 0:00375ð1Þ ffiffiffi

K
p

in red (see Supplementary Note 5).
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The observed standard error of the mean σ ¼ 0:0127ð2Þ= ffiffiffiffi
K

p
is

larger than the lower bound given by quantum projection noise
but smaller than the worst-case bound from sampling finite Pauli
channels. The data demonstrate that we can estimate the process
fidelity F to an uncertainty smaller than ð1� FÞ= ffiffiffiffi

K
p

indepen-
dent of the register size with other experimental parameters held
fixed (the parameters are listed in Supplementary Table 1).

We performed CB on local operations and with an interleaved
MS gate on registers containing 2, 4, 6, 8, and 10 qubits. The
process fidelity as a function of the number of qubits in the

register is shown in Fig. 3 and Table 1. While it is expected that
the fidelity over the full register decreases with increasing register
size, an important question is whether the effective error rate per
qubit increases or significant cross-talk effects appear, with
increasing numbers of qubits.

We observe that the fidelity for local CB (blue circles in Fig. 3a)
decays linearly with register size N , as

F ¼ 1� ϵPN; ð8Þ
with ϵP ¼ 0:011ð2Þ. The linear decay of the fidelity indicates that
our single-qubit Pauli operations do not show increasing error
rates per qubit or a significant onset of cross-talk errors as the
register size increases. Each single-qubit Pauli operation requires
nS native gates, where on average hnSi ¼ 1:27, independent of the
system size. Therefore, the effective process fidelity of a native
single-qubit gate is 1� ϵP=hnSi ¼ 0:992ð1Þ.

The CB measurements with interleaved MS gates give the
process fidelity of the MS gate composed with a round of local
randomizing gates as in Eq. (4) (a dressed MS gate, see red
diamonds in Fig. 3a). This determines the error rate when a
circuit is implemented by RC21. The process fidelity of the
interleaved gate can be estimated by the ratio of the dressed MS
and local fidelities as in interleaved randomized benchmarking27.
The resulting estimates are plotted in Fig. 3b. We note that these
estimates may have a large systematic error that is on the same
order as the overall error rate28. This systematic uncertainty
primarily arises due to coherent over- and under-rotations with
similar rotation axes. The MS gate performs rotations around the

non-local axes σðiÞx � σðjÞx , which are substantially different from
the single-qubit rotation axes. Therefore, it is unlikely that any
coherent errors on the MS gate accumulate with the errors on the
single-qubit rotations, and so we neglect this systematic error. We
conjecture that the process fidelity of the MS gate should decay
quadratically due to an error in each of the N

2

� �
couplings between

pairs of qubits introduced by the MS gate. If we assume an
average error rate ϵ2 per two-qubit coupling, we can describe the
MS gate fidelity as

FMS ¼ 1� ϵ2
N2 � N

2
: ð9Þ

Fitting this model to the results in Fig. 3b gives an estimated error
per two-qubit coupling of ϵ2 ¼ 0:0030ð2Þ. However, we cannot
harness these two-qubit couplings individually in the experiment
and thus they cannot be compared to individually available gates.
The deviations of the fidelity estimates from the model defined in
Eq. (9) are within the expected statistical uncertainty and we
believe that these deviations arise mainly from day-to-day
fluctuations in the experiment.

Discussion
In summary, we have developed CB and demonstrated its practi-
cality by implementing it on quantum registers containing N ¼ 2,
4, 6, 8, and 10 qubits. In comparison, a single random Clifford gate
for 8 and 10 qubits would require >50 MS gates and so randomized
benchmarking for 8 and 10 qubits would require a large number of
measurements to achieve a useful statistical precision. CB is prac-
tical in regimes where randomized benchmarking is impractical
because it uses local randomizing gates. A similar approach was
independently considered in refs. 29,31 to characterize a two-qubit
Clifford gate. However, the approach implemented here and pro-
posed previously in ref. 26 can be applied in a scalable manner to
processors with arbitrary numbers of qubits.

The total experimental time and post-processing resources
required for our implementation were approximately indepen-
dent of the number of qubits (see Supplementary Table 1), after
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Fig. 3 Experimental estimates of how rapidly error rates increase as the
processor size increases. a Process fidelities obtained under cycle
benchmarking for local gates (blue circles) and for sequences containing
dressed Mølmer–Sørensen (MS) gates (red diamonds), that is, MS gates
composed with a random Pauli cycle, plotted against the number of qubits
in the register. The local operations are consistent with independent errors
fitted according to Eq. (8). b Estimate of the process fidelity of an MS gate
obtained by taking the ratio of dressed MS and local process fidelities. The
data are fitted to Eq. (9) and is consistent with a constant error per two-
qubit coupling.

Table 1 Process fidelities (%) estimated via CB. Measured
fidelities for local gates, dressed MS gates, and the inferred
MS gate fidelity as depicted in Fig. 3.

Qubits Local gates Dressed MS gate MS gate

2 99.37 (7) 98.92 (8) 99.6 (1)
4 97.25 (8) 94.3 (1) 97.0 (2)
6 96.9 (2) 91.2 (3) 94.1 (4)
8 92.8 (8) 85 (1) 91 (2)
10 90.9 (6) 78 (1) 86 (2)
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accounting for the additional tests performed on specific numbers
of qubits. This is achieved because, as we provide proof in Sup-
plementary Note 5, the uncertainty of the fidelity estimate is
independent of the number of qubits N , and the number of Pauli
matrices K that need to be sampled depends only on the desired
precision. In addition, we demonstrated experimentally that the
estimate of the fidelity and its error converges rapidly under finite
sample size (Fig. 2) and that the estimated fidelities are
approximately independent of the sequence lengths used. The
data from CB also gives estimates of the diagonal of the
Pauli–Liouville representation of the effective noise. A natural
open question is to use this procedure to reconstruct the
underlying noise model, which we leave for future work.

CB can be readily implemented on general quantum comput-
ing architectures to estimate the fidelity of multi-qubit processes.
The fidelity corresponds to the effective error rate under RC32. It
should be noted that the performance of the same operation in a
circuit without RC can differ significantly from the estimated
fidelity of its constituents due to the addition or cancellation of
coherent errors33. This is a general issue with performance
metrics for quantum operations34 and we want to emphasize that
RC has been designed to eliminate these coherent errors. The
protocol also provides insight into how noise scales within a fixed
architecture. In our ion trap, the fidelity of local gates across the
whole register decreased linearly with N , demonstrating that our
native single-qubit gates have an average fidelity of 99.2(1)% and
do not deteriorate with the register size. Thus we have demon-
strated a scalable method to validate a major requirement for
fault-tolerant quantum computation. In addition, we performed
interleaved CB protocols to estimate the performance of the
multi-qubit entangling MS gate. From the ratio between the
dressed MS and the local CB fidelities, we infer entangling
gate fidelities ranging from 99.6(1)% to 86(2)% for 2–10 qubits.
While this inference is in principle subject to a large systematic
uncertainty24, we have argued that the systematic uncertainty
should be small for our set of operations. We leave the problem
of quantifying or reducing this systematic uncertainty open,
but note that a natural approach would be to quantify
how coherent the errors are using generalizations of either purity
benchmarking35 or iterated interleaved benchmarking36.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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