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Dimensional hierarchy of higher-order topology in
three-dimensional sonic crystals
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Wave trapping and manipulation are at the heart of modern integrated photonics and
acoustics. Grand challenges emerge on increasing the integration density and reducing the
wave leakage/noises due to fabrication imperfections, especially for waveguides and cavities
at subwavelength scales. The rising of robust wave dynamics based on topological
mechanisms offers possible solutions. Ideally, in a three-dimensional (3D) topological inte-
grated chip, there are coexisting robust two-dimensional (2D) interfaces, one-dimensional
(1D) waveguides and zero-dimensional (OD) cavities. Here, we report the experimental
discovery of such a dimensional hierarchy of the topologically-protected 2D surface states,
1D hinge states and OD corner states in a single 3D system. Such an unprecedented phe-
nomenon is triggered by the higher-order topology in simple-cubic sonic crystals and pro-

tected by the space group P Our study opens up a new regime for multidimensional wave

m3m:*
trapping and manipulation at subwavelength scales, which may inspire future technology for
integrated acoustics and photonics.
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opological insulators (TIs) with unprecedented boundary

states, going beyond the classification of states of matter by

spontaneous symmetry breaking, have stimulated tre-
mendous research interest in electronicl:2, photonic3-!1, and
phononic'?-27 materials. Higher-order topological insulators
(HOTIs), a novel paradigm for topological materials, exhibit
unconventional bulk-boundary correspondence that enables
lower-dimensional topological boundary states?8-43. HOTTs offer
new routes toward designer materials that give access to bound-
ary wave localization in a topologically robust way in multiple
dimensions. Such topological boundary wave localization can lead
to robust wave guiding®~%13:15-1822 " frequency-stable cavity*4,
unprecedented wave propagation?3, and other novel concepts for
a paradigm of topologically robust chips in photonics” and
acoustics!®.

For a m-dimensional (mD) TI, one can define the codimension
of the nD boundary states as [ = m — n. Then a Ith-order TI is
defined as a TI with [-codimensional topological boundary
states#>40, Previously, the experimental realizations of HOTTs
were focused on 2D materials by utilizing quadrupole topological
insulators®23442 and 2D TIs with quantized Wannier cen-
ters37-39-4143 Theoretical predictions of 3D HOTIs have been
proposed recently?8-31:3%38 However, the experimental realiza-
tion of 3D HOTIs*” and the verification of the coexistence of 2D
surface states, 1D hinge states and 0D corner states (i.e., HOTIs
with 1,2, 3-codimensional topological boundary states), still
remain challenging.

Sonic crystals (SCs), a type of acoustic metamaterials with band
structures that can be designed and tuned freely, have provided
an ideal platform for the investigation of diverse topological states
of matter such as the quantum Hall states'>17, quantum spin Hall
states!216, valley Hall states!822, topological crystalline insula-
tors3?, and states with Weyl points and Fermi arcs!20:21:23,25,26,
Moreover, acoustic topological states in SCs can offer novel
mechanisms for achieving acoustic cloaking?’, disorder-immune
wave guiding!315-1822 and topological negative refraction®3.
With versatile techniques for acoustic wave excitation and mea-
surements, the search for novel topological states and phenomena
in SCs has attracted lots of research interest!®. Recently, such an
endeavor is further facilitated by the 3D-printing technology for
the fabrication of SCs20-26,

In this article, we design and fabricate a 3D SC with a large
bulk band gap that gives rise to topological boundary states with
codimensions one, two and three. We observe directly the
emergence of 2D topological surface states, 1D topological hinge
states and 0D topological corner states, manifesting a dimensional
hierarchy of topological boundary states due to higher-order band
topology. The acoustic HOTTI is characterized by the nontrivial
bulk polarizations and the quantization of the Wannier centers
(3D Zak phases)3>48. The underlying physics mimics topological
crystalline insulators where the mirror symmetries restrict the
positions of the Wannier centers to the maximal Wyckoft
positions#%>0,

Results

Lattice structure and the higher-order topology. Our 3D SCs
have a simple-cubic lattice geometry (space group P, 5,,, no. 221)
with a lattice constant a = 2 cm. In the 3D-printing technology,
photosensitive resin (serving as “hard walls" for acoustic waves) is
used as the printing material to fabricate the SCs. We start with
an undeformed structure composed of eight air cavities located at
the positions 0.25a( 1, £1, +1) (the origin of the coordinate is
set at the center of the unit cell). These cavities are connected to
their nearest neighbors by air channels (Fig. 1a, left). We use the
solid areas to represent the hard walls, and the empty spaces to

represent the air cavities and the air channels. In order to char-
acterize the deformation of the SCs, we introduce the center-to-
center distance for the air cavities along the link within the unit
cell, as d,,,,,. For the undeformed lattice, d .., = 0.5a. By either
reducing d,,, (i-e., dipera <0.5a, denoted as shrunken in Fig. 1a,
middle) or increasing d,,,, (i.e., d;y,,, >0.5a, denoted as expanded
in Fig. la, right), one can control the topology of the acoustic
bands (we focus on the first acoustic band in this work). These
deformations essentially mimic the Su-Schrieffer-Heeger phy-
sics®! in three-dimensions, and thus naturally introduce the 3D
Zak phase®®°3 (6,,0,,0,) to be defined below. Accordingly, the
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shrunken structure is topologically trivial, while the expanded
structure is topologically nontrivial (the undeformed structure is
the topological transition point). We consider the trivial
(shrunken) SC with d,,,,, = 0.15a and the topological (expanded)
SC with d,,,,, = 0.854, whose band structures and wavefunctions
(as well as the parity eigenvalues) at the high-symmetry points are
shown in Fig. 1b, ¢, respectively (see Supplementary Note 1 for
another design). A complete acoustic band gap between the first
and second bands with a large bandgap-to-midgap ratio of 41%
emerges for both SCs. Note that the trivial and topological SCs
have identical acoustic band structures, since they can be trans-
formed into each other by a translation of the unit cell center. A
similar scenario is known in the Su-Schrieffer-Heeger model.
The distinct band topology of the two SCs is reflected on the
parity and mirror eigenvalues of the first acoustic band at the
high-symmetry points in the first Brillouin zone (BZ) (see the
insets of Fig. 1b, c). The parity (and mirror) eigenvalue switching
between the I' point and the other high-symmetry points in the
BZ indicates the nontrivial topology of the SC with the expanded
structure.

The topological properties of the SCs are further characterized
by the bulk polarizations and the quantization of the Wannier
centers (similar quantities are studied in the recent work on
second-order TIs in 2D systems3>4041). The 3D bulk polarization
is defined as follows

1/ .
= [ @kTA], i=xy,
P (271)3 /BZ A i=xyz v

where (A,),,,(k) = i(u,,(k)|9y |u,(k)), with m, n running over all
bands below the bandgap. |u,,(k)) is the periodic part of the
Bloch wavefunction of the mth band for the acoustic pressure
field (k is the wavevector). In this work, only the first acoustic
band is relevant to the topology of the band gap (i.e., m = n = 1).
The Wannier center (WC) is located at (p,, p,,p,). The 3D bulk

polarization is simply related to the 3D Zak phase®? via 6; = 2mp,
for i = x, y, z. Due to the three mirror symmetries with respect to
the three orthogonal reflection planes, the WC is pinned at the
maximal Wyckoff positions of the unit cell (see Supplementary
Fig. 2). When the WC is at the center of the unit cell, the SC is
adiabatically connected to the atomic limit which is topologically
trivial. In contrast, the WCs of the topological crystalline
insulators are away from the center of the unit cell (they are
also denoted as obstructed atomic insulators®?). There are three
possible cases with nontrivial band topology: (i) when the WC
locates at the center of the surfaces of the cubic unit cell, the
insulator exhibits the first-order topology with topological surface
states; (ii) when the WC locates at the center of the hinges of the
unit cell, it exhibits the second-order topology with both
topological surface and hinge states; (iii) when the WC locates
at the corner of the unit cell, it exhibits the third-order topology,
giving rise to the concurrent topological surface, hinge and corner
states (see Supplementary Note 2).

The bulk polarizations are related to the Wannier bands. For
the simple-cubic SCs studied in this work, we focus on the z
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Fig. 1 Dimensional hierarchy of the higher-order topology. a Schematics of the undeformed (left, gapless), shrunken (middle, trivial gap), and expanded
(right, topological gap) lattices. The unit cell and its cross-section for each configuration are depicted in the insets. For the planar schematics in the insets,
the purple regions denote the air cavities, while the blue regions denote the air channels. Calculated acoustic band structures for b, shrunken and

¢, expanded lattices are presented (the Brillouin zone and unit cells are shown in the insets). Acoustic wavefunctions at the high-symmetry points of the
Brillouin zone and the mirror eigenvalues are also shown in the insets. d, @ Wannier bands v, (k,, k,) for the trivial and topological sonic crystals (SCs),
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respectively. f Higher-order bulk-boundary correspondences as manifestation of the first-, second-, and third-order topology. The trivial phase with bulk

states is also presented as comparison.

component of the bulk polarization (since p,=p, =p,),
p, = ﬁ [sdk.dk,v, (k. k,), where v,(k,k,) represents the
Wannier band*3*8 and S is the projection area of the BZ on
the k,-k, plane. We numerically calculate the Wannier band and
find that for the trivial SC, v, =0 for all (k,,k,) as shown in
Fig. 1d, leading to p = (p,,p,,p,) = (0,0,0). For the topological
SC, however, the Wannier band takes a nontrivial and quantized

value of Vz(kx,k},) = 0.5 as shown in Fig. le. Accordingly, the
bulk polarization is also nontrivial, p = (3, ,1), which indicates
that the WC is located at the corner of the unit cell. Our SC is
thus a HOTT of the case (iii). We would like to point out that the
space group P, 5, consists of a minimum set of symmetries,
including three mirror symmetries with respect to the x =0,
y = 0,and z = 0 planes as well as the C; rotation symmetry along
the [111] direction. Such symmetry constraints allow only two
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possible gapped phases: the trivial phase with p = (0,0,0) and
the topological phase with p = (3,3,3). These two gapped phases
cannot be deformed into one another by continuous deformation
of the SC without closing the bandgap or breaking the
symmetries, thus forming the picture of symmetry-protected
higher-order band topology. Based on the above analyses, such a
HOTI will exhibit a dimensional hierarchy of the topological
surface states (codimension 1), the topological hinge states
(codimension 2), and the topological corner states (codimension
3). Figure 1f illustrates the emergence of these boundary states
when the first-, second-, and third-order topological phases are
manifested (a trivial phase with bulk states is also presented as
comparison). It is seen that the surface of the second-order TI is a
first-order TI which leads to the topological hinge states. The
surface of the third-order TI is a second-order TI, which leads to
the topological hinge and corner states. Such a scenario illustrates
the dimensional hierarchy in our HOTL

Hierarchical topological boundary states in multi-dimensions.
To investigate the topological surface states, we numerically cal-
culate the band structure (in the k.-, plane) for a ribbon-like
supercell in Fig. 2a (the supercell is sketched in the inset). In-gap
states (the orange curves) separated from the bulk bands and
localized at the surface of the HOTI are found, showing the
emergence of the topological surface states (see Supplementary
Fig. 3 for their acoustic pressure profiles). We fabricate a “surface
sample” (as shown in Fig. 2b) where the topological SC with
10 x 10 x 7 unit cells is connected to the trivial SC of the same
size. We perform three types of pump-probe measurements to
detect and distinguish the bulk and surface states (see the

Methods section for details of the experiments; see the inset of
Fig. 2c for the locations of the source and detector). The mea-
sured transmission spectra for the bulk and surface probes are
presented in Fig. 2c. It is clearly seen that the surface probe
captures most acoustic energy in the frequency region of 4.0-7.5
kHz. In this region, the excitation is dominated by the surface
states, whereas the bulk state excitation is suppressed. Due to the
finite-size effect, the transmission spectra of the bulk and surface
deviate slightly from the eigenstates calculation (small fabrication
errors +0.1 mm may also contribute to such deviations; see the
Methods section).

The measurement of the acoustic pressure profiles for the
surface state excited by the source is presented using the slice plot
in Fig. 2d. The measurement is performed using the same set-up
as that in Fig. 2¢, but we fix the frequency (5.5 kHz) and scan the
pressure-field amplitudes with a spatial resolution of 2 mm along
the z-direction and 2cm along the x- and y-direction. The
frequency 5.5 kHz is chosen because it corresponds to an obvious
excitation peak of the surface probe, as well as the explicit
suppression of the bulk probe. We observe a rapid decay of the
acoustic energy away from the surface of the topological SC.
Along the surface, the experimental data show that the acoustic
wave can propagate, indicating topological wave localization on
the surface. These results demonstrate that the surface and bulk
states are distinguishable in the acoustic pump-probe measure-
ments, even though the surface and bulk states are not spectrally
well-separated (more evidence can be found in the Supplemen-
tary Note 4).

We now study the topological surface and hinge states by
fabricating a “hinge sample” where the topological SC has open
boundaries along both x- and y-directions. The band structure of
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Fig. 2 Topological surface states: boundary with codimension one. a Calculated band structures of the bulk (gray) and surface (orange) states for the

supercell with a surface boundary in the x-y plane between the topological and trivial SCs (see the inset). Surface Brillouin zone is shown in the inset.
b Photograph of the fabricated surface sample, consisting of the topological and trivial SCs to form a surface boundary. € Measured transmission spectra
for three types of pump-probe configurations denoted as the bulk and surface probes. As depicted in the inset, the source is placed on the surface. Two
bulk probes are placed in the topological and trivial SC sides, respectively, while the surface probe is placed on the surface away from the source.

d Acoustic pressure profile for the surface states measured at the excitation frequency of 5.5 kHz (indicated in ¢ by the black arrow) using slice plots. The

positions of the slices are depicted in the figure as well.
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Fig. 3 Topological hinge states: boundary with codimension two. a Calculated acoustic dispersions of the bulk (gray), surface (orange), and hinge (dark
blue) states for the supercell with both surfaces and hinges (see the inset). b Photograph of the fabricated hinge sample, consisting of the topological SC
(with 8 x 8 x 10 unit cells) surrounded by the trivial SC in both the x- and y-directions (of thickness 4a). € Measured transmission spectra for four types of
pump-probe configurations: the bulk probe (gray), two surface probes (orange), and the hinge probe (dark blue). The inset depicts the positions of the
source and the probes for the four pump-probe configurations (the color of each probe is the same as in the transmission spectra). d Acoustic pressure
profile for the hinge states measured at the excitation frequency of 5.7 kHz (indicated by the black arrow in €) and presented using slice plots (the locations

of the slices are indicated in b).

a hinge supercell is calculated and presented in Fig. 3a. A sketch
of the hinge supercell is depicted in the figure, which consists of a
block of the topological SC with 8 x 8 x 1 unit cells (periodic
along the z direction) surrounded by a “wall” of the trivial SC (the
thickness of the wall is 4a) in the x- and y-directions. This
supercell has four interfaces and four hinges. It is seen from the
figure that there are surface states (orange curves) and hinge
states (dark blue curves), as predicted by the theory. These
topological surface and hinge states have four-fold degeneracy
due to the coexistence of four surfaces and hinges (see
Supplementary Note 5 for details).

The hinge sample fabricated in our experiment has a block of
the topological SC with 8 x 8 x 10 unit cells surrounded by the
trivial SC (see Fig. 3b for a photograph of the sample). We
perform pump-probe measurements on the hinge sample with
four different configurations (see the inset of Fig. 3c). The source
is placed near one of the four hinges to enhance the excitation of
the hinge states. There is one detection for the bulk probe at the
center of the sample, two detections near the interfaces for the
surface probes, and another detection near the hinge for the hinge
probe. The measured transmission spectra are presented in
Fig. 3¢, where the inset illustrates the source and probe locations.
Several features characterize the higher-order topology in this
sample. First, we observe that the frequency range of 5.3-7.1 kHz
is dominated by the hinge response, where the bulk and surface
responses are considerably weaker. We further measure the
acoustic pressure profile of the hinge state excited at 5.7 kHz. The
results are shown in Fig. 3d using the slice plots. The spatial
resolution of the acoustic field scanning in the figure is 2 mm
along the x-direction and 2 cm along the y- and z-directions. It is

observed from the figure that the acoustic energy is mostly
concentrated along the hinge between the x-z and y-z interfaces,
indicating the excitation of the hinge state. Away from the hinge,
the acoustic energy decays quickly. To detect the surface states,
we perform measurements on the excitation of the surface states
in the hinge sample by putting the source to a location near the
surface (see Supplementary Note 6 for the observation of surface
states in the hinge sample). The coexistence of the surface and
hinge states is an important feature of the higher-order topology.

We now study a “corner sample” which consists of a block of
the topological SC with 8x 8x 8 unit cells enclosed by the trivial
SC in all three directions (see Supplementary Note 7 for a
photograph and details of the corner sample), where the third-
order topology is manifested. In order to perform measurements
on the surface, hinge, and corners, we cut the corner sample and
guide the acoustic waves into the sample (see Methods and
Supplementary Note 7 for details). Figure 4a gives a photograph
of the actual sample used in the measurements. We conduct four
pump-probe measurements to detect the bulk, surface, hinge, and
corner states separately (see the inset of Fig. 4b for the illustration
of the positions of the source and the detection probes for the
four pump-probe configurations). The source is placed not far
away from the corner, hinge, and surface to ensure the excitation
of the topological boundary states. The transmission spectra for
the corner, hinge, surface, and bulk probes are shown in Fig. 4b.
Several key-features of higher-order topology are observed. First,
the appearance of a strong peak in the common spectral gap of
the bulk, surface, and hinge states indicates the emergence of the
corner states. Second, the concurrent emergence of the corner,
hinge, and surface states in the bulk bandgap is clearly visible in
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Fig. 4 Topological corner states: boundary with codimension three. a Photograph of the fabricated corner sample, consisting of the topological SC (size:
8 x 8 x 8 unit cells) enclosed by the trivial SC (thickness 4a) in all three directions. To ensure pump-probe experimental measurements, the corner sample
is cut to allow open interfaces, as shown in the figure. b Measured transmission spectra for four types of pump-probe configurations: the bulk probe (gray),
the surface probe (orange), the hinge probe (dark blue), and the corner probe (dark green). The inset depicts the locations of the source and the surface,
hinge, and corner probes (the same colors as in the transmission spectra). The location of the bulk probe (not shown in the inset) is in the middle of the
topological SC. € Acoustic pressure profile for the corner states excited at the frequency of 7.9 kHz (indicated by the black arrow in b) and presented using

slice plots (the locations of the slices are indicated in the left panel).

the transmission spectra, which is a direct evidence of the third-
order topology in our 3D system. Specifically, the corner probe
finds a strong peak at the frequency of 7.9 kHz, the hinge probe
finds peaks ~5.6 kHz, and the surface probe finds peaks ~4.7
kHz. Furthermore, the acoustic pressure profile for the corner
state excited at 7.9 kHz is presented in Fig. 4c. Typical behavior of
a localized 0D mode is observed, ie., the mode energy is
concentrated around the corner and decays rapidly into the
hinge, surface, and bulk. The acoustic pressure profiles for the
hinge and surface states excited at their peak frequencies are
shown in the Supplementary Note 8, separately, which give clear
evidences of the observation of the surface and hinge states in the
corner sample. In the Supplementary Note 9, we also compare the
topological corner state with a normal cavity mode by
numerically studying the excitation of these two types of 0D
states upon multiple disorders. The results show that the
topological corner state is robust against the disorders, while
the cavity mode is rather sensitive to the disorders.

Robustness. To further characterize the symmetry-protected
topological boundary states and their robustness, we introduce
symmetry-preserving perturbations to the system. As emphasized
above, three mirror symmetries together with the threefold
rotation symmetry along the [111] direction form a full set of
symmetries that protect the higher-order topology in our system.
With such a set of symmetries, the only two possible gapped
phases are the trivial phase with polarization p = (0,0, 0) and the
topological phase with polarization p = (3,1,1). These two
phases cannot be transformed into one another without breaking
the symmetries listed above or closing the bandgap.

Under such symmetry constraints, we first consider inserting a
layer of the topological SC or a layer of trivial SC as defect layers
on the interface between the original topological SC and the
trivial SC (i.e., those used in Fig. 2a) in a ribbon-like supercell. We
use the arguments in ref. 3> to test the robustness of the
topological surface states. Two cases are studied numerically: (i)
when a layer of topological SC (with d,,, = 0.8754, depicted by
the red color in Fig. 5a) is inserted, (ii) when a layer of trivial SC
(with d,,,, = 0.125a, depicted by the red color in Fig. 5b) is
inserted. In the following, these two types of defect layers are
referred as topological and trivial defect layers. We calculate the
band structures of the two modified supercells, whose results are
shown in Fig. 5a, b. It is seen from the figures that for both cases,
the topological surface states remain in the topological band gap,
although their acoustic pressure fields (i.e, the acoustic
“wavefunctions”) may extend into the defect layers (Fig. 5¢c, d).
Due to the insertion of the defect layers, defect surface modes are
also introduced in the high-frequency region of the bandgap (see
Fig. 5a, b for their dispersions, and Fig. 5e, f for their
wavefunctions). However, they do not affect the topological
surface states considerably. Importantly, the topological proper-
ties of the surface states remain to be nontrivial when the defect
layer is glued onto the interface. From the acoustic wavefunctions,
we find that the mirror eigenvalues along the x- and y-directions
(M,, M,) for the topological surface states remain the same as
those in the unperturbed structures. Specifically, the T, X, and M
points in the surface BZ have the mirror eigenvalues of (1,1),
(—1,1), and (—1,—1), respectively (see Fig. 5¢, d). From these
mirror eigenvalues, one concludes that the topological surface
states in the perturbed structures remain to have the topological

polarization p = (},1), i.e., the topological surface states form an
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Fig. 5 Topological surface states with the existence of symmetry-preserving defects. a, b The simulated band structures of a ribbon-like supercell where
the symmetry-preserving defect layers with d,,,, = 0.875a and djt.a= 0.125a are inserted, respectively. The structures of the supercells are depicted in the
insets with the defect layers colored in red. The green and gray colors respectively denote the original topological (dy,,, = 0.85a) and trivial

(dipra = 0.15a) SCs that have been reported in Fig. 2a. It is seen that in the bulk bandgap, the topological surface states emerge. The field distributions for

these surface states at the high symmetry points of the surface Brillouin zone are presented in ¢ and d, indicated by the colored dots (the defect layer is
highlighted by the green blocks). We also label the mirror eigenvalues for the surface states in each field distribution. In addition to the topological surface

states, extra defect modes are introduced (shown by the red curves in the band structures in a and b), whose field maps are presented in e and f.

effective 2D second-order topological insulator protected by the
crystalline symmetry. This indicates the bulk-surface-hinge-
corner correspondence is not annihilated by the symmetry-
preserving perturbations. Hence, the higher-order topology is
indeed protected by the set of symmetries, including the three
mirror symmetries and the three-fold rotation symmetry along
the [111] direction.

We also numerically study the robustness of the hinge and
corner states under the symmetry-preserving perturbations. For
the hinge states, band structures of the hinge supercells with the
interfaces glued by the topological defect layer (left panel of
Fig. 6a) and the trivial defect layer (right panel of Fig. 6a) are
calculated. It is seen from the figures that the topological hinge
states remain in the gap of the surface and bulk states, whose
wavefunctions are localized around the hinges as shown in
Fig. 6b. Here, we would like to point out that the topological
hinge states still have quantized polarization along the z-direc-
tion, indicating that the topological hinge states form quasi-1D
first-order topological insulators. This is consistent with the
dimensional hierarchy of the higher-order topology. Defect
modes are also introduced in the higher-frequency regime (see
Fig. 6a). Their wavefuctions, however, exhibit features of surface
modes rather than hinge modes due to the surface-like defect
layers (see Fig. 6¢).

For the corner states, due to the extremely high computational
power demanded, we only compute the structures with one
corner, as illustrated in Fig. 6d. Instead of the eigen-evaluations,
we conduct the pump-probe simulations to detect the corner
states. The calculation essentially simulates the excitation and

detection of the acoustic modes near the corner, i.e., it calibrates
the local density of states near the corner. An acoustic point
source is placed at a location with slightly more than one lattice
constant away from the “defect-corner” (represented by
the corner point on the boundary between the defect layer and
the trivial SC). The detection is performed at the corner (i.e., the
defect corner and/or the “inner corner”, with the later referring to
the corner point on the boundary between the topological SC and
the defect layer) and in the bulk region, respectively, for the
corner and bulk probes. The calculated pump-probe transmission
spectra are presented in Fig. 6e. For both cases, the corner mode
is preserved.

The acoustic wavefunctions in Fig. 6f show that the corner state
is still fully localized around the corner as a 0D mode in the
presence of symmetry-preserving perturbations. The frequency of
the corner mode in the case with the topological defect layer is
8.04 Hz, whereas it is 7.68 kHz in the case with the trivial defect
layer. Both frequencies are close to the frequency of the
experimentally detected corner state in the unperturbed structure,
which is 7.9 kHz (see Fig. 4). These results again illustrate that the
topological boundary states are robust against symmetry-
preserving perturbations, consistent with the physical picture of
symmetry-protected topological phases.

Discussion

The concept of topologically robust integrated wave systems,
which may inspire the next-generation technology for commu-
nication and information processing, will greatly benefit from
the topological wave trapping and manipulation in multiple
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Fig. 6 Topological hinge and corner states with the existence of symmetry-preserving defects. Two types of defects as that in Fig. 5 are studied. a-¢ The
same as that presented in Fig. 5, but for the hinge supercell consisting of a topological SC with 7 x 7 unit cells, surrounded by a wall of trivial SC with four
unit cells. The defect layer is inserted at the interfaces between the topological and trivial SCs (see the insets in a for the detailed structures). It is observed
from the figures that the symmetry-preserving defects do not considerably affect the topological hinge states, which emerge and remain in the gaps of
the surface and bulk states. d Structures with a defect layer made of topological or trivial SC and inserted on the interfaces of the corner supercell.

e Numerically calculated transmission spectra for both the corner and bulk probes under a point source excitation (near the concerned corner).
Transmission peaks corresponding to the corner modes are observed around 8.04 kHz for the case with the topological defect layer (left panel) and around
7.68 kHz for the case with the trivial defect layer (right panel). f Acoustic pressure profiles of the excited corner states (whose frequencies are indicated by
the black arrows in e). The slice positions for the plots in f are illustrated in d.

dimensions such as the 2D interface channel, 1D waveguide, and
0D cavities coexisting and integrated in a single material. Here,
we show that it is indeed possible to realize such a material with
the help of HOTIs. Our study can be extended to photonic and
elastic waves, where topologically robust integrated chips can be
realized for energy-harvesting and information technology. Due
to the topological nature, the fabrication challenges for frequency
sensitive functional devices can be substantially reduced**, which
then opens a new route toward integrated wave systems.

Note added: At the final stage of this work, we notice two
preprints>»>> appeared, which realize 3D acoustic HOTIs by
simulating the 3D tight-binding model in pyrochlore lattice with
nearest-hopping, where different and complimentary higher-
order topological phenomena are observed.

Methods
Experiments. The present SCs consisting of air cavities connected by open channels
are made of photosensitive resin (modulus 2765 MPa, density 1.3 g- cm~2), which
serves as acoustically hard walls. A stereo lithography apparatus is used to fabricate
the samples, including a surface sample, a hinge sample, and a corner sample. The
lattice constant of the SCs is a = 2 cm. The geometric parameters of the cavity and
channel sizes are illustrated in Fig. 1b, c. The geometric tolerance is ~0.1 mm.
The experimental data on the transmission spectra in Figs. 2¢, 3¢, and 4b are
collected using the following procedure. We eject a point-like acoustic signal, which
is generated from an acoustic transducer and guided into the sample through a thin
channel made of acoustically hard material (i.e., the photosensitive resin). An
acoustic detector (Knowles SPM0687LR5H MEMS microphone with sizes of
4.72 mm x 3.76 mm) is used to probe the excited pressure field. Its position is

controlled by an automatic stage and can move as required. Our SCs are carefully
designed and optimized (the open channel has maximal width of 6 mm) such that
there is enough space for the detector to get into the sample and probe the pressure
field on demand. The data were collected and analyzed using a DAQ card (NI PCI-
6251). For the data in Fig. 2¢, the detection positions for the bulk and surface
modes are in the middle of the topological SC side, the middle of the trivial SC side,
and the middle of the interface. The source for excitation of the acoustic waves is
placed at a position close to the interface and nearly equal distant from the three
probes. For the data in Fig. 3¢, a specific hinge is considered. Given the system has
C, symmetry, the study on one of the four hinges is able to provide sufficient
evidence to the excitation of the hinge states. In this measurement, the source is put
at a location one cell away from the center of the considered hinge and the probes
for the hinge, surface, and bulk states are, respectively, performed at the center of
the hinge, the center of the two interfaces intersecting at the hinge and the middle
of the topological SC. For the data in Fig. 4b, similar as that for the hinge-state
measurements, only one corner is considered. The source is placed two unit cells
away from the corner and the locations of the corner, hinge, surface, and bulk
probes are respectively at the corner, the center of the hinge along the y-direction,
the center of the y-z surface, and the middle of the topological SC. For the
transmission spectra measurements in Supplementary Fig. 7, similar procedure is
used, only the source and detecting positions are varied as required for different
purposes. The said locations are all marked in the corresponding figures as insets.
For the measurement of the boundary states, the acoustic pressure distributions
(Figs. 2d, 3d, and 4c, as well as those in the Supplementary Information), the above
mentioned procedure is used, only the detector moves its position (controlled by
the automatic stage) such that the excited modes can be spatially resolved and
enough data can be collected, which are further post-processed to generate the
color maps. It is worth pointing out that the straight open channels between the
outer space and the inner sample space that can be accessed by the detector are
separated by a lattice constant. This makes our field scanning perform with a
restricted spatial step (the minimum is a =2 cm) along certain directions. For
example, in Fig. 2d, the scanning step along the x- and y-directions is 2 cm while
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the scanning step along the z-direction can be tuned (we choose it as a fine step
of 2 mm).

There are some factors that might affect our experimental measurements and
cause the discrepancies between the simulations and the experimental results. First
is the finite size effect. In the simulations, periodic boundary conditions are
implemented while in the experiments, the samples have a finite size which can
dependently shift the operating frequencies. Another factor might come from the
fabrication error, which also affects the excitation of the boundary states. In
addition, the physical properties of air might vary depending on the weather
conditions, giving a third potential reason for the slight frequency shift between the
experiments and simulations.

Simulations. Numerical simulations in this work are all performed using the 3D
acoustic module of a commercial finite-element simulation software (COMSOL
MULTIPHYSICS). The resin blocks are treated as acoustically rigid materials. The
mass density and sound velocity in air are taken as 1.21kg- m~> and 343 m s},
respectively. In the eigen evaluations, all six boundaries of the unit cells are set as
Floquet periodic boundaries for the data in Fig. 1b-e, as well as in the Supple-
mentary Fig. 1. The boundaries of the supercells are set as Floquet periodic
boundaries along the boundary directions, with the perpendicular directions set as
plane wave radiation boundaries, for the data in Figs. 2a and 3a. The eigen eva-
luations in Supplementary Figs. 3, 5, and 6 also obey similar set-up. In the
simulations on the excitations, all boundaries are set as plane wave radiation
boundaries.

Data availability
The data that support the plots within this work and other related findings are available
from the corresponding authors upon reasonable request.

Code availability

Numerical simulations in this work are all performed using the 3D acoustic module of a
commercial finite-element simulation software (COMSOL MULTIPHYSICS). All related
codes can be built with the instructions in the Method section.
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