Skip to main content
. 2019 Nov 19;9:1241. doi: 10.3389/fonc.2019.01241

Table 4.

Accuracy and predictive value between those models.

Training dataset AUC 95%CI Sensitivity Specificity Accuracy PPV NPV
CT morphological features 0.877 0.819–0.935 83.6% (61/73) 79.4% (50/63) 81.6% (111/136) 82.4% (61/74) 80.7% (50/62)
Single-slice histogram 0.872 0.813–0.931 86.3% (63/73) 76.2% (48/63) 81.6% (111/136) 80.8% (63/78) 82.8% (48/58)
Whole-lesion histogram 0.888 0.830–0.946 82.2% (60/73) 87.3% (55/63) 84.6% (115/136) 88.2% (60/68) 80.9% (55/68)
Morphological-histogram 0.919 0.871–0.968 84.9% (62/73) 92.1% (58/63) 88.2% (120/136) 92.5% (62/67) 84.1% (58/69)
Validation dataset AUC 95%CI Sensitivity Specificity Accuracy PPV NPV
CT morphological features 0.823 0.708–0.938 78.5% (22/28) 75% (24/32) 76.7% (46/60) 73.3% (22/30) 80% (24/30)
Single-slice histogram 0.819 0.702–0.936 75% (21/28) 71.9% (23/32) 73.3% (44/60) 70% (21/30) 76.7% (23/30)
Whole-lesion histogram 0.865 0.773–0.957 75% (21/28) 84.4% (27/32) 80% (48/60) 80.8% (21/26) 79.4% (27/34)
Morphological-histogram 0.895 0.813–0.977 78.5% (22/28) 84.4% (27/32) 81.7% (49/60) 81.5%(22/27) 81.8%(27/33)

CI, confidence interval; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value.

p < 0.05.