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Abstract

Yes-associated protein 1 (YAP1) is a major component of the Hippo signaling pathway. Although

the exact extracellular signals that control the Hippo pathway are currently unknown, increasing

evidence supports a critical role for the Hippo pathway in embryonic development, regulation of

organ size, and carcinogenesis. Granulosa cells (GCs) within the ovarian follicle proliferate and

produce steroids and growth factors, which facilitate the growth of follicle and maturation of the

oocyte. We hypothesize that YAP1 plays a role in proliferation and estrogen secretion of GCs. In the

current study, we examined the expression of the Hippo signaling pathway in bovine ovaries and

determined whether it was important for GC proliferation and estrogen production. Mammalian

STE20-like protein kinase 1 (MST1) and large tumor suppressor kinase 2 (LATS2) were identified

as prominent upstream components of the Hippo pathway expressed in granulosa and theca cells

of the follicle and large and small cells of the corpus luteum. Immunohistochemistry revealed

that YAP1 was localized to the nucleus of growing follicles. In vitro, nuclear localization of the

downstream Hippo signaling effector proteins YAP1 and transcriptional co-activator with PDZ-

binding motif (TAZ) was inversely correlated with GC density, with greater nuclear localization

under conditions of low cell density. Treatment with verteporfin and siRNA targeting YAP1 or

TAZ revealed a critical role for these transcriptional co-activators in GC proliferation. Further-

more, knockdown of YAP1 in GCs inhibited follicle-stimulating hormone (FSH)-induced estradiol

biosynthesis. The data indicate that Hippo pathway transcription co-activators YAP1/TAZ play an

important role in GC proliferation and estradiol synthesis, two processes necessary for maintaining

normal follicle development.
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Summary Sentence

Hippo pathway transcription coactivators YAP1/TAZ play an important role in bovine granulosa

cell proliferation and estradiol synthesis.

Key words: Hippo signaling, Yes-associated protein 1, follicular development, proliferation, steroidogenesis, granu-
losa cells, bovine

Introduction
The ovary is a dynamic reproductive endocrine organ responsible for
producing the ovum and providing sex steroids that are required for
female fertility and quality of life. The growth and development of
ovarian follicles require a series of coordinated events that induce
morphological and functional changes within the follicle; specifi-
cally, promoting somatic cell growth and differentiation and oocyte
maturation. Granulosa cells (GCs) undergo dramatic morphological
and physiological changes throughout follicular growth and atresia,
ovulation, and luteinization [1, 2]. Granulosa cells are responsible
for the production of sex steroids, enzymes, growth factors, and
cytokines required for a successful pregnancy. In mammals, follicle-
stimulating hormone (FSH) released from the anterior pituitary
gland, binds to receptors on GCs and stimulates the expression of
cytochrome P450 family 19 subfamily A member 1 (CYP19A1), an
enzyme responsible for estradiol biosynthesis [3], which promotes
oogenesis and follicular development. During the estrous cycle, GC
proliferation and apoptosis are tightly controlled and synchronized
[4, 5]. Transforming growth factor-alpha (TGFα), a potent mitogen,
stimulates GC proliferation by inducing critical regulators of cell
growth and migration [6]. However, despite decades of extensive
research, the molecular mechanisms governing GC proliferation and
apoptosis remain unclear.

The Hippo signaling pathway (also referred to as the Sal-
vador/Warts/Hippo pathway) is highly conserved and plays a
critical role in maintaining tissue homeostasis by regulating both
cell proliferation and apoptosis in various species [7, 8]. This
signaling pathway consists of several negative regulators acting in
a kinase cascade that ultimately phosphorylate and inactivate the
transcriptional co-activators, Yes-associated protein 1 (YAP1) and
transcriptional co-activator with PDZ-binding motif (TAZ) (also
called WW domain containing transcription regulator 1 [WWTR1])
[9]. The core kinase cascade of the Hippo pathway consists of
upstream Ste20-like protein kinases (serine/threonine kinase [STKs])
(commonly known as MST1/2) and the large tumor suppressor
kinases 1/2 (LATS1/2) [10]. MST1/2 serine/threonine kinase activity
is enhanced by interaction with the salvador family WW domain
containing protein 1 (SAV1) scaffold protein. MST1/2 kinases and
SAV1 form a complex to phosphorylate and activate LATS1/2
[11]. Phosphorylated LATS1/2 in complex with its regulatory
protein MOB kinase activator 1 (MOB1) phosphorylates and
inhibits downstream effector proteins, YAP1 and TAZ. In the
phosphorylated state (inactive), YAP1 and TAZ are generally
associated with 14-3-3 proteins in the cytoplasm and ultimately
targeted for degradation [12]. When Hippo signaling is inactivated,
levels of non-phosphorylated YAP1/TAZ increase, allowing for their
accumulation in the nucleus; however, the mechanism is not fully
understood. Following nuclear import, YAP1 and TAZ bind with
TEA domain transcription factors (TEAD), which induce expression
of genes that promote cell proliferation and inhibit apoptosis [13].
The Hippo signaling cascade is regulated by numerous upstream
signals which include G-protein coupled receptors [14], Wnt
signaling [15], mechanical stress [16, 17], cell polarity [18], as well as

microRNAs [19]. YAP1 and TAZ have been found to interact with
different signaling pathways, such as Wnt, TGFβ, Notch, and IGF
[20]; each of which is known to contribute to follicle development
and ovarian function.

Recent studies indicate that the Hippo signaling pathway may
play an important role in regulating mammalian ovarian physiology
and pathology [21, 22]. The major components of the Hippo sig-
naling cascade were found to be spatially and temporally expressed
in the mouse ovary [23]; with reduced levels of messenger RNA
(mRNA) and protein for MST and LATS and increased levels of
YAP1 in proliferating GCs. Interestingly, YAP1 was predominantly
cytoplasmic, whereas TAZ was nuclear in somatic cells [24], indi-
cating that YAP1 and TAZ may be differentially regulated and have
different functions in the ovary. A study in the chicken showed that
the scaffold SAV1 played a suppressive role in follicle development by
promoting the activity of LATS1 [25]. Ji et al. [26] provided evidence
that androgen and estrogen treatment promote nuclear localization
of YAP1 and that YAP1 is required for proliferation of mouse
GCs. Studies by Kawamura et al. demonstrated that mechanical
cues (i.e., fragmentation of the ovarian cortex) lead to suppression
of Hippo signaling and thus an increase in nuclear localization of
YAP1 in preantral follicles [27, 28]. This change resulted in the
expression of YAP1 target genes cellular communication network
growth factors 1 and 2 (CCN1/2, commonly known as CRY61 and
CTGF, respectively), and baculoviral inhibitors of apoptosis repeat
containing (BIRC) proteins and stimulation of secondary follicle
growth. YAP1 is highly expressed in human GC tumors and knock-
down or overexpression of YAP1 was directly linked to suppression
or stimulation of cell proliferation [29]. These reports only begin to
reveal the roles for each of the Hippo pathway components and how
they are regulated during follicle development and differentiation.

Knockout studies in mice revealed that YAP1 deletion is embry-
onic lethal and TAZ (Wwtr1) deletion results in viable mice with
kidney defects [30]. Mice deficient in Lats1 exhibit an increase in
germ cell apoptosis, develop follicular cysts and ovarian tumors and
display marked infertility [24]. Lats1 deficient mice also develop
hyperplastic changes in the pituitary gland, which may disrupt the
endocrine system. Studies in mice with germ cell-specific YAP1
knockouts demonstrated that YAP1 is not required for oogenesis
or spermatogenesis [31]. Another study concluded that nuclear
YAP1 does not play an important role in oocyte development [32].
Furthermore, the studies showed that oocyte-specific depletion of
YAP1 does not alter ovarian follicle development but results in
subfertility owing to poor oocyte quality leading to impaired early
embryogenesis. A recent study in the bovine reported similar find-
ings that inhibition of YAP1 activity, either by the small molecule
YAP1 inhibitor, verteporfin, or by YAP1 targeting GapmeR antisense
oligonucleotides, reduced the percent of zygotes that became blasto-
cysts [33]. Collectively, the evidence points to a more prominent role
for the Hippo pathway/YAP1 signaling in ovarian somatic cells than
oocytes during follicle development.

The role of Hippo/YAP1 signaling in the bovine ovary is largely
unknown. Understanding the influence of FSH and ovarian growth



Hippo/YAP1 signaling in bovine granulosa cells, 2019, Vol. 101, No. 5 1003

factors, such as TGFα, on Hippo signaling in GCs may lead to
a better understanding of the molecular mechanisms governing
follicle growth. The current study examined the expression of Hippo
signaling components in the bovine ovary and localization and
possible roles of YAP1 and TAZ in GCs. The data indicate that
these transcriptional co-activators play important roles in granulosa
proliferation and estradiol synthesis.

Materials and methods

Ethics statement

The research conducted did not require animal protocol approval
as the material was obtained from a slaughter house. this fact is
indicated in the materials and methods section.

Chemicals

Penicillin–streptomycin and Gentamycin were from Gibco (Gaithers-
burg, MD, USA), and Amphotericin B was from MP Biomedical,
(Santa Ana, CA). Human FSH was from NHPP/NIDDK (Torrance,
CA, USA). DMEM-F12 and M199 were from Invitrogen (Carlsbad,
CA, USA). Fetal bovine serum (FBS) was from Atlanta Biologi-
cals, Inc. (Lawrenceville, GA, USA). The SuperSignal West Femto
Chemiluminescent Substrate Kit was from Pierce/Thermo Fisher
Scientific (Rockford, IL, USA); Optitran Nitrocellular transfer mem-
brane was from Schleicher & Schuell Bioscience (Dassel, Germany).
Nuclear extraction kit was purchased from Active Motif (Carls-
bad, CA, USA). 3,3-Diaminobenzidine (DAB) kit was from Invitro-
gen (Carlsbad, CA, USA). DAKO LSAB Kit was from Carpinteria,
CA, USA). Mayer’s hematoxylin and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) were from Sigma-Aldrich
(St. Louis, MO, USA). Yes-associated protein 1 small interfering
RNA (siRNA) was from Dhamarcon/Thermo Scientific (Pittsburgh,
PA, USA). [3H] Thymidine was from MP Biomedicals LLC (Santa
Ana, CA, USA). Fluoromount-G and clear nail polish were pur-
chased from Electron Microscopy Sciences (Hatfield, PA, USA).
Bio-Rad protein assay dye reagent concentrate is from Bio-Rad
(Hercules, CA, USA).

All antibodies used in the study are found in Table 1. Biotin
was added to phosphorylated YAP1 (Ser127) polyclonal antibody
(Table 1) using a commercially available kit per manufacture’s pro-
tocol (DSB-X Biotin Protein Labeling Kit; Cayman Chemical Com-
pany). In brief, the stock antibody solution was diluted to 0.5 mg/ml
and desalted using a spin column prior to labeling. Two hundred
microliters of desalted antibody was combined with 20 μl of freshly
prepared 1 M NaHCO3 and placed in a reaction tube. DSB-X biotin
succinimidyl ester was reconstituted in 40 μl of dimethyl sulfoxide,
and 2 μl of the DSB-X biotin solution was added to 200 μl of phos-
phorylated YAP1 (Ser127) polyclonal antibody. The derivatization
reaction was carried out at room temperature for 1.5 h with constant
stirring. The biotinylated antibody was collected using a spin column
containing purification resin and centrifuged 5 min at 1100×g to
remove unbound DSB-X. Labeling of antibody was verified using
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and western blotting (data not shown).

Bovine granulosa cell isolation

Bovine GCs were isolated from follicles of increasing size (2–5,
5–10, and >10 mm) from ovaries collected at the local slaughter-
house. Briefly, GCs were collected by scraping and flushing the inner
layers of follicles and washed twice in DMEM-F12. Freshly isolated

GCs from follicles of increasing size were immediately processed for
Western blot analysis.

Cell cultures were performed with GCs isolated from 2–5 mm
follicles. Cells were then plated on a 60 mm2 culture dish at 5
× 106 cells/dish with culture media (DMEM-F12, 1 or 10% FBS,
and 1× antibiotics) and maintained at 37 ◦C in an atmosphere of
95% humidified air and 5% CO2, as described above until 80–85%
confluent.

Bovine luteal cell isolation

For comparison, some experiments were performed with bovine
small luteal cells (SLCs). In brief, the corpus luteum was surgically
dissected from the ovary and minced finely using a microtome and
surgical scissors. Tissue pieces were dissociated using collagenase
(103 U/ml) in the basal medium [M199 supplemented with antibi-
otics (100 U/ml penicillin G-sodium, 100 μg/ml streptomycin sulfate,
and 10 μg/ml gentamicin sulfate)] for 45 min in spinner flasks at
37 ◦C. Following incubation, the supernatant was removed and
transferred to a sterile 15 ml culture tube. Cells were then washed
3× with sterile PBS, resuspended in 10 ml of elutriation medium
(calcium-free DMEM medium, 4.0 g/l glucose, antibiotics, 25 mM
HEPES, 0.1% BSA, and 0.02 mg/ml deoxyribonuclease l; pH 7.2),
and placed on ice. Fresh dissociation medium was added to the
remaining undigested tissue and incubated with agitation for an
additional 45 min. The remaining cells were collected, washed 2×
with sterile PBS, and combined with the previous sample. After the
final wash, cells were resuspended in 10 ml of culture medium.
Viability of cells was determined using trypan blue and cell concen-
tration was estimated using a hemocytometer prior to cell elutriation.

Freshly dissociated cells were resuspended in 30 ml elutriation
medium. Dispersed luteal cells were enriched for SLCs and large
luteal cells (LLCs) via centrifugal elutriation as previously described
[34]. Cells with a diameter of 15–25 μm were classified as SLCs
(purity > 90%).

Immunohistochemistry

Bovine ovaries were collected during early pregnancy from a local
slaughterhouse (JBS USA, Omaha, NE). Ovaries were fixed in 10%
formalin for 24 h and then changed into 70% ethanol until embed-
ded in paraffin. Tissues were cut into 4 μm sections and mounted
onto polylysine-coated slides. Slides were deparaffinized through
three changes of xylene and through graded alcohols to water and
microwaved in unmasking solution (Vector H-3300) for antigen
retrieval. Endogenous peroxidase was quenched with 0.3% hydro-
gen peroxide in methanol for 30 min. Sections were incubated
with anti-YAP1, anti-phosphoYAP1, or anti-TAZ as indicated in
Table 1 and subsequently an anti-rabbit ABC (Vector PK-4001)
and stained using a DAB detection kit (Vector SK-4100). Slides
were counterstained with Mayer’s hematoxylin, dehydrated through
graded alcohols, and mounted with Fluoromount-G. Nonimmune
IgG from the host species was used as a control.

Subcellular fractionation

Cytoplasmic and nuclear fractions of cultured GCs (2.5 × 106)
isolated from 2–5 mm follicles and SLCs (2.5 × 106) were prepared
following the manufacture’s instruction. Nuclear and cytoplasmic
proteins (20 μg) were analyzed by SDS-PAGE and western blot
analysis.
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Table 1. Characteristics of antibodies used for western blotting and microscopy.

Antibody name Dilution ratio Species
specificity

Source Supplier (distributor, town, and country) Cat. No

YAP1 1:4001/1:10002/1:2003 Mouse Rabbit pAB Cell Signaling (Boston, MA, USA) 4912S
Phospho-YAP1
(Ser127)

1:4001/1:10002/1:2003,4 Mouse Rabbit pAB Cell Signaling 4911S

TAZ 1:4001/1:10002/1:2003 Mouse Rabbit pAB Cell Signaling 4883S
CYP19A 1:1000 Human Rabbit pAB Abcam (Cambridge, United Kingdom) ab80206
STAR 1:10000 Mouse Rabbit pAB Abcam ab96637
CYP11A1 1:1000 Mouse Rabbit mAB Cell Signaling 14217
HSD3B 1:1000 Mouse Mouse mAB A gift from Dr. Ian Mason
TOP2A 1:1000 CalBioChem (Emdmillipore; Burlington, MA,

USA)
NA14

NFKB1A 1:1000 Mouse Rabbit pAB Abcam ab86299
Cyclin D1 1:1000 Mouse Rabbit mAB Cell Signaling 2978
ACTB 1:5000 Bovine Mouse mAB Sigma Life Science (St. Louis, Missouri, USA) A5441
Alpha-tubulin 1:200 Bovine Mouse mAB Abcam ab7291
HRP-linked 1:10000 Anti-rabbit Jackson ImmunoResearch (West Grove, PA,

USA
111035003

HRP-linked 1:10000 Anti-mouse Jackson Laboratory 115035205
DAPI5 300 nM Thermo Fisher (Carlsbad, CA, USA) D1306
Alexa Fluor 488 1:500 Anti-mouse Invitrogen (Carlsbad, CA, USA) A32723
Alexa Fluor 594 1:500 Anti-rabbit Invitrogen A-11032
Alexa Fluor 647 1:500 Anti-biotin Biolegend (San Diego, CA, USA) 405237

1Diltuion used for immunohistochemistry.
2Diltuion used for Western blotting.
3Diltuion used for confocal microscopy.
4Biotinylated antibody.
5DAPI, 4 4′,6-diamidino-2-phenylindole.
YAP1, Yes-associated protein 1; TAZ, WWTR1, WW domain containing transcription regulator 1; CYP19A1, aromatase; STAR, steroidogenic acute regulatory protein; HSD3B, 3 beta-
hydroxysteroid dehydrogenase; CYP11A1, cholesterol side-chain cleavage enzyme; TOP2A, nuclear protein: DNA topoisomerase II alpha; cytosolic protein NFKB1A, nuclear factor of kappa
light polypeptide gene enhancer in B-cells 1; ACTB, beta-actin (loading control).

Western blot analysis

Freshly isolated and cultured bovine GCs were harvested with ice-
cold cell lysis buffer (20 mM Tris-HCl (pH = 7), 150 mM NaCl,
1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100 and protease
and phosphatase inhibitor cocktails). The lysed cells were soni-
cated and cleared by centrifugation at 14 000×g for 5 min. Pro-
tein content was determined using a Bio-Rad protein assay kit.
The cell lysates (40–60 μg protein per lane) were subjected to
10% SDS-PAGE and transferred to nitrocellulose membranes as
described previously [35]. The membranes were blocked within
PBS with 5% BSA and blotted with primary dilutions and HRP-
conjugated secondary antibodies dilutions as listed in Table 1. Sig-
nals were detected using Thermo Scientific SuperSignal West Femto
Chemiluminescent Substrate Kit. The images were captured and
analyzed with a UVP gel documentation system (UVP, Upland,
CA, USA).

Yes-associated protein 1 and TAZ knockdown

Yes-associated protein 1 and TAZ knockdown was achieved
using siYAP1 (E-012200-02005) and siTAZ (E-016083-00-005)
purchased from Dharmacon. siGLO (a cy5-labeled non-targeting
siRNA as control) from Dharmacon was used as a control. Cells
were transfected with either siGLO, siYAP1, or siTAZ for 6 h
using Metafectene (Biontex-USA, San Diego, CA) according to the
manufacturer’s instruction. Cells were maintained at 37 ◦C in an
atmosphere of 95% humidified air and 5% CO2 for 48-h prior to
use in studies for cell proliferation or estrogen production.

Cell proliferation assays

Cells were harvested 72 h after siRNA transfection for determination
of protein levels or cell numbers. Yes-associated protein 1 expression
was determined by Western blot analysis and the cell numbers
were quantified with an Invitrogen Countess automated cell counter
(Carlsbad, CA, USA).

Granulosa cells were plated in 24-well plates at a density of
3 × 104 cells/well in DMEM-F12 with 10% FBS. After 24 h,
cells were rinsed with PBS and incubated in DMEM-F12 with
2% FBS for 2 h. In some experiments, cells were treated with
verteporfin, a selective YAP1 inhibitor, with or without TGFα

(100 ng/ml) for 24 h. In other experiments, cells were treated
with control siRNA, siYAP1 or siTAZ for 48 h prior to 24 h
treatment with or without TGFα. [3H] Thymidine (4 μCi/ml) was
added 4 h before the end of the incubation period. Unincorporated
radioactivity was removed by washing cells with ice-cold PBS
twice followed by the addition of 10% trichloroacetic acid for
10 min at 4 ◦C. Cells were then washed with ice-cold TCA and
solubilized with 0.2 M NaOH/0.1% SDS at room temperature. The
extract was neutralized with an equal volume of 1 N HCL. [3H]
Thymidine incorporation was determined by liquid scintillation
counting.

17 Beta-estradiol enzyme-linked immunosorbent assay

Bovine GCs were treated with siGlo (siCTL) or siYAP1 as described
above. Granulosa cells were cultured in Dulbecco modified eagle’s
medium (DMEM)-F12 supplemented with 2% FBS and 200 nM 4-
androstene-3 17-dione and then treated without (control) or FSH
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(30 ng/ml) for 48 h. Conditioned media were collected for 17β-
estradiol determination using an Estradiol EIA kit (Cayman Chem-
ical Company, Ann Arbor, MI) according to the manufacturer’s
instructions.

Microscopy and analysis

Granulosa cells were seeded at increasing cell densities of 0.125,
0.25, and 0.50 × 106 cells/well on glass coverslips (22 × 22 mm No.1
thickness) in six-well culture dishes (9 cm2 per well) to determine
how cell contact/density influenced the localization of YAP1 and
TAZ. Following plating, the cultures were maintained for 24 h at
37 ◦C in an atmosphere of 95% humidified air and 5% CO2. Cells
were then fixed with 200 μl of 4% paraformaldehyde and incubated
at 4 ◦C for 30 min. Cells were rinsed 3× with 1 ml PBS following
fixation. Cells were incubated with 200 μl of 0.1% Triton-X in 1×
PBS at room temperature for 10 min to permeabilize the membranes.
Cells were then rinsed 3× with 1 ml PBS and blocked in 1% BSA
in PBS for 1 h at room temperature. Cells were rinsed 3× with
1 ml PBS prior to addition of YAP1 (1:200), phosphorylated YAP1
(Ser127; 1:200), TAZ (1:200), or alpha-tubulin (1:200) antibody for
1 h at room temperature. Following incubation, cells were washed
3× with PBS to remove unbound antibody and incubated with
appropriate secondary antibodies at room temperature for 1 h.
Cells were rinsed 3× with 1 ml PBS to remove unbound antibody.
Following labeling with antibodies, coverslips containing labeled
cells were mounted to glass microscope slides using 10 μl ProLong
Gold Antifade Mountant with DAPI. Coverslips were sealed to glass
microscope slides using clear nail polish and stored at −22 ◦C until
imaging.

Images were collected using a Zeiss confocal microscope
equipped with a 63X oil immersion objective (1.4 N.A) and
acquisition image size of 512 × 512 pixel (33.3 μm × 33.3 μm). The
appropriate filters were used to excite each fluorophore and emission
of light was collected between 402 to 1000 nm. Approximately
30 cells were randomly selected from each slide and 0.33 μm
slice z-stacked images were generated from bottom to top of each
cell. A 3D image of each cell was created, and the area of an
individual cell was generated using Zen software. Cells were then
converted to maximum intensity projections and processed utilizing
ImageJ (National Institutes of Health) analysis software. The JACoP
plug-in was used in Image J software to determine the Manders’
overlap coefficient for each image as previously described [36] and
transformed into percent colocalization by multiplying Manders’
overlap coefficient by 100.

Expression of bovine Hippo pathway components

We mined bovine gene expression arrays from NCBI GEO repository
(GSE83524) to analyze expression of Hippo signaling pathway
components in freshly isolated bovine GCs (GC, n = 4) and theca
cells (TCs) (n = 3) from large follicles and from purified prepa-
rations of bovine SLCs (n = 3) and LLCs (n = 3) from mature
corpora lutea. Details of the isolation and analysis were previously
published [37, 38]. Significant differences were identified as changes
greater than 1.5-fold between GC and LLC or between TC and
SLC, which were supported by unpaired t-tests with P < 0.01.
Levels of beta-actin (ACTB) mRNA were not significantly differ-
ent among cell types. When all cells types were combined as a
group the relative expression of ACTB mRNA was 7845 ± 164,
mean ± SEM.

Statistical analysis

Each experiment was performed at least three times each using cell
preparations from separate animals and dates of collection. All data
are presented as means ± SEM. The differences in means were
analyzed by one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparison tests to evaluate multiple responses,
or by t-tests to evaluate paired responses. Welch’s correction for
unpaired t-tests was used when variances were significantly different.
Two-way ANOVA was used to evaluate repeated measures with
Bonferroni posttests to compare means. P values ≤ 0.05 were con-
sidered significant unless otherwise indicated. All statistical analysis
was performed using GraphPad Prism software from GraphPad
Software, Inc.

Results

Expression and localization of Hippo signaling

components in the bovine ovary

We mined bovine gene expression arrays from the NCBI GEO
repository (GSE83524) for expression of key components of the
Hippo signaling pathway [37, 38]. Figure 1A shows relative mRNA
expression of MST1/2, SAV1, LATS1/2, MOB1, YAP1, and TAZ
in bovine GCs and TCs (open blue symbols) and their luteal cell
counterparts, LLCs and SLCs, respectively (closed red symbols).
Levels of mRNA expression for MST1, MST2, LATS2, MOB1A, and
YAP1 were not different among all cell types. When all cell types
were analyzed as a group the average levels of MST2 mRNA were
3–4-fold greater than MST1 and the average levels of LATS1 mRNA
were 4–5-fold greater than LATS2 mRNA (Figure 1B). Levels of
SAV1 and TAZ were increased (1.6- and 7.5-fold, respectively) in
LLCs compared to GCs; whereas there was a 40% reduction LATS1
transcripts in LLCs compared to GCs. Levels of SAV1 transcripts in
SLCs increased 2.4-fold compared to TCs.

The presence of YAP1 and TAZ proteins in bovine ovaries was
determined using Immunohistochemistry (Figure 2A). The subcel-
lular localization of the Hippo signaling effectors YAP1 and TAZ
provides useful information regarding the possible role of YAP1 and
TAZ in cellular responses. When Hippo signaling is active, YAP1
and TAZ are phosphorylated and shuttled from the nucleus to the
cytoplasm, thus preventing their function as transcriptional coacti-
vators [9]. YAP1 was prominently expressed in the granulosa layer of
developing antral follicles; while staining in the theca layer was less
intense and was further reduced in the stroma (Figure 2A, panel b).
Although YAP1 was present in the cytoplasm, more intense staining
was observed in the nuclei of GCs and TCs. Staining for phospho-
rylated YAP1 (Ser127) revealed a cytoplasmic distribution in both
GCs and TCs (Figure 2A, panel c). In the corpus luteum, YAP1 was
present in the cytoplasm and nucleus (Figure 2A, panel d). YAP1
staining was also observed in microvascular endothelial cells of the
corpus luteum (arrows). TAZ immunostaining in antral follicles was
more prominent in TCs compared to GCs (Figure 2A, panel g).
TAZ was also present in the nucleus and cytoplasm throughout the
corpus luteum, with a population of LLCs staining intensely. Stain-
ing was also evident in microvascular endothelial cells (Figure 2A,
panel h).

We used Western blot analysis to evaluate YAP1 and TAZ
expression in freshly isolated bovine GCs from follicles of various
sizes (2 to >10 mm) and LLCs or SLCs (Figure 2B). Yes-associated
protein 1 was expressed in GCs at all stages of follicle development
and in SLCs and LLCs. Compared to small follicles the YAP1/ACTB
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Figure 1. Expression of Hippo signaling family members in the bovine ovary. Microarray analysis was used to determine the expression of Hippo signaling

family members in bovine follicular (theca and granulosa) and luteal (small and large) cells. (A) Microarray analysis of Hippo signaling family members in

bovine GCs (n = 4; open blue circle), TCs (n = 3; open blue box), SLCs (n = 3; closed red box) and LLCs (n = 3; closed red circle). Relative mRNA units are

shown as symbols with means ± SEM shown as black lines, in some cases, the black lines are obscured by the symbols. Significant differences were identified

as changes greater than 1.5-fold and supported by unpaired t-tests with P < 0.01. ∗Significant difference between GC and LLC or TC and SLC. Serine/threonine

kinase 4 (STK4; MST1); serine/threonine kinase 3 (STK3, MST2); salvador family WW domain containing protein 1 (SAV1); large tumor suppressor kinase 1

(LATS1); large tumor suppressor kinase 2 (LATS2); MOB kinase activator 1A (MOB1A); Yes-associated protein 1 (YAP1); WW domain containing transcription

regulator 1 (TAZ; WWTR1); and beta-actin (ACTB). (B) Comparison of the expression of MST1 versus MST2 and LATS1 versus LATS2. Levels of mRNA for each

transcript in GC, TC, SLC, and LLC were pooled and analyzed as a single group. Data are means ± SEM. Differences in means in MST1 versus MST2 and LATS1

versus LATS2 were compared by t-test. ∗∗∗P < 0.001.

ratio slightly increased by 14 ± 9% and decreased 23 ± 9% in 5–10
and >10 mm follicles, respectively (mean ± SEM, n = 8). In contrast,
the expression of TAZ in GCs decreased with increasing follicle
size. Compared to small follicles the TAZ/ACTB ratio decreased by
33 ± 10% and 59 ± 7% in 5–10 and >10 mm follicles, respectively
(mean ± SEM, n = 9). However, TAZ was expressed in both SLCs
and LLCs. Aromatase protein (CYP19A1) was detected only in
GCs, whereas Steroidogenic acute regulatory protein (STAR) protein
was detected in luteal cells (Figure 2B). Levels of 3β-hydroxysteroid
dehydrogenase (3BHSD) and cholesterol side-chain cleavage enzyme
(CYP11A1) increased with differentiation to luteal cells (Figure 2B).

Cellular fractions of cultured cells were prepared to determine the
subcellular localization of YAP1 and TAZ in GCs from 2–5 mm folli-
cles and SLCs. In GCs, greater levels of YAP1 and TAZ were present
in the cytoplasm compared to the nucleus (P < 0.05; Figure 3). In
cultures of luteal cells, YAP1 was evenly distributed in the cyto-
plasmic and nuclear fractions (Figure 3A and B). In contrast, greater
amounts of TAZ were distributed to the nuclear fractions than
cytoplasmic fractions in luteal cells (P < 0.05; Figure 3A and D). As
expected, phosphorylated YAP1 (Ser127) was predominantly present

(≥80%) in the cytoplasm compared to the nucleus in GCs and luteal
cells (P < 0.05; Figure 3A and B).

Effects of cell density on the localization of

Yes-associated protein 1, phosphorylated YAP1

(Ser127), and TAZ in bovine granulosa cells

Mechanical and cell–cell interactions are known to regulate
Hippo activity, with less nuclear localization of YAP1 at high
cell density [39]. Experiments were conducted to determine how
cell contact/density influences the localization of YAP1 and TAZ
in bovine GCs. Using confocal microscopy, a density-dependent
decrease in nuclear YAP1 localization was observed as shown with
decreased colocalization with DAPI (P > 0.05; Figure 4). GCs seeded
at the lowest density had 43.37% greater levels of YAP1 colocalized
with DAPI than GCs plated at 0.50 × 106 cell/well (P > 0.05;
Figure 4). Moreover, there was a density-dependent increase in YAP1
colocalization with alpha-tubulin observed (P > 0.05; Figure 4).
Unlike total YAP1, there was no difference in colocalization
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Figure 2. Localization of Hippo signaling family members in the bovine ovary. Immunohistochemistry and western blotting were used to determine the

expression and localization of YAP1, phospho-YAP1(Ser127), and TAZ in bovine follicles and the corpus luteum. (A) Representative immunohistochemistry

micrographs showing expression of YAP1 in GCs and TCs (b) and corpus luteum (d), phospho-YAP1(Ser127) in GC and TC (c) and corpus luteum (e); and

TAZ in GC and TC (g) and corpus luteum (h). Micron bar represents 1 mm, negative controls (a and f). Large arrows point to luteal endothelial cells. (B)

Western blot analysis of the expression of YAP1 and TAZ in GC from follicles of increasing size (2–5, 5–10, >10 mm) and enriched SLCs and LLCs. Expression

of aromatase (CYP19A1), steroidogenic acute regulatory protein (STARD1), 3beta-Hydroxysteroid dehydrogenase (3BHSD), Cholesterol side-chain cleavage

enzyme (CYP11A1), and Beta-actin (ACTB; loading control) are shown.

of phosphorylated YAP1 (Ser127) with DAPI, regardless of cell
density (P < 0.05; Figure 5). However, a density-dependent increase
in phosphorylated YAP1 (Ser127) colocalization with alpha-
tubulin was observed (P > 0.05; Figure 5). Similar to the density-
dependent changes in nuclear YAP1 localization, GCs plated at

the lowest density had 33.4% more TAZ colocalized with DAPI
when compared to GCs plated at the highest density (P > 0.05;
Figure 6). Interestingly, there was a density-dependent decrease in the
colocalizationh alpha-tubulin observed as cell density increased
(P > 0.05; Figure 5).
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Figure 3. Expression of YAP1 and WW domain-containing transcription

regulator 1 (TAZ; WWTR1) in the bovine ovary. Western blotting was

used to determine the localization of YAP1, phospho-YAP1(Ser127), and

TAZ in bovine follicles and the corpus luteum. (A) Representative western

blots of YAP1, phospho-YAP1(Ser127) and TAZ in cytoplasmic and nuclear

fractions obtained from cultured GC and enriched SLC. Nuclear protein: DNA

The Yes-associated protein 1 inhibitor verteporfin

inhibits granulosa cell DNA synthesis

Experiments were performed in order to determine whether
YAP1/TAZ had an impact on GC proliferation. To accomplish this,
we used verteporfin, a small molecule that inhibits the association
of the YAP1 with the transcription factor TEAD, which disrupts
transcription and YAP1-mediated growth [40, 41]. GCs were treated
with 5 μM verteporfin or vehicle control (M199) for 48 h in the
presence or absence of FSH or TGFα, two factors that contribute to
GCs survival and proliferation. Western blot analysis revealed that
TGFα increased cyclin D1 protein 2.6 ± 0.5-fold (mean ± SEM,
n = 5; P < 0.05) (Figure 7A and B) and increased DNA synthesis
(Figure 7C). Pretreatment with verteporfin significantly reduced
basal and TGFα-induced cyclin D1 protein levels. Treatment with
2.5 and 5 μM verteporfin also reduced basal as well as TGFα-
induced DNA synthesis (Figure 7C). FSH did not increase cyclin D1
or stimulate bovine GC growth compared to vehicle-treated control
cells (P; 0.05; Figure 5).

Effects of knockdown of Yes-associated protein 1 and

TAZ on transforming growth factor-alpha-induced

proliferation in granulosa cells

In order to test whether YAP1 plays a role in cell proliferation, we
transiently transfected bovine GCs with control siRNA targeting
YAP1 (siYAP1) or Cy5-labeled Scramble siRNA (siGLO). Treatment
with siYAP1 reduced YAP1 and phospho-YAP1 in control cells and
cells treated with TGFα (Figure 8A and B). Treatment with siYAP1
significantly attenuated cell proliferation under basal conditions
by 46% (P < 0.05, Figure 8C). Transforming growth factor-alpha
(100 ng/ml) treatment for 48 h stimulated a 2.4-fold increase in GC
proliferation (P < 0.001, Figure 8C). Knockdown of YAP1 inhibited
the stimulatory effect of TGFα on GC proliferation (P < 0.001),
Figure 8C).

Additional experiments were performed to determine whether
TAZ also contributes to GC proliferation. Western blot analysis
revealed that TAZ specific siRNA effectively reduced TAZ protein
(Figure 8D) and significantly attenuated TGFα-induced cell prolifer-
ation (Figure 8E). Treatment with siRNA targeting both YAP1 and
TAZ further reduced basal and TGFα-sFigure 8D and E).

Effects of Yes-associated protein 1 on

follicle-stimulating hormone-induced estradiol

production in bovine granulosa cells

Granulosa cells uniquely produce estradiol for timing and control
of the reproductive cycle. Here we show that FSH treatment sig-
nificantly induced estradiol production by 7.6-fold in bovine GCs
(Figure 9, P < 0.001). Treatment with siYAP1 knocked down YAP1
protein and significantly attenuated FSH-induced estradiol produc-
tion by 80% (Figure 9, P < 0.001).

topoisomerase II alpha (TOP2A); cytosolic protein: nuclear factor of kappa

light polypeptide gene enhancer in B-cells 1 (NFKB1A); beta-actin (ACTB;

loading control). (B–D) Densitometry of YAP1, phospho-YAP1(Ser127), and

TAZ expression in nuclear and cytoplasmic fractions. Data represent the

percentage of each protein within each fraction. Bars are means ± SEM, n = 5

experiments. ∗∗P < 0.01.
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Figure 4. Effects of cell density on nuclear localization of YAP1 in bovine GCs. Granulosa cells were seeded overnight on coverslips in six-well dishes at increasing

cell densities from 0.125–0.50 × 106 cells/well. (A) Representative micrograph of GC plated at 0.125 × 106 cells/well; YAP1 (a), alpha-tubulin (b), colocalization

of YAP1 and alpha-tubulin (c), 20× magnification of colocalization of YAP1 and alpha-tubulin (d), YAP1 (e), DAPI (e), colocalization of YAP1 and DAPI (g), 20×
magnification of colocalization of YAP1 and alpha-tubulin (h). (B) Representative micrograph of GC plated at 0.25 × 106 cells/well. (C) Representative micrograph

of GC plated at 0.50 × 106 cells/well. (D) Quantitative analysis of colocalization of YAP1 with alpha-tubulin and DAPI. Data are represented as means ± SEM,

n = 3 experiments. ∗∗Significant difference as compared to 0.125 × 106 cells/well, P < 0.05. Micron bar represents 20 μm (63×) and 50 μm (20×).
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Figure 5. Effects of cell density on nuclear localization of phosphorylated YAP1 (Ser127) in bovine GCs. Granulosa cells were seeded overnight on coverslips in

six-well dishes at increasing cell densities from 0.125 to 0.50 × 106 cells/well. (A) Representative micrograph of GC plated at 0.125 × 106 cells/well; phosphorylated

Yes-associated protein (p-YAP1 (Ser127)) (a), YAP1 (b), colocalization of p-YAP1 (Ser127) and YAP1 (c), 20x magnification of colocalization of p-YAP1 (Ser127) and

YAP1 (d), p-YAP1 (Ser127) (e), alpha-tubulin (f), colocalization of p-YAP1 (Ser127) and alpha-tubulin (g), 20× magnification of colocalization of p-YAP1 (Ser127)

and alpha-tubulin (h), p-YAP1 (Ser127) (i), DAPI (j), colocalization of p-YAP1 (Ser127) and DAPI (k), 20× magnification of colocalization of p-YAP1 (Ser127) and

alpha-tubulin (l). (B) Representative micrograph of GC plated at 0.25 × 106 cells/well. (C) Representative micrograph of GC plated at 0.50 × 106 cells/well. (D)

Quantitative analysis of colocalization of p-YAP1 with YAP1, alpha-tubulin, and DAPI. Data are represented as means ± SEM, n = 3 experiments. ∗∗Significant

difference as compared to 0.125 × 106 cells/well, P < 0.05. Micron bar represents 20 μm (63×) and 50 μm (20×).

Discussion

Recent studies provide evidence that the Hippo YAP1/TAZ
signaling pathway in somatic cells of the ovary contributes to
ovarian follicle development [24, 31, 32, 42]. The present study
used a large animal model with similarities to human ovarian
physiology [43] to better understand the expression and the potential
roles of the Hippo pathway downstream effectors, YAP1 and TAZ,
on two key aspects of follicle development, GC proliferation,
and estrogen production. We observed that components of the
Hippo signaling pathway are present in the bovine ovary and that

nuclear-localized downstream Hippo signaling effector proteins
YAP1 and TAZ are present in growing bovine follicles and to a
lesser extent in the fully differentiated corpus luteum. Furthermore,
the nuclear localization of both YAP1 and TAZ was inversely
correlated with cell density in primary cultures of GCs. We also
observed that YAP1 and TAZ are required for GC proliferation
and estrogen synthesis, two crucial processes during follicle
development.

Examination of microarray studies of bovine theca and GCs
and their luteal cell counterparts, SLCs and LLCs, respectively,
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Figure 5. (Continued).

demonstrated that transcripts for key components of the Hippo
signaling pathway are present in the bovine ovary. With few excep-
tions, transcript levels were unchanged with the differentiation of
the follicular cells into luteal cells. A major exception was the
MST scaffold protein SAV1, which was increased as theca and GCs
differentiated in SLCs and LLCs. As an earlier study showed that
SAV1 plays a suppressive role in follicle development by promoting
the activity of LATS1 [25], the increase in SAV1 in luteal cells may
contribute to active Hippo signaling and suppression of luteal cell
proliferation. Also noted was a 7.5-fold increase in TAZ expression
in LLCs compared to GCs from preovulatory follicles. The Hippo
pathway effector proteins YAP1 and TAZ have been shown to have
both distinct and overlapping functions [30, 44]. We speculate that
the increase in TAZ expression may contribute to the increase in
cell size rather than proliferation as GCs differentiate into LLCs.
Irrespective of cell type, the levels of MST2 mRNA were 3–4-fold
greater than MST1; and levels of LATS1 mRNA were 4–5-fold
greater than LATS2 mRNA suggesting that MST2 and LATS1 form
the main Hippo signaling kinase cassette in the bovine ovary.

Immunohistochemistry and Western blot analysis reveal that
both YAP1 and TAZ are expressed in the cytoplasm and nucleus of
bovine granulosa and TCs, as well as the corpus luteum. However,
distinct cell-type-specific differences in YAP1 and TAZ are apparent;
(1) YAP1 levels in GCs are relatively constant with follicle develop-
ment and decline slightly in follicles greater than 10 mm; whereas,

TAZ levels decrease with increasing follicle development, (2) TAZ is
more prominent in theca layer, (3) levels of YAP1 protein is reduced
in luteal cells compared to their follicular counterparts, (4) compared
to YAP1, which is present in the cytoplasm and nucleus, TAZ is more
prominent in the nucleus SLCs in vitro, (5) a TAZ immunostaining
is high in a population of LLCs compared to other cells in the corpus
luteum, and (6) YAP1 and TAZ are present in the microvascular
endothelial cells of the corpus luteum. Cell type differences in YAP1
and TAZ are also observed in the developing mouse ovary where
YAP1 is predominantly cytoplasmic, whereas TAZ is nuclear in
somatic cells [24]. Collectively these findings (1) indicate that the
cellular distribution of YAP1 and TAZ is differentially regulated in
the bovine ovary, and (2) form a foundation, on which to unravel
the roles of each of the Hippo pathway components during follicle
development and corpus luteum formation.

Endothelial cells play an important role in the development [45]
and regression [46] of the bovine corpus luteum. In addition to
luteal steroidogenic cells, we observed immunostaining for YAP1 and
TAZ in the microvascular endothelial cells of the corpus luteum.
Although this intriguing observation awaits investigation, reports
indicate that YAP1/TAZ is essential for vascular development and
regression [47]. Endothelium-specific deletion of YAP1/TAZ leads
to impaired vascularization and embryonic lethality [48]. Hippo-
YAP1/TAZ signaling has also been implicated in the processes of
endothelial cell sprouting and vessel maturation [49].
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Figure 6. Effects of cell density on nuclear localization of TAZ in bovine GCs. Granulosa cells were seeded overnight on coverslips in 6-well dishes at increasing

cell densities from 0.125–0.50 × 106 cells/well. (A) Representative micrograph of GC plated at 0.125 × 106 cells/well; WW domain-containing transcription

regulator 1 (TAZ; WWTR1) (a), alpha-tubulin (b), colocalization of TAZ and alpha-tubulin (c), 20× magnification of colocalization of TAZ and alpha-tubulin (d),

TAZ (e), DAPI (e), colocalization of TAZ and DAPI (g), 20× magnification of colocalization of TAZ and alpha-tubulin (h). (B) Representative micrograph of GC

plated at 0.25 × 106 cells/well. (C) Representative micrograph of GC plated at 0.50 × 106 cells/well. (D) Quantitative analysis of colocalization of TAZ with alpha-

tubulin and DAPI. Data are represented as means ± SEM, n = 3 experiments. ∗∗Significant difference as compared to 0.125 × 106 cells/well, P < 0.05. Micron

bar represents 20 μm (63×) and 50 μm (20×).
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Figure 7. Effects of the YAP1 inhibitor verteporfin on GC proliferation. Bovine

GC were plated at a cell density of 80 × 103 cells/well in 12-well dishes

and treated with increasing concentrations of verteporfin (0–5 μM). Cell

proliferation was determined as described in the Methods. (A) Representative

western blot analysis showing Cyclin D1 expression in cells treated with

follicle-stimulating hormone (30 ng/ml; FSH) or transforming growth factor-

alpha (100 ng/ml; TGFα) in the presence or absence of verteporfin (5 μM). (B)

Densitometry of cyclin D1 expression in cells treated with follicle-stimulating

hormone (30 ng/mL; FSH) or transforming growth factor-alpha (100 ng/ml;

TGFα). (C) DNA synthesis in cells treated with increasing concentrations of

verteporfin (0, 1, 2.5. and 5 μM) following treatment of TGFα (100 ng/ml). Data

are represented as means ± SEM (n = 4) of the average fold change from

control in each experiment. ∗∗Significant difference as compared to control,

P < 0.05.

The Hippo pathway is variably regulated by cell contact and
cell density [50, 51]. We seeded GCs at increasing cell densities
to determine how cell contact/density influenced the cellular local-
ization of YAP1 and TAZ in GCs. Using confocal microscopy, we
observed that GCs seeded at the lowest density have the highest
levels of YAP1 and TAZ in the nucleus. Our data demonstrating
that cell density influences the localization of YAP1 and TAZ agrees
with studies of other cell types [52–55]. Importantly, constitutive
activation of YAP1 (nuclear-localized YAP1) can overcome cell–cell
contact-induced cell growth inhibition [55]; implicating changing
nuclear levels of YAP1/TAZ in achieving density-dependent control

of cell proliferation and organ size. Other evidence supports the
idea that alterations in tissue rigidity impact ovarian follicle growth
(reviewed in [21, 56]). Studies by Kawamura et al. [28] demon-
strated that fragmentation of human or murine ovaries facilitates the
conversion of G-actin into F-actin, which disrupts ovarian Hippo
signaling, leading to an increase in the expression of downstream
growth factors, promotion of follicle growth, and the generation
of mature oocytes [28]. The disruption of Hippo signaling, nuclear
localization of YAP1 and promotion of follicle growth was also
observed in response to drugs that promote actin polymerization
[27]. The prominent nuclear localization of YAP1 observed in devel-
oping bovine follicles indicates that the expanding ovarian follicle
does not provide an environment for mechanical cues or cell–cell
contact-induced activation of Hippo signaling, which would reduce
nuclear localization of YAP1 and limit follicle growth. Of clinical
relevance, mechano-biological approaches (wedge resection, laser
drilling, and use of ovarian fragments in vitro) have contributed
to infertility treatments in patients with premature ovarian failure
and polycystic ovary syndrome (PCOS), a common disorder in
young women characterized by androgen excess and oligomenorrhea
[21, 56]. These approaches presumptively inhibit Hippo signaling
resulting in the activation of YAP1 leading to follicle activation [21].

Granulosa cell proliferation is critical for follicle development,
ovum maturation and advancement of the reproductive cycle.
Improper follicle development can result in delayed ovum matu-
ration, failure to ovulate, and inadequate corpus luteum function
[57]. Our results indicate that dysregulation of the Hippo/YAP1
signaling pathway inhibits proliferation of bovine GCs in vitro.
In the follicle, ovarian TCs produce TGFα, which stimulates GC
proliferation in many species including the bovine [58], monkey [59],
mouse [60], and human granulosa-like tumor cells [29]. Treatment
of GC cultures with verteporfin, a small molecule inhibitor that
disrupts YAP1/TAZ activity by interrupting their interaction with
the TEAD transcription factor [40, 61], inhibited the stimulatory
effect of TGFα on DNA synthesis and cyclin D protein levels.
Furthermore, knockdown of YAP1 and TAZ proteins with specific
siRNAs significantly suppressed basal and TGFα-stimulated DNA
synthesis and GC proliferation. The present findings in primary
cultures of bovine GCs are consistent with studies in cancer cells [62–
64] showing that YAP1/TAZ signaling is associated with expression
of D cyclins and progression through the G(1)/S cell cycle transition,
DNA synthesis and cell proliferation. Ji et al. [26] provided evidence
that the proliferation of mouse GCs in response to androgen and
estrogen treatment was associated with nuclear localization of
YAP1. A recent study employing microinjection of lentiviral vectors
for YAP1 or siYAP1 into mouse ovaries revealed that YAP1 was
required for proliferation of ovarian cells and growth of follicles
[42]. This study also showed that active YAP1 signaling promoted
the proliferation of mouse ovarian germline stem cells. Studies
using mouse ovaries [65] and human ovarian cortex pieces [28,
66] indicate that YAP1 interacts with PI3K/AKT signaling during
follicle activation. Because GCs are regulated by growth factors,
gonadotropins, steroid hormones, and many other factors, it will
be important to determine the signaling pathways intersecting with
Hippo/YAP1 signaling that promote the proliferation of bovine GCs.

In this study, we found that Hippo/YAP1 signaling plays a role
in estrogen synthesis in bovine GCs. Use of siRNA targeting YAP1
very effectively reduced FSH-stimulated production of estrogen.
In a previous study, we reported that FSH-induced expression of
aromatase and estrogen was blocked by knockdown of YAP1 in
the human KGN GC tumor cell line [29]. These findings using
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Figure 8. Effects of siRNA-mediated knockdown of YAP1 and TAZ on TGFα-induced proliferation in GCs. YAP1 and TAZ mRNA were silenced using siYAP1 and

siTAZ in bovine GCs. Following knockdown, GCs were treated with or without transforming growth factor-alpha (50 ng/mL; TGFα) to promote cell proliferation. (A)

Representative western blot showing phospho-YAP1(Ser127) and YAP1 protein expression in siGlo (siCTL) or siYAP1 knockdown GCs, following treatment

with or without TGFα. (B) Densitometric analyses of YAP1 protein expression obtained from siCTL (open bars) and siYAP1 (closed bars). Bars represent means

± SEM, n = 5. (C) Cell counts following knockdown of YAP1 cells and treatment with TGFα (closed bars) or without TGFα (open bars). Bars are means ± SEM,

n = 3. (D) Representative western blot showing YAP1 and TAZ protein expression in GCs following 48 h treatment with siCTL, siYAP1, siTAZ, or a combination

of siYAP1 and siTAZ (siY + siT). Beta-actin (ACTB; loading control). (E) Quantitative analysis showing DNA synthesis for siCTL, siYAP1, siTAZ, or siY + siT

knockdown cells treated with control (open bars) or TGFα (black bars). Data are represented as means ± SEM (n = 3) of the average fold change from control

in each experiment. ∗∗Significant differences between treatment groups, as compared to siCTL, P < 0.05.

an ablation approach are supported by a recent study demonstrat-
ing that microinjection of lentiviral vectors for YAP1 into mouse
ovaries in vivo increased serum estrogen [42]. Additionally, Hippo
core components have been reported to influence steroidogenesis in
ovarian cells. For instance, an upstream negative regulator of YAP1,
SAV1, negatively regulates mRNAs associated with ovarian follicular
steroidogenesis including the FSH receptor (FSHR) and steroido-
genic acute regulatory protein (STAR) [25]. Studies by Pisarska [67]
showed that FOXL2, a transcriptional repressor expressed GCs, is
phosphorylated by LATS1; and that this phosphorylation enhances
the transcriptional repression of STAR. Other studies indicate that

YAP1 interacts with IGF1 and PI3K/AKT signaling pathways [68,
69]. Because IGF1-activated PI3K signaling contributes to aromatase
expression and estrogen synthesis in ovarian cells [70–72] it seems
likely that these pathways converge to elevate or stabilize CYP19A1
expression to promote estrogen synthesis. Collectively these findings
suggest that Hippo signaling and its effector YAP1 may exert a
key role in ovarian steroidogenesis. How Hippo signaling regu-
lates steroidogenesis in bovine GCs is the subject of the ongoing
investigation.

Following appropriate follicle development, the luteinizing hor-
mone released from the anterior pituitary gland stimulates ovulation
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Figure 9. Yes-associated protein 1 is required for FSH-induced estradiol

production in bovine GCs. Granulosa cells were treated with siGlo (siCTL)

or siYAP1 and then treated without (control) or FSH (30 ng/ml) for 48 h prior

to analysis of estradiol production. (A) Representative western blot showing

YAP1 protein expression. Beta-actin (ACTB; loading control). (B) Quantitative

ELISA analysis of estradiol in the culture medium. Data are represented as

means ± SEM, n = 3. ∗∗Significant differences between treatment groups, as

compared to siCTL, P < 0.05.

and causes the theca and GCs of the ovulated follicle to differentiate
into small and large steroidogenic luteal cells, respectively [73–75].
The luteinized theca and GCs are unique from the undifferentiated
theca and GCs in that they are fully differentiated and do not
undergo cell proliferation, but rather undergo hypertrophy. We show
YAP1 and TAZ are expressed in luteal tissue, including the SLCs
and LLCs, but compared to the cells of the follicle, the overall
protein levels of YAP1 and TAZ are reduced. In recent studies,
overexpression of YAP1 was shown to induce hypertrophy in skeletal
muscle fibers [76, 77], which may also be occurring in the luteal cell,
due to the presence of YAP1 and TAZ in the nucleus. Evidence from
studies in other systems indicates that suppression of YAP1/TAZ by
mechanical cues derived from the extracellular matrix is sufficient to
induce senescence and that YAP1/TAZ overexpression can overcome
cell senescence [78]. It is tempting to speculate that following ovula-
tion the mechanical microenvironment in the corpus luteum activates
Hippo signaling and inhibits YAP1/TAZ, which contributes to luteal
cell senescence. More work is needed to determine the role Hippo
signaling plays in corpus luteum development.

Hippo signaling plays a critical role in maintaining ovarian tissue
growth and homeostasis. On the contrary, disruption in Hippo
signaling leads to ovarian abnormalities, tumor progression, and
impaired fertility. In the normal functioning ovary, we demonstrate
that Hippo signaling proteins and transcriptional co-activators,
YAP1 and TAZ, are present in the bovine ovary. These Hippo
signaling effectors are involved in two critical GC functions, cell
proliferation, and estradiol biosynthesis, suggesting that Hippo

signaling plays an important role in the development of ovarian
follicles and estradiol synthesis, which are necessary for maintaining
ovarian function and fertility.
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