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Hypothalamic–pituitary–adrenal (HPA) axis dysfunction has long been implicated in

the pathophysiology of depression, and HPA axis‐based compounds have served as

potential new therapeutic targets, but with no success. This review details sex differ-

ences from animal and human studies in the function of HPA axis elements (glucocor-

ticoids, corticotropin releasing factor, and vasopressin) and related compounds tested

as candidate antidepressants. We propose that sex differences contribute to the

failure of novel HPA axis‐based drugs in clinical trials. Compounds studied preclini-

cally in males were tested in clinical trials that recruited more, if not exclusively,

women, and did not control, but rather adjusted, for potential sex differences. Indeed,

clinical trials of antidepressants are usually not stratified by sex or other important

factors, although preclinical and epidemiological data support such stratification. In

conclusion, we suggest that clinical testing of HPA axis‐related compounds creates

an opportunity for targeted, personalized antidepressant treatments based on sex.
1 | INTRODUCTION

The hypothalamic–pituitary–adrenal (HPA) axis is crucially involved in

the stress response, and numerous studies consistently point towards

a causal link between dysregulation of the HPA and the appearance

of psychopathology (Gold & Chrousos, 1999; Selye, 1936). In particu-

lar, the aetiology of depression is thought to stem from the disruption

of classic responses to stress including but not limited to alterations

in glucocorticoid levels, sensitivity of glucocorticoid receptors, and

resistance to the negative feedback (Herman, 2013). This corticoste-

roid hypothesis of major depression rose to prominence in the 1990s

(Holsboer, 2003). Early studies established that during depression,

plasma cortisol levels are often elevated, but they normalize following

clinical remission (Gibbons, 1964). In atypical depression, cortisol

levels are often lower (Gold & Chrousos, 1999), and in older adults,

cortisol levels may be either higher or lower (Bremmer et al., 2007).
V, arginine vasopressin; CRF,

ary–adrenal; GR, glucocorticoid
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The persisting dysregulation of the HPA axis, despite treatment,

strongly predicts the risk of relapse (Schule, 2007). Finally, antidepres-

sants were discovered to normalize changes in the HPA axis, adding

credence to its causal role in the aetiology of depression (Thakore,

Barnes, Joyce, Medbak, & Dinan, 1997). Thus, a large body of literature

has highlighted the elements of the HPA axis as potential new targets

for the treatment of mood disorders, as available antidepressants have

a late therapeutic onset and are not effective in a significant percentage

of patients (Holsboer, 2003). However, to date, no antidepressant has

been marketed that acts directly on the HPA axis. As researchers, we

continue to test this hypothesis and learn more about the role that this

system plays in the dysregulation of the stress response and the devel-

opment of depression or other psychoneuroendocrinological condi-

tions. Why? Given the notable failures of HPA axis‐based drugs, what

is our hope in continuing to support research that explores these

mechanisms?

In this review, we focus on depression and suggest that sex differ-

ences and the response of the HPA axis to stress may influence the

success or failure of HPA axis‐based drugs. As women are twice as
Br J Pharmacol.y.com/journal/bph 2019;176:4090–4106.
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likely to suffer from depression than men, and it has been demon-

strated that there are sex differences in depression and the response

to antidepressants (Kokras & Dalla, 2017), we will examine how the

unforeseen influence of sex contributes to the good, the bad, and

the ugly truth about HPA axis‐targeted treatments for depression.

Specifically, we suggest that the mismatch between the sex of the

animals used in preclinical studies and the sex of patients recruited

in clinical trials has contributed to the failure of these compounds. This

discrepancy is probably attributed to the fact that, since 1993, the

National Institutes of Health has encouraged the inclusion of more

women in clinical trials (Merkatz, Temple et al., 1993), whereas a

similar recommendation to include females in preclinical research

was only issued just recently (Clayton & Collins, 2014). By raising

awareness of this matter, we argue for a better policy regarding the

sex of the animals and humans in preclinical and clinical studies, an

arrangement that will potentially facilitate the discovery of novel

treatments.
2 | THE HPA AXIS

2.1 | Glucocorticoid regulation of the HPA axis

The regulation of the HPA axis relies on the negative feedback of the

corticosteroids, mainly cortisol (in primates) and corticosterone (in

most rodents; Figure 1, adapted from Bangasser & Valentino, 2014).

In response to a threat, these hormones increase energy through

glucose metabolism, lipolysis, and proteolysis and they suppress
FIGURE 1 Schematic representing the hypothalamus–pituitary–adrenal
cortisol's negative feedback in the brain. On the right, sex differences in th
studies). Compared to males (left panel), females (right panel) have greater s
related to an increased sensitivity of their CRF receptors. Negative feedbac
result in further enhanced release of stress hormones by the adrenal corte
adrenocorticotropic hormone; AP, anterior pituitary; AVP, arginine vasopre
growth, reproduction, and the immune system (McEwen & Gianaros,

2011). Upon exposure to stress, hypophysiotrophic neurons in the

paraventricular nucleus (PVN) of the hypothalamus release corticotro-

pin releasing factor (CRF) and arginine vasopressin (AVP), which stim-

ulate the pituitary via CRF1 and V1B receptors, respectively, to secrete

adrenocorticotropic hormone (ACTH) into the blood. In response to

ACTH, the cortex of the adrenal glands produces glucocorticoids,

which penetrate the blood–brain barrier and exert their actions in the

brain through the high affinity mineralocorticoid receptors (MRs,

Type I) and the low affinity glucocorticoid receptors (GR, Type II). Both

receptors influence neural activity by controlling the synthesis of

neurotransmitters, neuromodulators, their receptors, and their actions

(McEwen, 1987). There is some recent evidence that GRs can initiate

rapid non‐genomic signalling from the membrane (Rainville et al.,

2017), but the best known function of GRs and MRs is their ability

to act as nuclear transcription factors. When bound to their ligand,

they undergo a conformational change and translocate to the nucleus

where they act as a transcription factor (Groeneweg, Karst, de Kloet,

& Joels, 2012). The GR is ubiquitously expressed on cells throughout

the body and the brain, with highest expression occurring in the PVN

of the hypothalamus and subregions of the hippocampus (Joels, Karst,

& Sarabdjitsingh, 2018; Panagiotakopoulos & Neigh, 2014). GRs

preferentially bind glucocorticoids when circulating glucocorticoid

levels are high and provide negative feedback at the limbic, hypotha-

lamic, and pituitary level (Groeneweg et al., 2012; Joels et al., 2018).

MRs which are most highly expressed in the hippocampus have a

stronger affinity for glucocorticoids and bind them under basal condi-

tions (Joels et al., 2018). Overall, GRs mediate the stress‐induced
(HPA) axis, its activation that results from cortisol's action, as well as
e HPA axis response to stress are presented (based on rodent
tress‐induced release of CRF, AVP, ACTH, and cortisol, which could be
k (shown with the red dotted arrows) is lower in females and this could
x (AC). Figure adapted from Bangasser and Valentino (2014). ACTH,
ssin; CRF, corticotropin releasing factor
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changes in the cortisol/corticosterone levels, whereas the MRs are

thought to mediate tonic influences of cortisol or corticosterone.

However, it was recently found that a decrease in MRs and an altered

GR/MR ratio are also associated with depression (Klok et al., 2011;

Wu et al., 2013).
2.2 | Neuropeptide regulation of the HPA axis

Two neuropeptides, CRF and AVP, synthesized in the parvocellular

division of the PVN, and their receptor systems complement the

regulation of the HPA axis. CRF activates the HPA axis via the release

of ACTH but it is also associated with the behavioural response to

stress (Heinrichs & Koob, 2004). Studies indicate that CRF may be

hyper‐secreted from both hypothalamic and extra‐hypothalamic neu-

rons in depression (Todorovic, Jahn, Tezval, Hippel, & Spiess, 2005).

Similarly, CRF receptors can be found in both hypothalamic and

extra‐hypothalamic neurons and are classified in two subtypes, CRF1

and CRF2. AVP also has ACTH‐releasing properties when adminis-

tered in humans and in combination with CRF has a synergistic effect

resulting in a much greater ACTH response, with both peptides

required for maximal stimulation of the HPA axis (Favrod‐Coune

et al., 1993). The central vasopressin system is anatomically and

functionally separated from the periphery by the blood–brain barrier

and regulates behavioural CNS‐mediated responses, including learning

and memory, and social behaviours (Ermisch, Brust, Kretzschmar, &

Ruhle, 1993). The distribution of the vasopressin receptors in the

brain, classified in V1A, V1B (also named V3), and V2, is more wide‐

spread in comparison to CRF receptors but substantially less than

the GR. Circulating glucocorticoids exert a negative feedback effect

on the expression of CRF and AVP in parvocellular PVN neurons and

the AVP gene, in particular, is targeted by this suppression (Kovacs,

Foldes, & Sawchenko, 2000). The mRNA levels of both CRF and the

CRF1 receptors are reduced by elevated glucocorticoid levels whereas

the mRNA levels of the V1B receptor and subsequent coupling to PLC

can be stimulated by glucocorticoids. This effect, in turn, may contrib-

ute to the refractoriness of AVP‐stimulated ACTH secretion to gluco-

corticoid feedback (Aguilera & Rabadan‐Diehl, 2000). Therefore,

regulation of the HPA axis by parvocellular AVP is likely critical for

sustaining HPA axis activity during chronic stress (Herman & Tasker,

2016), although chronic stress still induces high adrenocortical hor-

mone levels in the absence of AVP (Zelena et al., 2004) and it is prob-

able that whether AVP or CRF is more resistant to glucocorticoid

feedback is situation‐ and stressor‐specific.
3 | SEX DIFFERENCES IN THE HPA AXIS

There are sex differences in the HPA axis itself, which result in

sex‐dependent responses to stress, and sex steroids are thought to be

important modulators of the sex‐differentiated stress response

(Patchev & Almeida, 1998; Young, 1995). The interaction of gonadal

steroid hormones with the HPA axis has been discussed recently in an

excellent review (Handa & Weiser, 2014), so it is not described herein.
3.1 | Human studies

It has been shown that women with depression have higher cortisol

levels than non‐depressed women, whereas this is not always the case

in men (Young & Korszun, 2009). Moreover, following stressful

events, the HPA axis of depressed patients was less reactive in

comparison to healthy controls, but interestingly, this blunted HPA

response was less evident in depressed women (Peeters, Nicholson,

& Berkhof, 2003). As reviewed extensively by Young and Korszun,

gonadal hormones and the circadian rhythm play an important role

in modulating the HPA axis in depressed women (Young & Korszun,

2009). One way to examine HPA axis dysregulation in depression is

with the dexamethasone suppression test, a procedure in which the

synthetic glucocorticoid dexamethasone is administered and thereaf-

ter, changes in cortisol levels are monitored. If the negative feedback

of the HPA axis is intact, cortisol levels decline (called suppression)

following dexamethasone administration, whereas if there is a dysreg-

ulated HPA axis feedback, then the cortisol levels are not suppressed.

A further refinement of this procedure is the combined DEX/CRF test,

in which dexamethasone (DEX) is administered the day before sam-

pling, and on the testing day, a CRF infusion is performed. In healthy

humans, this CRF infusion is not expected to cause an increase in cor-

tisol as the HPA axis should be suppressed by the dexamethasone

administration the day before. In the presence of a dysregulated

HPA axis negative feedback, the CRF infusion results in a spike of

cortisol, despite the previous dexamethasone administration. These

tests are useful, because only 30% of depressed patients present clear

hypercortisolaemia, whereas as many as 66% of depressed patients

display non‐suppression. Moreover, these tests present significant

sex differences given that as low as 25% of premenopausal women

may present non‐suppression of the HPA axis (Young, Carlson, &

Brown, 2001). Indeed, in one study, only 44% of premenopausal

women showed non‐suppression following dexamethasone, in

comparison to 81% of postmenopausal women, with baseline cortisol

and menopausal status explaining 65% of the variance (Young et al.,

1993). These sex differences in the frequency of the HPA axis

non‐suppression may have significantly impacted the success of

clinical trials of HPA axis‐related compounds (Figure 2). Baseline

cortisol, female sex, age, and menopausal status, as well as circadian

rhythms were found to significantly affect the sensitivity of the

negative feedback mechanism of the HPA axis. It is, therefore, con-

cluded that in depressed patients there is a more reliable cortisol

hypersecretion in male patients, and the dysregulated negative

feedback of the HPA axis in response to glucocorticoids is also more

reliably observed in male patients (Young, 1998; Young et al., 1993;

Young et al., 2001).
3.2 | Rodent studies

In rodents, females have higher basal corticosterone levels than males

(Kokras et al., 2012), but not all studies find this sex difference, as

corticosterone levels seem to depend on strain, age, time of sampling,
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FIGURE 2 A theoretical model predicting the chance of success of an HPA axis‐related compound in a randomized clinical trial. It is assumed
that recruitment will consist of roughly 65% women (e.g., Step 1 of the STAR*D trial and see also Figure 3), and approximately one out of four
women, whereas two out of three men will display an HPA axis dysregulation as evidenced by the dexamethasone suppression test or the
combined dexamethasone/CRF suppression test (see Young et al., 2001). Based on current evidence reviewed herein, the response of depressed
women with HPA axis dysregulation to an HPA axis‐related compound is questionable; therefore, only two out 10 patients recruited would
benefit from an HPA axis‐related compound and the clinical trial would fail
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housing conditions, diet, and gonadal hormone levels (Bangasser &

Valentino, 2014; Dalla et al., 2005; Kokras et al., 2018). Moreover,

sex differences in globulin corticosteroid binding have been reported

in rats and this could influence the amount of unbound, active

corticosterone that reaches the brain in each sex (Gala & Westphal,

1966). Interestingly, it seems that globulin corticosteroid binding is

positively regulated by oestrogens and negatively by stress (Oyola &

Handa, 2017).

Moreover, exposure to stress causes a greater increase in CRF,

ACTH, and corticosterone in female than in male rats (Rivier, 1999;

Viau, Bingham, Davis, Lee, & Wong, 2005; Figure 1). However, when

female rats were adrenalectomized and substituted with stable corti-

costerone levels, their behavioural response to the stressful forced

swim test procedure was not altered, suggesting that stress‐induced

HPA axis activation does not play an important role in the female

behavioural response to stressful stimuli (Kokras et al., 2012).

Similarly, adrenalectomy did not prevent the detrimental effects of

acute stress (30 min of tail shock in a restrainer tube) on learning in

female rats, whereas it abolished the stress‐induced enhancement in

male conditioning (Wood, Beylin, & Shors, 2001). Following a single

bout of prolonged stress (combination of 2‐hr tube‐restraint stress, a

physiological stressor, group forced swim stress, and a brief exposure

to diethyl ether), female rats, but not males, were found to be unaf-

fected when the dexamethasone suppression test was applied (Pooley

et al., 2018). Overall, these findngs suggest that although HPA axis

activation in response to acute stress is more pronounced in female
rats than males, this activation is not directly associated with the acute

behavioural stress response in female rats.

Nevertheless, depression has mainly been associated with

exposure to chronic unpredictable stress, but chronic stress studies

in female rats are less common (Kokras & Dalla, 2014). In one study

using chronic unpredictable stress, female sham‐operated (i.e., ovaries

intact) stressed rats did not exhibit a dysregulated response to stress

following the dexamethasone suppression test, but ovariectomized

females did (Mahmoud, Wainwright, Chaiton, Lieblich, & Galea,

2016). Moreover, the HPA axis dysregulation in ovariectomized

female rats was not reversed by antidepressant treatment (fluoxetine

5 mg·kg−1; Mahmoud et al., 2016). Although a discussion of all the

studies on sex differences in the stress response is beyond the scope

of this review, there is preclinical evidence that stress effects in males

are more closely linked to the HPA axis function, whereas the female

stress response seems to be less dependent on the HPA axis activa-

tion and dysregulation following experimental stress procedures.
4 | SEX DIFFERENCES IN THE GR/MR
SYSTEM

There are notable sex differences in the expression and function

of glucocorticoid and mineralocorticoid receptors that affect

glucocorticoid sensitivity (Panagiotakopoulos & Neigh, 2014; Patchev

& Almeida, 1998). These effects are both region‐ and cell type‐

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=203
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specific, which further complicates the efficacy of treatments that act

as simple agonist/antagonists.
4.1 | Human studies

To date, no studies have examined sex differences in MR expression in

human post‐mortem brain tissue or anywhere in the body within the

context of mood disorders. However, there is some indication that

sex differences in GR expression exist, at least in depressed subjects.

A study of GR expression in the human amygdala found increases in

patients with major depression but not bipolar depression (Wang

et al., 2014). Further stratification of the samples by sex determined

that only women with major depressive disorder differed significantly

from controls. A higher expression of GR was also found in the post‐

mortem hippocampus of elderly women with depression compared

to age‐matched men (Wang, Joels, Swaab, & Lucassen, 2012). In

healthy humans, there were sex differences in GR expression located

within leukocytes, which varied with the type of white blood cell mea-

sured (Loi et al., 2017). Overall, men had a higher expression of GRs

than women in white blood cells suggesting that sex differences in

the brain and periphery did not match. Together, these data indicate

sex differences in GR and MR expression/function in the brain and

body and represent a possible pitfall for the development of treat-

ments for mood disorders that act by regulating the HPA axis.
4.2 | Rodent studies

In rats, the use of a single prolonged stress protocol, which models

post‐traumatic stress disorder, oppositely regulated GR number in

the PVN and the hippocampus of males and females (Pooley et al.,

2018). Stress up‐regulated GR expression in the PVN of male rats

but down‐regulated it in the hippocampus, whereas the opposite

occurred in stressed females. Male and female rats responded differ-

ently to the trauma behaviourally, and as mentioned previously,

females failed to show dexamethasone suppression following expo-

sure to a subsequent acute restraint stress. These effects were largely

independent of circulating levels of gonadal hormones (Pooley et al.,

2018). Studies using chronic mild stress have also reported regional

sex differences including a down‐regulation of both GRs and MRs only

occurring in the hypothalamus of female rats (Lu et al., 2015). Addi-

tionally, the sex of an animal impacts the translocation of the GR to

the nucleus (Bourke et al., 2013) through an interaction with gonadal

hormones (Sheng et al., 2003). Transgenic studies in mice further sup-

port the premise that there are sex‐based differences for the involve-

ment of GRs in stress sensitivity that are region‐ and cell type‐specific.

GR knockout in the forebrain increased depression‐like behaviour in

male but not in female mice (Solomon et al., 2012), whereas GR knock-

out on noradrenergic neurons induced depression‐like behaviour only

in female mice and blocked subsequent effects of stress in males

(Chmielarz et al., 2013). GR knockout in the PVN, however, had no

effect on stress‐associated behaviour in either sex but induced oppo-

site effects on circulating levels of ACTH following acute restraint
stress (Solomon et al., 2015). Transgenic studies in MR also support

the idea that effects are sex and region specific. Forebrain‐specific

knockout of MR led to a generalization of fear response across types

of cues and inability to extinguish fear learning in females but not in

male mice (Ter Horst, Carobrez, van der Mark, de Kloet, & Oitzl,

2012). Overall it seems that GR or MR knockout results in region

and cell type specific effects on behavior that differ by sex.
5 | GR/MR MODULATORS AS POTENTIAL
ANTIDEPRESSANTS

5.1 | Mifepristone

The interest in using GR antagonists as a treatment for psychiatric

illness stemmed from research on a treatment of symptoms for

Cushing's disease. Notably, case studies from the 1980s and 90s

demonstrated that treatment with the synthetic steroid mifepristone

(RU486), which competitively binds GRs and progesterone receptors,

resolved psychosis, depression, and suicidal ideation in male and

female Cushing's patients (Nieman et al., 1985; van der Lely, Foeken,

van der Mast, & Lamberts, 1991).

In rodent models, mifepristone had antidepressant‐like effects in

males across a multitude of different stress paradigms and behavioural

endpoints (Aisa, Tordera, Lasheras, Del Rio, & Ramirez, 2007; Wu

et al., 2007). The only mention of behavioural reversal in females

was a study on maternal separation stress that used mixed litters (Aisa

et al., 2007). A more recent study failed to reverse the effects of

maternal deprivation in females using mifepristone (Loi et al., 2017).

No other studies have examined behavioural effects of mifepristone

treatment in females. Other endpoints have been examined in

females, such as blocking the forced swim‐induced apoptosis of

adult‐born new neurons in the hippocampus (Llorens‐Martin & Trejo,

2011).

While rodent models have primarily demonstrated effects of

mifepristone in males, in humans the data are mixed. Early studies,

with extremely low numbers of patients, suggested that perimeno-

pausal women responded best to the drug (Murphy, Filipini, &

Ghadirian, 1993). However, larger scale studies (~200 patients, ~50%

female) had mixed results depending upon which response criteria

were used (DeBattista et al., 2006) or failed to show a difference from

placebo on decreasing symptoms in depressed patients (433

patients/60% female; Blasey, Block, Belanoff, & Roe, 2011). Interest-

ingly, age may be a factor in detecting a positive response of the drug.

In the 2006 study, the mean age of subjects was ~40 ± 10. The largest

group of patients tested were aged 35–64 (68%) with an additional

29% of patients listed as below 34 years of age. The 2011 study did

not provide data on the age breakdown, but the average age of

patients was ~45 ± 11. In the 2011 study, there was a significantly

higher rate of efficacy on their response criterion in patients with high

plasma levels of mifepristone (above 1,660 ng·ml−1), indicating that

individual differences in drug metabolism may contribute to successful

responding (Blasey et al., 2011). However, in this study, age was not
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examined as a factor. Additional studies have also failed to reveal

significant effects of mifepristone on depression rating scales in

patients with bipolar depression (60 patients/600 mg·day−1/50%

female, average age 48± 9 years), although it did improve spatial

performance (Watson et al., 2012). It should be noted that none of

the studies have directly compared responses in women to men or

examined the menopausal status of women even though mifepristone

preferentially binds progesterone receptors and only occupies GRs at

higher doses. Age and sex are likely contributing factors to the success

or failure of these clinical trials, particularly in females. The above

studies did not take into consideration that the drug might be acting

by influencing progesterone or its metabolites, which are implicated

in post‐partum depression (Osborne et al., 2017) and in other

psychiatric diseases involving psychotic symptoms, such as bipolar

disorder and schizophrenia (Sun, Walker, Dean, van den Buuse, &

Gogos, 2016).
5.2 | Spironolactone and fludrocortisone

There is some indication that targeting the MR is a potential treatment

for depression. In male mice, treatment with the MR antagonist

spironolactone reversed the effects of chronic corticosterone

exposure on behaviour in the forced swim test and novel object recog-

nition test (Wu et al., 2013). There is also evidence that MR antago-

nists have greater effects on cortisol levels in patients with some

forms of depression. Studies using the MR antagonist spironolactone

in healthy controls found that multiple doses increased cortisol

secretion (Young, Lopez, Murphy‐Weinberg, Watson, & Akil, 1998).

There are conflicting reports in patients with depression, one study

in patients who already had elevated levels of cortisol only found

increased levels after treatment in healthy controls (Hinkelmann

et al., 2016), whereas another reported greater increases in cortisol

secretion in depressed patients compared to healthy controls (Young,

Lopez, Murphy‐Weinberg, Watson, & Akil, 2003).

Additionally, patients with depression have greater cognitive

empathy than healthy controls and treatment with spironolactone

reduced cognitive empathy to levels reported in controls (Wingenfeld

et al., 2016). However, others have reported no effect of

spironolactone on cortisol levels in patients with treatment‐resistant

depression but increases in cortisol levels in healthy controls (Juruena

et al., 2013). Initially, it was reported that no effect of spironolactone

was found in women suffering from premenstrual syndrome (Burnet,

Radden, Easterbrook, & McKinnon, 1991), but a subsequent longer

term study did report significant decreases in negative mood related

symptoms after six treatment cycles (Wang, Hammarback, Lindhe, &

Backstrom, 1995). Importantly, spironolactone has well‐known anti‐

androgen effects (Menard, Stripp, & Gillette, 1974) that could influ-

ence the response of male and female patients with depression.

A study comparing the response of patients (25 males and 24

females) with psychotic depression, non‐psychotic depression, and

healthy controls to the synthetic mineralocorticoid fludrocortisone

found that after treatment, only patients with psychotic depression
differed in their cortisol response from healthy controls (Lembke

et al., 2013). Specifically, in the patients with psychotic depression

(eight males and six females) cortisol levels were suppressed less fol-

lowing dexamethasone administration, which also lasted for less time

in comparison to the other groups. Co‐treatment with fludrocortisone

during citalopram treatment of patients with depression was demon-

strated to shorten the period to remission in responders, whereas

spironolactone had no effect (Otte et al., 2010). Given that

spironolactone and fludrocortisone have opposite effects on MRs

but are both reported to have antidepressant potential, it is possible

that MRs have an inverted “u”‐shaped function in relation to depres-

sion. Alternatively, the drugs may exert their effects via different

epigenetic or plasticity‐associated mechanisms, which may account

for the fact that both an increase and a decrease in MR activity

provides antidepressant responses. Therefore, more research should

be conducted on the effects of modulating MR activity on mood.
6 | SEX DIFFERENCES IN THE CRF SYSTEM

6.1 | Human studies

CRF has long been implicated in the pathophysiology of depression.

Indeed, some depressed patients had high levels of CRF in their CSF

and these were normalized when patients respond to treatment, sug-

gesting that these altered CRF levels contributed to symptomology

(Banki, Karmacsi, Bissette, & Nemeroff, 1992; Heuser et al., 1998). In

the CNS, patients had high levels of CRF in the PVN and in monoam-

inergic nuclei, including the locus coeruleus and raphe (Austin,

Janosky, & Murphy, 2003; Bissette, Klimek, Pan, Stockmeier, &

Ordway, 2003). Although this evidence clearly points to CRF dysregu-

lation in depression, whether there are sex differences in this dysreg-

ulation remains unknown because these previous studies either only

used one sex (e.g., Austin et al., 2003; Heuser et al., 1998) or the

results were not compared between the sexes. In healthy humans,

peripheral administration of CRF caused an increased ACTH response

in women compared to men (Gallucci et al., 1993). This result suggests

that greater CRF‐induced HPA axis activation in women is a potential

mechanism contributing to the higher female risk for stress‐associated

mood disorders. In addition to activating the HPA axis, CRF acts cen-

trally, often at extra‐hypothalamic sites, to alter cognition, mood, and

arousal (for review, see Bangasser, Eck, Telenson, & Salvatore, 2018).
6.2 | Rodent studies

In rodents, sex differences have been found in every aspect of CRF

function from the inputs that regulate CRF neurons to CRF's postsyn-

aptic efficacy (for review, see Bangasser & Wiersielis, 2018). In the

PVN, there are several reports that female rats had greater CRF

expression than males (Duncko, Kiss, Skultetyova, Rusnak, & Jezova,

2001; Viau et al., 2005), although this difference was not found in

every rat study or with the Crh‐IRES‐Cre::Ai14 (tdTomato) reporter

mouse (Sterrenburg et al., 2012; Walker, Cornish, Lawrence, &
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Campbell, 2018). CRF‐binding protein, which binds free CRF to reduce

its bioavailability, was higher in the pituitary of female than male mice

(Speert, McClennen, & Seasholtz, 2002), perhaps to compensate for

greater hypothalamic CRF production in females. In rodents, there

are also well‐documented sex differences in CRF receptors. For exam-

ple, there was increased CRF1 receptor binding in the amygdala,

nucleus accumbens, and cortex of adult female rats but increased

CRF2 receptor binding in the amygdala, bed nucleus of the stria

terminalis, and hypothalamus in adult male rats (Weathington, Hamki,

& Cooke, 2014). These changes likely reflect differences in receptor

number, but CRF receptors can also be differentially distributed on

distinct cell types in males versus females. In the CA1 region of the

hippocampus, CRF receptors colocalized more with opioid δ recep-

tor‐containing dendrites in female rats, while in the dorsal raphe, the

CRF1 receptor was more prominent on parvalbumin‐containing GABA

neurons in male mice (Howerton et al., 2014; Williams, Akama, Knud-

sen, McEwen, & Milner, 2011). Sex differences in CRF1 receptors in

the locus coeruleus rendered neurons of females more sensitive to

CRF than in the locus coeruleus neurons of males (Curtis, Bethea, &

Valentino, 2006). This increased sensitivity of female locus coeruleus

to CRF was linked to a greater coupling of the CRF1 receptors to Gs

in female compared to male rats and increased activation of the

cAMP‐PKA signalling cascade (Bangasser et al., 2010). An additional

sex difference in the locus coeruleus has been found for CRF1 recep-

tor internalization, or the trafficking of the receptor from the plasma

membrane to the cytosol where it can no longer be activated. Both

acute stress (15 min of swim stress) in rats and CRF hypersecretion,

as modelled by CRF overexpressing mice, induced CRF1 receptor

internalization in males, but these manipulations did not cause inter-

nalization in females (Bangasser et al., 2010; Bangasser et al., 2013).

This sex difference in internalization was associated with greater β‐

arrestin binding to the CRF1 receptor in males, which was consistent

with β‐arrestin's role in trafficking receptors (Bangasser et al., 2010).

Receptor internalization is thought to be compensatory, allowing for

the cellular adaptation to excess CRF release. In fact, locus coeruleus

neurons of CRF‐overexpressing male mice fired at a rate similar to

wild type levels, despite their production of excess CRF (Bangasser

et al., 2013). Locus coeruleus neurons of CRF‐overexpressing female

mice, in comparison, fired three times faster than wild type controls.

These sex differences in CRF1 receptor signalling and trafficking in

the locus coeruleus would bias females towards greater arousal in

response to stress. As hyperarousal can contribute to some symptoms

in depressed patients, such as agitation, restlessness, a lack of concen-

tration, and sleep disturbance, sex differences in CRF modulation of

the locus coeruleus‐arousal system may bias females towards certain

features of depression.

The findings of sex differences in the CRF system have important

clinical implications. There has been an effort to develop CRF1 recep-

tor antagonists for the treatment of depression and other stress‐

related disorders in humans. This effort is based on the preclinical data

that CRF1 antagonists consistently reduce depressive‐like behaviour;

however, these preclinical studies were almost exclusively conducted

in male rodents (Chaki et al., 2004; Deak et al., 1999; Mansbach,
Brooks, & Chen, 1997; Schulz et al., 1996; Zorrilla, Valdez, Nozulak,

Koob, & Markou, 2002). The efficacy of such antagonists in female

rodents has not been a major focus of study. Howerton et al. (2014)

did compare the effect of CRF1 antagonist administration into the dor-

sal raphe in male versus female rats and found that it only reduced

anxiety in males. The dorsal raphe is just one target of CRF regulation,

but this result does highlight how CRF1 antagonists are not equally

effective in both sexes. Moreover, the aforementioned data revealed

that, in the locus coeruleus, the CRF1 receptor binds proteins differ-

ently in males versus females (Bangasser et al., 2010) suggesting a

sex difference in the conformation of the receptor that could alter

how CRF1 antagonists bind to the receptor causing differential effects

in males versus females. These studies highlight the need for the inclu-

sion of female rodents in preclinical evaluations of CRF1 receptor

pharmacotherapies.
7 | CRF ANTAGONISTS AS POTENTIAL
ANTIDEPRESSANTS

Based on the strong preclinical data in males to support CRF1 antago-

nist efficacy, the pharmaceutical industry developed many small mole-

cule CRF1 antagonists (Murrough & Charney, 2017; Figure 3). The first

CRF1 antagonist to enter clinical testing was R121919 (formerly NBI‐

30775). R121919 was tested in a small uncontrolled clinical study in

both sexes (11 men and nine women), and some effects were found

in reducing depression, but its development was not continued, due

to concerns about potential hepatotoxicity (Künzel et al., 2003; Zobel

et al., 2000). The bulk of its preclinical testing was done exclusively in

male experimental animals (Keck et al., 2001; Keck, Welt, Müller,

Landgraf, & Holsboer, 2003; Lancel, Müller‐Preuss, Wigger, Landgraf,

& Holsboer, 2002). For example, in male HAB rats, R121919 was

shown to be effective in attenuating stress‐induced (exposure to ele-

vated plus maze) hormonal and behavioural changes and in particular,

it reversed the decreased testosterone levels either through a central

(pituitary) or direct testicular mode of action (Keck et al., 2003). How-

ever, a preclinical study, which included female rats was conducted

much later than when the clinical development project evolved

(Gutman et al., 2008). Interestingly, in this study, R121919 did not

exert clear antidepressant effects, as it had opposite results (either

enhanced struggling or enhanced floating) in male and female rats

bred for low and high activity in a modified swim test respectively

(Gutman et al., 2008). Another study using oestrogen‐primed female

rats showed that a CRF1 antagonist (antalarmin, CP‐156,181) reversed

or attenuated restraint stress‐induced hormonal abnormalities (lutein-

izing hormone, prolactin, corticosterone, and progesterone), pointing

to the importance of accounting for hormonal effects in studies with

HPA axis‐based drugs (Traslavina & Franci, 2011).

Following those promising results, several other CRF1 antagonists

were entered into clinical development programmes (Figure 3). NBI‐

34041/SB723620 entered into a Phase I clinical study in 24 healthy

males only. Interestingly, the preclinical in vitro testing of the inhibi-

tion of ACTH by NBI‐34041 was performed in cells originating from
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FIGURE 3 Summary of compounds that have entered into formal clinical testing (Phase II/III randomized control trials) as potential
antidepressants. “Preclinical modelling” refers to animal models for depression used to screen for antidepressant potential in preclinical studies
of each compound. Percentages of men and women included in clinical testing were calculated and pooled in the case of more than one published
study for each compound. “HPA axis monitoring refers” to whether the clinical trial protocol included a functional estimation of the HPA axis of
patients with depression. Signs in parentheses means that only some of the pooled studies performed an estimation. “Compared between Sex”
refers to whether statistical provisions were made to stratify (not control/adjust) for sex differences. In some cases, only one sex was tested in the
clinical development, so we do know the outcome for the sex tested, but the outcome for the other sex remains unknown. “RCT Successful” refers
to whether one or more of the clinical trials showed a positive antidepressant response for at least one dose of the compound of interest. Note
that no compound has gained regulatory approval, as yet. UN, unknown. RCT, randomized controlled trial
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female rats but further in vivo preclinical testing was performed in

male rats only. The compound attenuated the behavioural stress

response and related neuroendocrine indices in humans and rodents,

but the development did not continue (Ising et al., 2007). ONO‐

2333Ms was tested in a Phase II clinical study for recurrent depression

and lacked efficacy in a population of 278 men and women

(NCT00514865). SSR125543 was not effective in reducing depressive

symptoms in 580 patients, again of both sexes (NCT01034995). CP‐

316,311 was prematurely terminated as it lacked efficacy in 118

men and women with depression (Binneman et al., 2008). Another

CRF1 antagonist, verucerfont, lacked efficacy in a clinical trial of 150

depressed women, and no men (NCT00733980), despite the fact that

the original behavioural testing was done in male animals (Fabio et al.,

2008). Similarly, another CRF1 antagonist, pexacerfont, was unsuc-

cessfully tested in 270 women with depression but was not tested

at all in men (NCT00135421).

It should be noted that most preclinical studies of CRF1 antago-

nists were performed in male animals and many clinical studies

recruited predominantly or exclusively women. There is clearly a need

to include female rodents in drug development prior to moving novel

compounds into clinical trials. Moreover, none of the clinical studies

that included patients of both sexes performed an analysis by sex

and in some of those studies, an antidepressant, such as a selective

5‐HT (serotonin) reuptake inhibitor (SSRI), was included as an
additional treatment arm for comparison purposes—which statistically

implied that a CRF1 antagonist should be at least as effective in both

sexes as an SSRI in monotherapy.
8 | SEX DIFFERENCES IN THE AVP SYSTEM

8.1 | Human studies

The AVP system has also been implicated in depression: depressed

patients had higher plasma levels of AVP than controls (van Londen

et al., 1997), and in a small study of nine depressed patients, fluoxetine

treatment resulted in a significant decrease of AVP in CSF (De Bellis,

Gold, Geracioti, Listwak, & Kling, 1993). AVP peripheral levels were

increased in depressed patients, although interestingly, this finding

was restricted to the subgroup of depressed patients with prominent

anxiety symptoms (De Winter et al., 2003). Moreover, an analysis of

post‐mortem tissue revealed more AVP and V1A receptor expression

in the PVN of patients with depression relative to those without

(Purba, Hoogendijk, Hofman, & Swaab, 1996; Wang, Kamphuis,

Huitinga, Zhou, & Swaab, 2008). Unfortunately, these studies did not

compare data by sex. In healthy subjects, sex has been examined,

and plasma AVP levels were positively correlated with distress in a

pair‐bonded relationship in men, but not in women (Taylor, Saphire‐
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Bernstein, & Seeman, 2010) and recently it was shown that V1A antag-

onists attenuated amygdala activation in response to aversive stimuli

only in male subjects (Lee et al., 2013).
8.2 | Rodent studies

In response to stress, hypothalamic AVP expression is also preferen-

tially altered in males. Specifically, chronic variable mild stress increased

AVP in the PVN of male, but not in female mice (Karisetty, Khandelwal,

Kumar, & Chakravarty, 2017). However, the effects of stress on hypo-

thalamic AVP can vary. In Californian mice, in which both sexes exhibit

territorial aggression, social defeat stress immediately activated AVP

neurons in the PVN of both sexes (Steinman et al., 2015). However,

4–9 weeks after stressor cessation, there was a decrease in AVP in

the PVN but this was only observed in males (Steinman et al., 2015).

Thus, although the direction of AVP regulation may change based on

species, time course, and/or stress manipulation, the sex that was most

affected (i.e., males) remains consistent, and this was further replicated

in AVP‐deficient Brattleboro rats (Fodor et al., 2016). There are also

well‐documented sex differences in the extra‐hypothalamic AVP sys-

tem. Compared to female rats, there were more AVP neurons in the

medial amygdala and bed nucleus of the stria terminalis of males and

these neurons sent denser projections to several locations, including

the septum (De Vries & Panzica, 2006). These anatomical sex differ-

ences were established by testosterone (Han & De Vries, 2003). There

are also sex differences in V1A receptor binding, such that male rats had

higher binding densities than females in eight out of 21 forebrain

regions (Dumais & Veenema, 2016). However, such sex differences in

V1A receptors are not reported in all species, and sex differences in

V1B receptor expression have not been assessed due to a lack of good

tools (Dumais & Veenema, 2016). Functionally, extra‐hypothalamic

AVP is thought to primarily mediate social behaviour (e.g., pair bonding,

social recognition, and aggression; Donaldson & Young, 2008;

Veenema, Beiderbeck, Lukas, & Neumann, 2010), which is altered in

depression (Weightman, Air, & Baune, 2014). Consistent with the sex

differences in hypothalamic AVP, extra‐hypothalamic AVP typically

drives changes in social behaviour more in male than in female animals

(Dumais & Veenema, 2016). As an example, partner preference was

facilitated by AVP in male, but not female prairie voles (Cushing,Martin,

Young, & Carter, 2001). Based on these preclinical findings, it is thought

that social deficits in depression are more likely to be driven by AVP in

males than in females.
9 | AVP ANTAGONISTS AS POTENTIAL
ANTIDEPRESSANTS

Based on the role of AVP in the stress system, several AVP

antagonists were tested as potential antidepressants (Figure 3). V1A

antagonists are currently being studied for the treatment of

anxiety disorders, post‐traumatic stress disorder, and aggression

(NCT02733614, NCT03036397, and NCT02055638). It is unclear if

these studies monitor the effect of V1 antagonists on gonadal
hormonal levels, as a V1A antagonist d(CH2)5Tyr(Me)AVP has also

been found to prevent alterations in testosterone serum levels in male

rats exposed to repeated restraint stress (Gray, Innala, & Viau, 2012).

With regard to V1B antagonists, they were studied as potential antide-

pressants and, therefore, they are the focus of this section.

SSR149415 is a non‐peptide V1B antagonist, which showed prom-

ising results in preclinical behavioural testing in male rodents (Griebel,

Stemmelin, Gal, & Soubrié, 2005), but at that time, it was not tested

preclinically in female rodents. Interestingly, recently, it was shown

that SSR149415 reversed behavioral abnormalities, as well as reduced

testosterone levels and gonadal atrophy in male mice exposed to

social defeat stress (Wang et al., 2017). SSR149415 was tested in a

clinical development programme as a candidate antidepressant, and

as reviewed later (Griebel, Beeské, & Stahl, 2012), all clinical trials

failed to show a beneficial effect for SSR149415. Interestingly, those

clinical trials included patients of both sexes, but the reproductive sta-

tus of these patients was not mentioned. Moreover, there was seldom

any plan for an analysis by sex and analysis taking into consideration

the HPA axis dysregulation (possibly using an HPA axis functional test

like dexamethasone suppression test or DEX/CRF test). Another V1B

antagonist that entered into clinical development was ABT‐436. This

antagonist had shown efficacy in preclinical testing using male, but

not female, rodents (Van Gaalen et al., 2008). Clinical testing of

ABT‐436 also included patients of both sexes with no provisions

about potential sex differences or sex‐dependent drug effects and

ABT‐436 was not effective in reducing depression symptoms (Katz,

Locke, Greco, Liu, & Tracy, 2017). Another Phase II clinical trial, which

was prematurely terminated, with just 19 recruited patients out of 216

planned (NCT01741142) also planned to include patients with depres-

sion of both sexes, but no results have been published since its

termination.
10 | OVERALL DISCUSSION

We summarized evidence regarding profound sex differences in sev-

eral key components of the HPA axis, as demonstrated from preclini-

cal experimental studies in rodents. Limited data from studies on

humans also support the existence of significant sex differences in

the regulation of the HPA axis (Young, 1998). These sex differences

appear to extend to the GR, MR, CRF, and AVP ligands that were

tested as candidate antidepressants. However, due to the inertia of

preclinical research, most of the evidence for the HPA axis and its

response to the administration of various ligands still comes from

studies in male rodents (Beery & Zucker, 2011). This creates a problem

in translating experimental data to human therapeutics because the

preclinical data generated are not necessarily valid for both sexes or,

specifically, for psychiatric diseases, such as depression, which present

sex differences (Kokras & Dalla, 2017). Moreover, compounds preclin-

ically tested in male experimental animals enter in clinical trials that

tend to recruit more, if not exclusively, women than men. Thankfully,

regarding the first problem of generating preclinical data from male

animals, the recent National Institutes of Health initiative about

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2858
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2223
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2202


KOKRAS ET AL. BJP 4099
justifying the selection of sex in preclinical studies is expected to

address the issue in the coming years. However, the problem of cor-

rectly translating preclinical research remains unresolved. Since the

National Institutes of Health guideline about the inclusion of women

in clinical trials (Merkatz, Temple et al., 1993), no other formal initia-

tive has been taken regarding the sex‐aware methodology in clinical

trials.

Indeed, regarding clinical trials of HPA‐related ligands as potential

antidepressants, a number of other reasons, such as target selection,

design, and analysis of trials, may have contributed to the failure of

novel neuropsychiatric compounds (reviewed in Bespalov et al.,

2016). Specifically, for HPA axis‐based compounds, other possible rea-

sons for the observed failures could be related to drug design, as well

as pharmacological parameters of new molecules. For example, for

CRF antagonists, possible reasons for failure have been reviewed

recently in an excellent manuscript dedicated to the influential work

of the late Dr. A. Markou (Spierling & Zorrilla, 2017). These include

pharmacokinetic issues, such as very high lipophilicity and enhanced

toxicity of early CRF antagonists. Later, slower receptor dissociation

rates were identified as imperative for optimum pharmacological

action of CRF antagonists, but when verucerfont, which had these

promising properties and positive animal data, was tested in clinical tri-

als, it failed again (Spierling & Zorrilla, 2017). Other issues regarding

CRF antagonists include differences in receptor subtypes between dif-

ferent species (e.g., CRF2 subtypes in humans) and percentage of

receptor occupancy. Therefore, it was suggested that ideal candidates

should be small molecules, non‐selective antagonists at both CRF sub-

types, with inverse agonist activity, or with modulatory activity to

CRF‐binding protein or to receptor activity modifying protein 2, as

well (Gingell et al., 2016; Weston et al., 2016; Wootten,

Christopoulos, & Sexton, 2013). However, although all these proper-

ties have been identified by the academic community and the industry,
FIGURE 4 Panel (a) shows that if a novel treatment is tested in preclinical
in clinical studies, it is tested only/mainly in women, it is possible that it w
tested in preclinical studies in both male and female rodents (in blue and o
approaches: If sex differences are identified and male animals differ from
stratified by sex. If males and females do not differ, then both men and w
representation of both sexes. If clinical trials are designed and performed co
then they have an enhanced probability to show a successful outcome
to date, no HPA‐related compound has been successful as an antide-

pressant. Specifically, for CRF antagonists, revised hypotheses have

been proposed, but most of them remain to be tested (Spierling &

Zorrilla, 2017). Moreover, these HPA axis‐based compounds are

tested for the treatment of other psychiatric diseases, including

schizophrenia, or as cognitive enhancers, whereas CRF‐specific antag-

onists are tested for stress‐induced eating or alcohol abuse and AVP

antagonists are tested against aggression (Epstein et al., 2016; Soria

et al., 2018). Their effects could be exerted either by their main phar-

macodynamic actions or by off‐target effects that also need to be

carefully evaluated before entering clinical trials.

Nevertheless, even if ideal molecules are discovered, preclinical

models are fully validated and human techniques are refined to the

degree that adequate dosing and receptor occupancy in the brain is

achieved, again it is imperative to design clinical trials, in such a way

that they are valid and predictive (Figure 4). In this context, it cannot

go unnoticed that there is a stark mismatch of the chosen sex between

preclinical and clinical studies. As reviewed herein, preclinical studies

have been conducted mainly in males, whereas in clinical trials, recruit-

ment involved patients of both sexes and those trials lacked the

appropriate design and statistical power for a proper analysis by sex

(see text above and Figure 3). Moreover, in some cases, relevant

clinical trials have exclusively recruited women, despite preclinical

evidence coming from male animals, but they did not account for

reproductive status or assess changes in gonadal hormonal levels. Sev-

eral preclinical studies demonstrate that pharmaceutical manipulations

of the HPA axis result in sex‐dependent responses and may induce

changes in gonadal hormones. A slow growing body of preclinical evi-

dence suggests that the male behavioural response is more affected

by HPA axis manipulations than the female. This confirms earlier

human observations, generated by the pioneering work of E.A. Young,

on the more reliable cortisol hypersecretion from male depressed
studies in male rodents (in blue) and it proves to be effective, but then
ill fail. On the other hand, Panel (b) illustrates that if a novel therapy is
range) and sex differences are assessed, then there are two possible
female animals in the drug response, then clinical trials should be
omen should be included in the study, in order to have equal
rrectly, based on solid translational methodology of preclinical studies,
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patients and on the modest frequency of hypercortisolaemia and low

rates of dexamethasone non‐suppression in female depressed patients

(Young, 1998; Young et al., 1993; Young et al., 2001). Additionally, the

possibility that the important pharmacokinetic and pharmacodynamics

sex differences that exist could also influence drug response in clinical

trials should be taken into consideration (Kokras & Dalla, 2017). Tak-

ing all these arguments into consideration, we conclude in this review

that another valid and quite probable reason for the failure of the

development of HPA‐related antidepressants is the possibility that

those candidate antidepressants might be more effective or suitable

for men than for women, and this effectiveness may very well also

be modulated by a sex × age (including menopausal status) interaction

(Van Cauter, Leproult, & Kupfer, 1996).

Another important consideration is that most, if not all, animal

models of depression simulate or induce a dysfunctional HPA axis

and drugs are tested in this altered HPA axis milieu (Kokras & Dalla,

2014). In fact, many animal models claim to successfully mimic the

HPA axis dysregulation, “as observed in depressed patients.” A poten-

tial problem is that patients with depression do not necessarily present

such HPA axis dysregulation. As noted, chronic dysregulation of the

HPA axis is observed only in a subset of depressed patients (van

Londen et al., 1997; Young et al., 2001). When data are compared

between sex, the frequency of HPA axis dysregulation is lower in

women, and preclinical data typically support this sex difference fol-

lowing stress or antidepressant treatment (Kokras et al., 2012; Kokras,

Sotiropoulos, Pitychoutis, Almeida, & Papadopoulou‐Daifoti, 2011). It

is evident that when developing an HPA axis‐related antidepressant,

preclinical results generated in a model with a dysregulated/overactive

HPA axis in male rodents will probably not apply to human depressed

patients many of which do not present an HPA axis dysregulation.

However, to date, relevant clinical trials have underestimated these

issues.

Progress also has been hampered on translating preclinical find-

ings into useful clinical treatments because of an incomplete assess-

ment of why compounds fail. Typically, when there is a discrepancy

between results derived from preclinical research and from clinical

trials, the validity of animal models is questioned. However, it is

not clear why it is expected that preclinical findings based on only

male animals tested in behavioural assays designed to induce HPA

axis dysregulation should be replicated clinically in both men and

women with unknown HPA axis status. In this traditional approach,

it appears that the validity of animal models is not the major prob-

lem, but rather the issues lie in poor optimization of the translational

process from preclinical to clinical studies. Therefore, failed clinical

trials do not necessarily invalidate animal models but generate

important questions about the translational process. Obviously, other

issues such as the lack of data robustness, data generalizability, and

target engagement when designing and evaluating preclinical studies

should also be carefully taken into consideration (Bespalov et al.,

2016). However, the academic community, as well as the industry,

should take advantage of preclinical knowledge and thoroughly eval-

uate and interpret preclinical experiments before implementing clini-

cal trials (Kokras & Dalla, 2017).
Clinical trials of HPA axis‐related compounds follow diagnostic

criteria as set by the Diagnostic and Statistical Manual of Mental

Disorders and do not make distinctions between male and female

depressed patients with and without HPA axis dysregulation. The

selection of patients in clinical trials has been repeatedly addressed

previously (Zimmerman, Chelminski, & Posternak, 2005), as well as

the heterogeneity of the syndromal diagnosis of depression (Goldberg,

2011). In relation to this, in most clinical trials there is a lack of patient

stratification both in terms of sex, as mentioned before (Ferretti,

Women's, & Galea, 2018), but also in terms of HPA axis or reproduc-

tive status. However, this is an egg/chicken issue: there is no need to

stratify the population of patients with depression based on sex and

HPA axis or reproductive status, as there are no available treatments

that specifically target those subpopulations. On the other hand, if

there was a licensed antidepressant drug more effective in men or

women (pre‐ or post‐menopausal), with or without HPA axis dysregu-

lation, then it would be clinically and diagnostically meaningful to

identify such subgroups and that would also be reflected in future

revisions of the diagnostic criteria. However, for this to take place,

clinical trials must take into account the sex, reproductive status,

related co‐morbidities, as well as the HPA axis dysregulation, and for-

mally screen for efficacy in those subgroups.

Currently, the pharmaceutical industry is focused on clinical

development programmes aiming at a monotherapy for depression

with a universally effective novel blockbuster. As such, CRF/AVP for-

mal clinical development aimed at discovering an SSRI analogue that

would be effective for more than 65% of depressed patients, irrespec-

tive of their sex or other factors. Thus, we are still searching for a drug

acting as a “silver bullet” for the treatment of depression. However,

based on current knowledge, reviewed earlier herein, it is probably

not reasonable to expect HPA axis druggable targets to reveal an anti-

depressant treatment for every patient with depression. It is possible

for example that an HPA axis‐related compound, which would not

be effective for every depressed patient, would be effective only in

male depressed patients with impaired negative feedback of the

HPA axis. Also, unexplored is the possibility of augmenting current

monoaminergic treatments with HPA‐related compounds in those

patients who present a dysregulated HPA axis while receiving mono-

aminergic antidepressant treatment.
11 | CONCLUSION

In this review, it is suggested that in the search for a “silver bullet”—a

new antidepressant treatment that will be effective for every patient—

we may have lost, in the clinical testing of HPA axis‐related

compounds, an opportunity for either augmentation of available anti-

depressant treatments or for a targeted‐personalized antidepressant

treatment based on sex and the state of the HPA axis. Moreover,

based on the data reviewed herein, we question the translational

process from preclinical experiments performed in male only animals

to clinical trials involving the opposite sex or both sexes.
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11.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (Harding et al., 2017), and are permanently archived in the

Concise Guide to PHARMACOLOGY 2017/18 (Alexander,

Christopoulos et al., 2017; Alexander, Cidlowski et al., 2017).
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