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Abstract

Purpose: To develop and evaluate an automated machine learning (ML) algorithm for 

segmenting the paraspinous muscles on chest computed tomography (CT) scans to evaluate for 

presence of sarcopenia.

Methods: A convolutional neural network based on the U-Net architecture was trained to 

perform muscle segmentation on a dataset of 1,875 single slice CT images and was tested on 209 

CT images of participants in the National Lung Screening Trial (NLST). Low-dose, non-contrast 

CT examinations were obtained at 33 clinical sites, using scanners from 4 manufacturers. The 

study participants had a mean age of 71.6 years (range, 70-74 years). Ground truth was obtained 

by manually segmenting the left paraspinous muscle at the level of the T12 vertebra. Muscle cross-

sectional area (CSA) and muscle attenuation (MA) were recorded. Comparison between the ML 

algorithm and ground truth measures of muscle CSA and MA were obtained using Dice similarity 

coefficients and Pearson correlations.

Results: Compared with ground truth segmentation, the ML algorithm achieved median 

(standard deviation) Dice scores of 0.94 (0.04) in the test set. Mean (SD) muscle CSA was 14.3 

(3.6) cm2 for ground truth and 13.7 (3.5) cm2 for ML segmentation Mean (SD) MA was 41.6 (7.6) 
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Hounsfeld units (HU) for ground truth and 43.5 (7.9) HU for ML segmentation. There was high 

correlation between ML algorithm and ground truth for muscle CSA (r2=0.86; p<0.0001) and MA 

(r2=0.95; p<0.0001).

Conclusion: The ML algorithm for measurement of paraspinous muscles compared favorably to 

manual ground truth measurements in the NLST. The algorithm generalized well to a 

heterogeneous set of low-dose CT images and may be capable of automated quantification of 

muscle metrics to screen for sarcopenia on routine chest CT examinations.
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INTRODUCTION

Sarcopenia, most commonly defined as the age-related loss of muscle mass and muscle 

function [1,2], is associated with high health care costs [3,4] and many adverse outcomes 

including fractures [5], frailty [6,7], functional impairment [6,7], cognitive impairment [8], 

prolonged hospital stay [9], increased post-operative complications [10], poor health-related 

quality of life [11], and premature death [6,12]. Functional evaluation of sarcopenia is 

usually based on measuring grip-strength using a dynamometer or gait speed using a short 

walk (e.g., 4 or 6 meter) [13–16]. Most operational definitions of sarcopenia also include 

diagnostic cut-points based on muscle mass determined using dual x-ray absorptiometry 

(DXA) or bioelectrical impedance analysis (BIA) [13–16].

In the past 5 years, there has been a rapid increase in the use of computed tomography (CT) 

measurements of muscle to evaluate for sarcopenia [17]. Muscle cross-sectional area (CSA) 

and muscle attenuation (MA), a surrogate marker for myosteotosis, are the most commonly 

derived CT metrics [1]. These have been associated with adverse health outcomes in a 

variety of patient populations. While cancer cohorts have been the most commonly studied 

[18–22], there is increasing evidence on the value of using CT-derived muscle metrics as 

prognostic markers in acutely traumatized [23,24], critically ill [25,26], and surgical patients 

[27,28,29]. In a pragmatic trial of 450 consecutive Medicare patients who had abdominal 

CTs, Lenchik et al [30] reported that CT-derived muscle metrics predicted 1-year mortality, 

independent of Charlson comorbidity index, a commonly used prognostic tool

Most clinical trials evaluating for sarcopenia on CT examinations measure muscles of the 

abdomen or thigh [17]. However, recent studies have shown that muscle measurements on 

chest CTs are also useful in predicting important clinical outcomes, including mortality [31–

36]. While approaches to muscle measurements on chest CT vary, Boutin et al. [36] showed 

that low paraspinous muscle mass and MA predicted poor survival in patients following hip 

fracture.

Despite the prognostic value of CT measurements, the current approaches to measuring 

muscle CSA and MA require laborious manual or semi-automated tissue segmentation, 

which is not practical for large clinical trials or clinical practice [37–39]. Various approaches 

have been used to automate muscle segmentation, with atlas-based [40–44] and 
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convolutional neural network (CNN)-based [44–48] approaches showing the greatest 

promise. Popuri et al [40] developed an atlas-based approach for automatic total abdominal 

muscle segmentation, reporting a similarity coefficient of 0.91 in a test set of 1069 

abdominal CT images. For the same muscle groups, Lee et al [45] developed a CNN-based 

approach for automatic muscle segmentation reporting a similarity coefficient of 0.93 in a 

test set of 150 abdominal CT images.

To extend the work of prior studies on abdominal CT exams, we developed an automated 

CNN-based algorithm for paraspinous muscle segmentation on chest CT exams. The 

objective of this study was to validate our machine learning (ML) algorithm for measuring 

muscle CSA and MA on CT examinations from community-dwelling older adult 

participants in the National Lung Screening Trial (NLST). Our hypothesis is that the ML 

algorithm will be as accurate as manual segmentation, even on low-dose chest CT used for 

lung cancer screening.

METHODS

Dataset

The dataset included chest CT examinations from community-dwelling older adult 

participants in the NLST [49]. The NLST enrolled 53,454 participants, aged 55-74 years, 

who were current or former smokers with a smoking history of 30 pack-years or more, at 33 

medical centers in the United States, from 9/2002 to 4/2004 [49]. Subjects were randomly 

assigned to two arms: low-dose chest CT (n=26,722) or single-view posteroanterior chest 

radiography (n=26,732) [49]. The study concluded that three annual low-dose screening CTs 

reduced mortality from lung cancer by 20% in comparison with three annual single-view 

chest radiographs in this high-risk cohort [50].

For the current study, a subgroup of oldest participants (age 70-74 years at enrollment) in the 

CT arm was examined in order to maximize the prevalence of sarcopenia. The study cohort 

had a mean body mass index of 27.2 kg/m2 and had 64.1% male participants.

CT Acquisition

CT scans were acquired using unenhanced, ungated, low-dose protocols on various models 

of scanners from 4 major manufacturers (General Electric, Siemens, Philips, Toshiba). CT 

acquisition parameters of scans are listed in Table 1. CT parameters for each manufacturer 

are included in the Appendix. Scans with asymmetry between paraspinous muscles (e.g., 

scoliosis, degenerative diseases, or prior surgery) as well as scans with internal or external 

artifacts were excluded (n=107), resulting in 2084 CT examinations included in the current 

study.

Ground Truth Segmentation

Ground truth was obtained by manually segmenting the left paraspinous muscle on a single 

CT image at the level of the T12 pedicle using Mimics software (Materialise, Leuven, 

Belgium) (Figure 1). Muscle thresholds were set at −29 to +150 Hounsfield units (HU) and 

muscle CSA and MA were recorded. All manual segmentations were performed by an 
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experienced operator and supervised by the principal investigator with 14 years of 

experience in CT image segmentation.

Pre-processing

Prior to training in our CNN architecture, our model ground truth images were pre-

processed. Training requires a representation of the segmentation in which all pixels 

corresponding to muscle are explicitly identified. Since the software used for ground truth 

segmentation did not allow for export of isolated regions of interest, a thresholding method 

was used to separate the segmentation mask from underlying pixels. This method is 

described in detail in the Appendix.

Convolutional Neural Network Model

Our method for automatic muscle segmentation adopted the U-Net convolutional neural 

network architecture [51], with two 50% dropout layers added. There were 24 convolutional 

layers. In the downsampling path, these layers consisted of adjacent pairs of convolutional 

layers followed by a pooling layer. The ten downsampling convolutional layers - five pairs - 

were configured with 64, 128, 256, 512, and 1024 features. The upsampling path consisted 

of four blocks, with each block containing an upsampling layer, a convolutional layer, a 

concatenation of the convolutional layer, and the skip connection from the last convolutional 

layer of the same resolution in the downsampling path, and an additional pair of 

convolutional layers. The twelve upsampling convolutional layers - four triplets - were 

configured with 512, 256, 128, and 64 features. Finally, the last convolutional layer was 

connected to a two-feature convolutional layer, which connected to a final one-feature 

convolutional layer with a 1x1 kernel that produced the mapping of each pixel to the two 

classes: tissue present or tissue absent. The downsampling and upsampling paths were 

mirror images of one another, and consisted of 2x2 max-pooling and 2x2 upsampling layers, 

resulting in 5 levels with the following resolutions: 512x512, 256x256, 128x128, 64x64, and 

32x32.

Two dropout layers, both configured to drop 50% of inputs, were used to control overfitting. 

These layers surrounded the deepest downsampling level. The first dropout layer followed 

the second 512-feature convolutional layer at the 64x64 level. The second dropout layer 

followed the concatenation of the first dropout layer and the output of the second 1024-

feature convolutional layer at the 32x32 level

Our ground truth dataset was randomly divided into training and validation subsets, using 

ninety percent of the data for training and ten percent of the data for validation. For both the 

training and validation phases, the raw image inputs were split into three separate channels: 

the raw pixel values (“raw”), the raw values clipped to the interval [−1024, 1024] and 

rescaled to [−1, 1] (“clipped”), and the clipped values equalized using the CLAHE adaptive 

histogram equalization algorithm (“CLAHE”) [52].

Training

To improve the generalizability of the trained model, we used image augmentation 

techniques, which expand the size of the training dataset by creating artificial training 
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images via manipulations of the existing training data. In particular, we used simple affine 

transformations, including image rotation (−1° to 1°), translation (up to 0.5% of the image 

dimensions horizontally and vertically), and scaling (99% to 101%). Augmented mask 

images were binarized by setting all pixels above 0.5 to 1, and all others 0, to avoid aliasing 

at the mask edges.

Because the muscle mask pixels were only a small portion of the image pixels, commonly-

used loss functions including mean squared error and binary cross-entropy did not achieve 

high accuracy. Instead, we used an adaptation of a smoothed Dice similarity coefficient 

algorithm [53] coupled with class weighting, with the class weights calculated to be 

balanced based on the training masks. This loss function ensured that the quality of the 

segmentation appropriately influenced the model’s training. Class weights were computed 

using scikit-learn’s [76] compute_class_weight function in “balanced” mode, which 

calculates class weights based on the data in the training mask images. The weight of each 

class was determined by the ratio of the number of pixels in the training data to the product 

of the total number of classes and the number of samples in each class: n_samples / 

(n_classes * np.bincount(y)). Applied to our dataset, the weight of the non-tissue class was 

0.51 and the weight of the tissue class was 39.3. Network weights were initialized using the 

He normal initializer [54]. Training itself used the stochastic gradient descent optimizer 

Adam [55], with a learning rate of 1x10−5.

Testing

Following training, the images in the test set were passed through the resulting model Like 

the training images, these images were separated into 3 input channels: raw, clipped, and 

CLAHE.

The output layer of the U-Net network was a 1 x 1 convolutional layer with a sigmoid 

activation function, which returned values in the interval [0,1]. Thus, the output of the model 

was an image with the same dimensions as the original input image, where each pixel was 

assigned a continuous value, indicating the probability of that pixel representing the target 

paraspinous muscle tissue.

All predictions were normalized by dividing each pixel’s probability by the maximum 

probability observed across all pixels in the image x
max X  and pixels with resulting values 

below 0.5 were excluded. Additionally, because we had a priori knowledge that the muscle 

tissue had HU values in the interval [−29,150], all pixels with HU values outside that range 

were excluded from the predicted segmentation.

Evaluation of the performance of the ML algorithm consisted of two-parts: 1) mask-oriented 

comparison of the spatial overlap between the ML and ground truth segmentations and 2) 

tissue-oriented comparison of the muscle CSA and MA. Spatial overlap of the mask images 

was evaluated using the Dice similarity coefficient (DSC), where X represents the set of 

pixels in the ground truth mask and Y represents the set of pixels in the predicted mask.
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DSC = 2 × X ∩ Y
X + Y

Muscle CSA and MA similarity was evaluated using the Pearson correlation coefficient.

Implementation

Our ML algorithm was implemented using open source tools. We constructed an initial data 

preparation pipeline and the main training, evaluation, and reporting pipeline (Figure 2). 

These were implemented using the Snakemake [56] tool To provide images of segmentations 

for quality control purposes, additional scripts built on scikit-image and ImageMagick were 

implemented (Figure 3).

The input pipeline provided functionality to extract and clean the ground truth mask and 

prepare the input image and metadata files for automated processing in the main pipeline. 

The training pipeline used the Keras-based [57] implementation of U-net provided by [58] 

with the TensorLlow [59] backend. Image augmentation was incorporated using Kerns’ 

ImageDataGenerator class operating in generator mode with a fixed initial seed to ensure 

that the generated training data was identical between invocations. Lurther implementation 

details are provided in the Appendix.

The input data was prepared on a Mid 2010 Mac Pro (Intel Xeon W3530, 32GB RAM). The 

main pipeline was performed using our university Distributed Environment for Academic 

Computing (DEAC) high-performance computing cluster on nodes with 44 CPU cores, 496 

GB of RAM, and dual Tesla P100 16 GB GPUs.

The model was trained for 200 epochs using a mini-batch size of 5 with 375 mini-batch 

steps per epoch. Training of the model took 15 hours, 28 minutes of wall-clock time; 

inference of each subject took 15 seconds of wall-clock time.

RESULTS

The ML algorithm was evaluated using 209 CT images, not included in the training set. 

Mean (SD) muscle CSA was 14.3 (3.6) cm2 for manual ground truth and 13.7 (3.5) cm2 for 

automatic ML segmentation. Mean (SD) muscle attenuation was 41.6 (7.6) HU for ground 

truth and 43.5 (7.9) HU for ML segmentation.

There was high correlation in muscle CSA (r2=0.86; p<0.0001) and MA (r2=0.95; 

p<0.0001) between ground truth and machine learning segmentation (Figure 4).

Compared to ground truth segmentation, the ML algorithm had a median Dice similarity 

coefficient of 0.94 (SD=0.04) (Figure 5).

The ML algorithm produced some poor predictions, usually due to under-segmentation of 

tissue. Most of these appear to be caused by low tissue contrast (Figure 6).
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DISCUSSION

ML algorithms for tissue segmentation are becoming increasingly common in 

neuroradiology and cardiovascular imaging [60,61]. Similar pipelines for organ and tissue 

segmentation are being developed for abdominal CT scans [62–65]. Our study helps extend 

ML approaches to tissue segmentation on chest CTs. Our newly developed fully-automated 

ML algorithm for paraspinous muscle segmentation is highly accurate when validated 

against a heterogeneous set of chest CT images in older adults in the NLST.

Our algorithm performed better for MA than for muscle CSA. Larger errors in CSA 

measurement were expected because muscle boundaries may be difficult to distinguish from 

adjacent tissues, especially the subcutaneous fat which follows the contour of paraspinous 

muscle and, when edematous, may have tissue attenuation similar to muscle.

Our results compare favorably to previous studies reporting on automated CNN-based 

approaches to muscle segmentation. Weston et al. [46] used a U-net architecture to train on 

2340 abdominal images at the level of L3. In a test set of 270 images, they reported a Dice 

similarity coefficient for total abdominal muscles of 0.96. They did not compare 

performance of MA versus muscle CSA. Because the abdominal muscle groups measured in 

their study are much larger than the paraspinous muscles measured in our study, somewhat 

better performance of their algorithm was not unexpected. In addition to differences in study 

subjects and CT doses between the two studies, specific differences in their ML algorithm 

that may explain results include: an additional downsampling layer, somewhat different 

convolution parameters, initializing weights using a Glorot normal initializer, using tanh 

(instead of ReLU) as their main activation function, and using categorical cross-entropy for 

loss.

Our results also compare favorably to Lee et al. [45] who used VGG-Net to segment the 

total abdominal muscles at the level of L3. They trained on 250 cases, and reported a Dice 

similarity index of 0.93 in a test set of 150 cases. They also reported a mean 3.7% error for 

muscle CSA, when compared to ground truth. Like our study, their cohort included all 4 CT 

scanner manufacturers. Unlike our study, these were not low-dose CTs and the acquisition 

parameters were more standardized.

While Lee H, at al [45] and Weston AD, et al [46] used deep learning methods for muscle 

segmentation, they segmented all visualized muscles on abdominal CT images, rather than a 

single muscle group on chest CT images. A recent systematic review by Amini B, et al [17] 

shows that there are many valid approaches for evaluating muscle mass on CT images and 

that there are specific reasons for different muscle groups to be evaluated, either alone, or in 

combination. The overarching goal for sarcopenia screening is to select a muscle group that 

is most clinically relevant. On chest CT images, the paraspinous muscle group at the level of 

T12 is more clinically relevant than other muscle groups since it has been shown to predict 

mortality in older adults [36].” Importantly, because T12 level is frequently visualized not 

only on chest CTs but also on abdominal CTs, our algorithm can be used on both types of 

scans, further increasing clinical utility. To our knowledge there are no prior studies using 

CNNsto automate muscle segmentation on chest CTs. However, Popuri et al [40] used an 
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atlas-based approach to automatically segment muscles on chest CTs at the level of T4. 

Their algorithm uses a finite element method and a deformable shape model based on ideal 

template-based segmentation and muscle shape. After training on 60 thoracic images, they 

reported a Jaccard similarity index of 0.91 in a test set of 530 images. Their slightly poorer 

performance than ours may be explained in part by greater variability of muscle morphology 

at the level of T4, depending on the position of the arms during CT acquisition

The potential clinical impact of measuring muscle area and attenuation on chest CTs cannot 

be overstated. Rosman DA, et al. [66] examined utilization of imaging over two decades 

using Medicare claims. They reported utilization rates of 134 per 1000 Medicare 

beneficiaries for chest CTs compared to 191 per 1000 for abdomen/pelvis CTs. Thus, the 

increased screening potential of using chest as well as abdominal CTs is considerable. More 

importantly, compared to 1994, the 2013 utilization rates for chest CTs increased by 350% 

while the utilization for abdominal/pelvis CT increased 93%. If the trends continue, there 

will be even greater clinical utility of screening for sarcopenia using chest CTs in the future.

Limitations

Our study has several limitations and strengths. The main limitation is that the CT slice 

cannot be automatically selected. Recent studies [67,68] have used CNN-based approaches 

to automatically select the L3 slice on CT images. Similarly, we are working on 

automatically selecting the T12 slice, which will enable us to develop a more efficient 

pipeline for muscle segmentation on chest CTs. Another limitation is that only low dose CT 

scans were used. However, our use of low dose images was intentional for both technical 

and clinical reasons. The technical reason for using low dose images is that our algorithm 

should work even better on regular dose CT scans that have less image noise. The clinical 

reasons are that lung cancer screenings are becoming increasingly more common and that 

value of these screening may be enhanced by opportunistically measuring other prognostic 

phenotypes, including muscle area and attenuation. The major strength of our study is that 

the dataset included CT images that are heterogeneous in field of view, voxel spacing, 

convolution kernel, reconstruction algorithm, image quality, and scanner manufacturer and 

model For this reason, our model should be more generalizable than previously published 

models.

Future Directions

Our ML algorithm for measuring muscle mass and myosteatosis on chest CTs could be 

adapted to other body regions such as the abdomen and thigh, facilitating research on muscle 

metrics as biomarkers of aging and cachexia. On abdominal CT examinations, muscle 

measurements are usually obtained as part of a body composition analysis that includes 

visceral adipose tissue and subcutaneous adipose tissue measurements. Similarly, our ML 

algorithm can be adapted to measure other tissues in the chest, including pericardial adipose 

tissue and bone tissue.
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CONCLUSION

With automated secondary analysis of clinical CT examinations already being obtained for 

routine indications, the ML algorithm promises to help identify patients at risk for 

sarcopenia, investigate the need for follow-up and therapeutic interventions, develop better 

tools for prognosis, and ultimately improve patient outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative low-dose CT image shows paraspinous muscle cross sectional area and 

attenuation manually measured at the level of T12 vertebra.
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Figure 2. 
Diagram of the machine learning pipeline used for deriving muscle metrics from CT images.
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Figure 3. 
Representative quality control image shows the probability map of our machine learning 

algorithm compared to ground truth segmentation.
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Figure 4. 
(a) Correlation plot of muscle cross sectional area determined with machine learning 

algorithm and ground truth. (b) Correlation plot of muscle attenuation determined with 

machine learning algorithm and ground truth.
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Figure 5. 
Histogram of Dice similarity coefficient for the test set of CT images.
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Figure 6. 
a. Low contrast CT image resulting in poor machine learning segmentation.

b. Low contrast CT image resulting in poor machine learning segmentation
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Table 1:

Acquisition parameters and reconstruction characteristics of CT images.

Training
n=1875

Testing
n=209

Mean SD Mean SD

Peak kilovoltage (kVp) 122.0 6.0 121.6 5.5

X-Ray Tube Current (mA) 107.1 50.9 116.0 58.0

Slice Thickness (mm) 1.9 0.5 1.9 0.5

Pixel Size (mm) 0.7 0.1 0.7 0.1

Reconstruction Diameter (mm) 337.1 36.1 335.6 34.8

Field of View (mm) 313.6 29.3 311.9 28.1

Image Size (pixels) 512 x 512
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