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Abstract

The automated segmentation of organs and tissues throughout the body using computed 

tomography (CT) and magnetic resonance imaging (MRI) has been rapidly increasing. Research 
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into many medical conditions has benefited greatly from these approaches by allowing the 

development of more rapid and reproducible quantitative imaging markers. These markers have 

been used to help diagnose disease, determine prognosis, select patients for therapy, and follow 

responses to therapy. Because some of these tools are now transitioning from research 

environments to clinical practice, it is important for radiologists to become familiar with various 

methods used for automated segmentation. The Radiology Research Alliance of the Association of 

University Radiologists convened an Automated Segmentation Task Force to conduct a systematic 

review of the peer-reviewed literature on this topic. The systematic review presented here includes 

408 studies and discusses various approaches to automated segmentation using CT and MRI for 

neurologic, thoracic, abdominal, musculoskeletal, and breast imaging applications. These insights 

should help prepare radiologists to better evaluate automated segmentation tools and apply them 

not only to research, but eventually to clinical practice.
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Introduction

Various approaches to automated segmentation of CT and MR images are widely used in 

research environments and promise to transform clinical practice [1–12]. Radiologists 

involved in interpreting images in patients with cancer, obesity, cardiovascular disease, 

neurodegeneration, osteoporosis, arthritis, and many other conditions will benefit from these 

approaches as they help clinicians diagnose disease, determine prognosis, select patients for 

therapy, and follow responses to therapy. To enable this transition from research to patient 

care, radiologists should become familiar with various methods used for automated 

segmentation of CT and MR images.

Segmentation refers to identifying the boundaries of an object in the image. Frequently, the 

object is an organ, a tissue, a pathologic lesion, or another structure used for diagnosis or 

management of a particular disease. Traditional approaches to segmentation rely on manual 

or semi-automated delineation of the object of interest. While these approaches are effective, 

they are time-consuming and impractical for large scale research studies and even less 

practical for clinical practice. As a result, many fully automated approaches to tissue 

segmentation are being developed.

Automated segmentation methods using CT and MRI are generally built on basic image 

processing of pixel intensities and/or textural features (e.g., relationships between groups of 

pixels), and may incorporate advanced model-based, atlas-based, or machine learning (ML) 

techniques [13–16]. Segmentation techniques can be broadly divided into supervised and 

unsupervised.

Supervised techniques require prior training that is most commonly performed manually. 

These methods typically include pre-processing such as intensity normalization (e.g., 

histogram-based, reference tissue), followed by classification (e.g., artificial neural 

networks, k-nearest neighbors, Bayesian, random decision forests), and feature selection 
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based on intensity, spatial, texture, or contextual information [13–16]. They are considered 

to be more accurate, but require expert annotation which is both expensive and time 

consuming.

Unsupervised segmentation techniques do not require any training and are generally 

considered less accurate than supervised techniques. These methods usually incorporate 

clustering (e.g., fuzzy c-means, expectation-maximization) and spatial information (e.g., 

Markov random fields, graph cut, anatomical/topological atlases) to segment the image [13–

16]. They also commonly rely on labeled atlases.

The reported performance of supervised and unsupervised segmentation techniques varies 

greatly, depending in part on the validation metrics used [13–16]. Generally, the validation is 

based on the assessment by experts. Since evaluation by a single expert may be biased, some 

studies employ multiple experts using techniques such as Simultaneous Truth and 

Performance Level Estimation (STAPLE) [17]. In some cases, the segmentation techniques 

are validated against established pipelines, such as FreeSurfer (https://

surfer.nmr.mgh.harvard.edu/), SPM (https://www.fil.ion.ucl.ac.uk/spm/), or FSL (https://

www.fmrib.ox.ac.uk/fsl). Another approach uses publically available “challenge databases” 

for training and validation of automated segmentation techniques.

Many validation metrics have been used for quantitative comparison between the automated 

segmentation results and ground truth [12–16]. These metrics include: Dice similarity 

coefficient (DSC), Jaccard index, volume difference, Hausdorff distance, intraclass 

correlation, and Pearson’s coefficient. The DSC calculates the overlap between two binary 

segmentation results by accounting for both the intersection and the union of the two results. 

More familiar metrics are also occasionally used, including: sensitivity, specificity, accuracy, 

positive predictive value, and negative predictive value.

Previous reviews of segmentation have focused on CT or MRI of a single body region, often 

combining semi-automated and automated approaches, and rarely using the methodologic 

rigor of a systematic review. There is a need for a systematic review that focuses on 

automated segmentation using CT and MRI of the entire body.

We provide such a systematic review of the automated segmentation methods and discuss 

how these methods have been used in neurologic, thoracic, abdominal, musculoskeletal, and 

breast imaging. Ultimately, we hope to prepare radiologists for eventual integration of these 

techniques into their clinical practice.

Methods

Identification of Studies

This systematic review was performed according to Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines [18]. A systematic 

literature search was conducted in the PubMed/MEDLINE, Embase via Ovid, and Cochrane 

Central Register of Controlled Trials (CENTRAL) via Ovid databases from January 1, 2007 

through February 26, 2018 (date of final search execution). A list of Medical Subject 
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Headings (MeSH) and keywords targeting full-text, automated segmentation using CT or 

MRI was formulated by a joint collaboration between task force members and research 

librarians (Appendix A1).

Figure 1 is a PRISMA flow diagram showing identification, screening, eligibility, and 

inclusion of articles. After initial review of the articles, studies prior to 2013 were excluded 

as not sufficiently up to date to reflect the current application of automated segmentation 

methodology. An additional search was performed using a second set of keywords 

(Appendix A2), resulting in an additional 226 studies. After removal of duplicates, a total of 

7,770 citations were identified.

Each of the initial 7,770 citations was independently screened at the title/abstract level by 

two fellowship trained sub-specialty radiologists and/or experienced imaging researchers 

using predefined exclusion criteria: 1) animal, cadaver, or phantom studies, 2) radiation 

oncology studies, 3) dental studies, 4) studies using ultrasound, nuclear medicine, functional 

MRI, magnetic resonance spectroscopy, or diffusion tensor imaging, 5) studies using semi-

automated or manual segmentation, 6) reviews and meta-analysis, 7) studies with fewer than 

20 subjects.

After title/abstract screening, 1,771 articles were included in the full-text screening. Using 

the same exclusion criteria, an additional 923 articles were excluded. The remaining articles 

were divided by sub-specialty based on abstract keywords (neuroimaging, thoracic imaging, 

abdominal imaging, musculoskeletal imaging, breast, and adipose tissue imaging). At time 

of sub-specialty data extraction, 440 articles were excluded (Table 1). Studies excluded as 

outside the scope for this review were: studies of fetal or neonatal neurologic segmentation 

and studies of pathologic tissues or organs in thoracic and abdominal segmentation. Other 

exclusions were: free software (i.e., FreeSurfer, SPM, and FSL), commercial software (i.e., 

Neuroquant), or studies published in ArXiv for neurologic segmentation; non-human 

subjects, duplicate manuscripts, modality other than CT or MRI, non-English, reviews or 

meta-analyses, or use of commercial software for thoracic segmentation; duplicate studies 

for abdominal segmentation; cadaveric study, modality other than CT or MRI for 

musculoskeletal segmentation; duplicate or breast CT studies for breast segmentation. 

Following all exclusions, 408 articles were included in the systematic review.

Methodological Quality

The methodological quality of 408 studies was assessed independently by two reviewers (LL 

and LH) according to a modified National Heart, Lung and Blood Institute (NHLBI) Case 

Series Quality Assessment Tool [19]. The NHLBI Quality Assessment Tool assesses study 

objectives, population, outcome measures, statistical method, and provides a Good, Fair, or 

Poor quality rating. Disagreements were resolved by consensus.

Data Extraction

During full-text review, the following data were extracted: segmented organ or tissue, 

imaging modality, segmentation technique, sample size, and validation method. Because 

there is no single accepted classification method to describe segmentation methods, we 

applied a modified classification scheme, described by Withey and Koles [20]. The 

Lenchik et al. Page 4

Acad Radiol. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



segmentation techniques were divided into the following categories: 1) Thresholding, 2) 

Statistical, 3) Deformable model, 4) Graph search, 5) Multi-resolution, 6) Atlas-based, 7) 

Texture analysis, 8) Neural network, and 9) Hybrid (i.e., combination of more than one of 

the above methods) (Table 2).

Results

408 studies met the inclusion criteria, including 145 (36%) neurologic, 78 (19%) thoracic, 

87 (21%) abdominal, 58 (14%) musculoskeletal, 20 (5%) breast, and 20 (5%) adipose tissue 

studies. Using the NHLBI Quality Assessment Tool, all studies (100%) received a quality 

rating of Good.

Neurologic Segmentation

145 studies met the inclusion criteria (Appendix B1). MRI was used in 137 (94%) studies, 

CT in 7 (5%) studies, and CT and MRI in 1 (1%) study. The MR field strengths were: 1.5T 

(n=31), 3T (n=34), both 1.5T and 3T (n=24), 1T (n=2), 7T (n=2), and not specified (n=45).

The most common pulse sequence for normal brain segmentations was 3D T1-weighted 

(n=56). For segmenting lesions in multiple sclerosis, gliomas, white matter hyperintense 

lesions, and stroke, FLAIR was combined with T1-weighted and/or proton-density and/or 

T2-weighted sequences (n=53).

The brain was segmented in 139 (96%) studies and the spinal cord in 6 (4%) studies. The 

brain structure most commonly segmented was the hippocampus (n=13). At the tissue level, 

techniques focused on segmenting lesions, gray matter, white matter, and cerebrospinal 

fluid. A few studies focused on other structures such as caudate, basal ganglia, thalami, 

individual gyri within a lobe, or brain stem.

A variety of automated segmentation techniques were used (Table 3). The most commonly 

used methods were statistical (n=59), atlas-based (n=38), and neural network (n=19). The 

number of subjects whose images were used for training and validation varied greatly across 

the studies (mean=218, range = 20–3672).

Most studies validated automated segmentation techniques against the ground truth 

determined by manual segmentation (n=102). Some techniques were validated against other 

established segmentation techniques (n=28). Finally, some validation used challenge 

datasets including Medical Image Computing and Computer Assisted Intervention 

(MICCAI), Brain Tumor Segmentation (BraTS), and the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) (n=11). While many different validation metrics were used, the most 

common was the DSC (n=46).

Automated segmentation techniques were used in normal subjects as well as in subjects with 

various diseases or conditions including: Alzheimer’s disease, multiple sclerosis, stroke, 

cancer, and epilepsy.
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Thoracic Segmentation

78 studies met the inclusion criteria (Appendix B2). CT was used in 30 (38%) of studies, 

MRI in 27 (35%), CT angiography (CTA) in 14 (18%), MR angiography (MRA) in 2 (3%). 

Five studies (6%) used a combination of modalities (e.g., CT and CTA).

Segmented organs included the heart (n=39), lungs and airways (n=19), and blood vessels 

(n=16). Four studies segmented multiple organs. Combinations included the heart and 

coronary arteries, heart and liver, heart and solid abdominal organs, and segmentation of all 

intrathoracic organs (i.e., skin, bones, and mediastinal structures).

All but one of the studies that segmented the lungs used CT (n=17). Most of the studies that 

segmented the blood vessels used CT or CTA (n=13). 62% of the studies that segmented the 

heart used MRI (n=24).

Cardiac segmentation typically isolated one or more cardiac chambers; most commonly, the 

left ventricle. Lung segmentation typically focused on isolating the lungs. A few studies 

segmented the individual lobes or the trachea and bronchial tree. Blood vessel segmentation 

typically focused on the coronary arteries, with some studies focusing on the great vessels.

A variety of automated segmentation techniques were used (Table 3). The most commonly 

used methods were deformable models (n=24), thresholding (n=19), and statistical (n=15). 

Most studies validated automated segmentation techniques against the ground truth 

determined by manual segmentation. In addition, 30% (n=25) of studies compared their 

method to previously published segmentation method. A small number of studies relied on 

visual comparison as their validation method; this technique was almost exclusively used to 

evaluate vascular segmentations. While many different validation metrics were used, the 

most common was the DSC (n=39).

The average number of exams used for training and validation varied widely across all 

studies (mean=151, range = 20–2500). Larger datasets were seen in studies using CT 

(mean=232) compared to those using MRI (mean=99). Even smaller datasets were seen in 

studies using CTA (mean=67) and MRA (mean=31).

Only a small number of studies used publicly available datasets, such as COPDgene, Lung 

Imaging Database, Cardiac Atlas Project Database, or the LIDC-IDRI database. Several 

studies used data from prior challenges, including the Rotterdam coronary CTA challenge, 

LOLA11 lung lobe segmentation challenge, and the 2012 MICCAI RV segmentation 

challenge.

Automated segmentation techniques were used in normal subjects as well as in subjects with 

various diseases or conditions including : cardiovascular diseases (e.g., coronary artery 

disease, prior myocardial infarction, ventricular hypertrophy, or congestive heart failure) and 

pulmonary diseases (e.g., chronic obstructive pulmonary disease or interstitial lung 

diseases).
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Abdominal Segmentation

87 studies met the inclusion criteria (Appendix B3). CT was used in 50 (57%) studies and 

included non-contrast and contrast-enhanced studies in various phases (i.e., arterial or portal 

venous). MRI was used in 36 (41%) studies and employed a variety of sequences including 

multiplanar T2- and T1-weighted pre- and post-contrast images. One study used both CT 

and MR images for multi-organ segmentation.

The organs segmented were: prostate (n=24), liver (n=20), kidneys (n=10), spleen (n=5), 

pancreas (n=5), colon (n=2), gallbladder (n=2), esophagus (n=2), bladder (n=1), and female 

pelvic floor (n=1). The remaining 15 studies segmented more than one organ; ranging from 

two organs (e.g., liver and spleen) to up to 14 distinct structures including the aorta, inferior 

vena cava, mesenteric vessels, and uterus.

A variety of automated segmentation techniques were used (Table 3). The most commonly 

used methods were atlas-based (n=19), deformable models (n=14), and neural networks 

(n=14). 17 studies used a combination of more than one method. Most studies (n=82) 

compared performance of the automated segmentation technique to manual segmentation. 

The average number of exams used for validation was 68 (range = 20–400). While many 

different validation metrics were used, the most common was the DSC (n=62).

Musculoskeletal Segmentation

58 studies met the inclusion criteria (Appendix B4). CT was used in 20 (34%) studies, MRI 

in 37 (64%), and both CT and MRI in 1 (2%).

Segmentation of the spine was most common (n=16). Other segmented regions included: 

thigh/femur (n=13), pelvis/hip (n=10), knee (n=14), wrist (n=3), shoulder (n=2), lower leg 

(n=1), skull (n=1), and whole body (n=2). Five studies segmented multiple regions (e.g., 

femur and pelvis, spine and pelvis).

Bone was the most common tissue segmented (n=35). Additional segmented tissues 

included articular cartilage (n=14), fibrocartilage (n=3), skeletal muscles (n=9), 

intervertebral discs (n=4), bone-cartilage interface (n=1), spinal canal (n=1), and dural sac 

(n=1). Eight studies segmented more than one tissue.

A broad range of automated segmentation techniques were used (Table 3). The most 

commonly used methods were deformable models (n=13). Thirty studies used a combination 

of methods. Most studies compared performance of the automated segmentation technique 

to manual segmentation. The average number of exams used for training and validation was 

170 (range = 20–2117). While many different validation metrics were used, the most 

common was the DSC (n=42).

Automated segmentation techniques were used in normal subjects as well as in subjects with 

various diseases or conditions including: osteoporosis, osteoarthritis, rheumatoid arthritis, 

avascular necrosis, fractures, meniscal injury, cancer, bone metastases, craniosynostosis, 

spinal stenosis, disc herniation, and disc degeneration. Some studies focused only on normal 

subjects.
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Breast Segmentation

20 studies met the inclusion criteria (Appendix B5). All studies used MRI. Sequences used 

for segmentation included axial non-fat-suppressed non-contrast T1-weighted images (n=8), 

multiple sequences (n=6), post-contrast T1-weighted or subtraction images (n=1), non-

contrast T1-weighted fat suppressed (n=3), Dixon-based sequences (n=1), and sagittal non-

fat-suppressed non-contrast T1-weighted images (n=1).

Most studies evaluated breast fibroglandular tissue (FGT) segmentation alone (n=11), with a 

subset extrapolating FGT segmentation to post-contrast images to evaluate background 

parenchymal enhancement (BPE) (n=3), or to evaluate FGT, BPE and lesion-level 

segmentation (n=6).

A broad range of automated segmentation techniques were used (Table 3). The most 

commonly used method was statistical (n=5). Eight studies used more than one method. 

Most studies compared automated segmentation to manually drawn contours as ground 

truth. The average number of exams used for training and validation was 90 (range = 20–

400). The most common validation metric was the DSC (n=16).

Adipose Tissue Segmentation

20 studies met the inclusion criteria (Appendix B6). CT was used in 12 (60%) and MRI in 8 

(40%). The following examinations were used: abdominal CT (n=5), abdominal MRI (n=4), 

thoracic CT (n=8), thigh CT (n=1), thigh MRI (n=2), calf MRI (n=1), and whole body MRI 

(n=1). Two studies segmented multiple regions (e.g., abdomen and thorax, thigh and calf). 

Most studies performed segmentation of tissue volumes (n=17) rather than tissue cross-

sectional area (n=3).

Abdominal visceral and subcutaneous adipose tissue were most commonly segmented (n=8), 

followed by epicardial or pericardial adipose tissue (n=7), thigh intermuscular adipose tissue 

and subcutaneous adipose tissue (n=2), and brown supraclavicular adipose tissue (n=1).

Atlas-based and deformable model techniques were used equally (Table 3). However, hybrid 

techniques were most common (n=12). In all studies, manual segmentations were used as 

the reference standard. The average number of exams used for training and validation was 

100 (range = 20–530). The most common validation metric used was the DSC (n=13).

Automated segmentation techniques were used in normal subjects as well as in subjects with 

various diseases or conditions including: obesity, diabetes, metabolic syndrome, and 

osteoarthritis. Some studies focused only on normal subjects.

Discussion

This is the first systematic review of automated segmentation that includes CT and MRI 

across all anatomic regions. The most significant finding of this review is that there is wide 

variability in approaches to automated segmentation, regardless of anatomic region or image 

modality. Another finding is that automated segmentation of the brain is far ahead of other 

organs and tissues. In fact, 79 studies on neuro-segmentation were excluded from our review 
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because they applied existing automated segmentation methods to clinical research, rather 

than developing new methods. Similarly, there were more studies of thoracic, abdominal, 

and musculoskeletal segmentation compared to breast and adipose tissue segmentation.

Our results should be interpreted in the context of prior literature on the three generations of 

medical image segmentation [20]. Fully automated methods often combine multiple 

segmentation operations and incorporate at least one second- or third-generation approach.

First-generation approaches use pixel intensities or connectedness to apply basic heuristics 

or one-time operations to segment the image. These include edge tracing (i.e., boundary 

segmentation) and thresholding and region growing (e.g., volume segmentation) [21].

Second-generation methods incorporate uncertainty models and optimization methods which 

typically avoid heuristics. These include approaches to segment volumes (i.e., statistical 

pattern recognition, c-means clustering), boundaries (i.e., deformable models), or other (i.e., 

graph search, neural networks, multiresolution methods) [20]. They commonly use 

classifiers for separating clusters, including k-nearest neighbors (k-NN), artificial neural 

networks (ANN), support vector machines (SVM), and random forest classifiers. Statistical 

pattern recognition is used to assign pixels a probability of belonging to a tissue class based 

on pixel intensity and/or texture classifiers (e.g., Bayesian, k-NN, maximum likelihood, 

expectation-maximization, Markov random field) [22–26]. In c-means clustering (including 

fuzzy c-means clustering), pixels are grouped into a known number of clusters based on 

pixel intensity or local texture by minimizing an objective function [22]. Deformable models 

(e.g., active contours, active surfaces, snakes, level-sets) can conform to image features over 

time under the influence of internal and external forces to achieve a local optimum [26]. 

Graph search techniques treat pixels as interconnected nodes in a graph, where graph cuts 

between the interconnected nodes are defined based on minimization of a cost function to 

produce a globally optimized segmentation [27]. ANNs learn from training data to classify 

pixels into predefined classes. In multiresolution segmentation, a high-to-low resolution 

image stack is created by iteratively blurring and down sampling the original image; pixels 

with similar features between the stacked images are linked as belonging to the same object 

to perform the segmentation [28].

Third-generation approaches incorporate higher-level knowledge such as a priori 
information, expert defined rules, and models of the shape or appearance of the target object, 

and include methods to segment volumes (e.g., atlas-based segmentation, rule-based 

segmentation) and/or boundaries (e.g., shape models, appearance models) [20]. Atlases of 

segmented images can be mapped to an unsegmented image, with the atlas supplying 

probabilities for statistical pattern recognition based on anatomical, shape, size, and textural 

features [29]. Segmentation can incorporate automated rule logic based on anatomy, 

intensity, texture, and/or shape [20]. Statistical shape models, such as the active shape model 

[30], are an extension of deformable models, where deformation is restricted by statistical 

bounds of the model. Active appearance models incorporate an “image patch” of shape plus 

intensity data into the statistical model to segment an object [31].
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Despite this hierarchy, there is no consensus on how to categorize various segmentation 

methods. For example: Withey and Koles [20] categorize based on first-, second-, and third-

generation; García-Lorenzo et al. [32] categorize based on supervised and unsupervised 

approaches; Danelakis et al. [33] categorize into: data-driven, feature-based, atlas-based, 

statistical, tissue-based, and lesion-based. For the purposes of our systematic review, we 

divided the segmentation techniques into: thresholding, statistical, deformable model, graph 

search, multi-resolution, atlas-based, texture, neural network, and hybrid. Our aim was to 

use a classification system that would be useful for readers who are new to the field.

Our review found a wide variability among automated segmentation methods: 1) statistical, 

atlas-based, and neural network methods were especially common in neuro-segmentation; 2) 

statistical, thresholding, and deformable model methods were most common in thoracic 

segmentation, 3) deformable model, atlas-based, and neural network methods were common 

in abdominal segmentation, and 4) hybrid models, employing a combination of techniques, 

were most common for musculoskeletal, breast, and adipose tissue segmentation. Although 

many different validation metrics were used to evaluate automated segmentation of various 

organs and tissues, the most common was the Dice similarity coefficient (DSC).

Neuroimaging Segmentation

Segmentation of the brain and spine using MRI poses particular challenges owing to 

variability in acquisition parameters including slice thickness, resolution, matrix size, TR, 

and TE. To minimize this variability, preprocessing of images is critical. Preprocessing 

typically includes registration of images to a common template (i.e., Montreal Neurologic 

Institute) or co-registration of images, skull stripping, signal intensity normalization, noise 

reduction, and bias or field inhomogeneity correction [34].

In this systematic review, we did not discuss the advantages or disadvantages of various 

segmentation techniques as this is addressed in detail in prior narrative reviews [35]. It is 

difficult to compare different segmentation techniques as there is no consensus regarding 

optimal evaluation metrics or standardization of databases. This may be mitigated by the use 

of challenge datasets and development of guidelines for ML researchers [5].

Automated image segmentation relies increasing on ML, including U-net and other 

convolutional neural networks [36,37]. However ML techniques require a large amount of 

annotated data for training, validation, and testing. Currently, there are not many large 

datasets that can be used to develop ML approaches to segmentation. Because there is 

heterogeneity in MRI protocols as well as differences in tissue contrast that vary with field-

strength and MRI vendor, a segmentation technique for one MRI protocol may not be 

applicable for different protocols.

There have been two prior systematic reviews of segmentation using brain MRI [38,39] and 

one systematic review on using spine MRI [40]. Dicke et al. [38] performed a systematic 

review of brain MRI focusing on the creation of atlases for segmentation of normal brains 

and included 66 studies from October 2010 to August 2016. Cover et al. [39] performed a 

systematic review focused on segmentation of the corpus-callosum and included 36 studies 

prior to March 2016. Rak and Tonnies [40] performed a review of spine segmentation and 98 
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studies but did not follow the PRISMA guidelines. Our systematic review follows the 

PRISMA guidelines and includes 145 studies using MRI and CT of the brain and spine.

Unlike the systematic reviews that have been few in number, conventional narrative reviews 

of neuro-segmentation have increased dramatically. Between 2013 and 2018, there were 12 

reviews of brain MRI [33,35,37,41–48], 3 of spinal cord MRI [49–51], 3 of brain CT [52–

54], and 2 of spine CT [55,56]. While these reviews provide valuable information on neuro-

segmentation techniques they do not provide the methodologic rigor of a systematic review 

and are subject to a selection bias.

Thoracic Segmentation

This systematic review revealed multiple methods for automated segmentation of the organs 

of the thorax using CT and MRI. As expected, more methods used CT, which allows more 

accurate evaluation of the lungs and airways. However, more than half the studies of the 

heart used MRI. While 16 studies focused on vascular segmentation, only 6 evaluated the 

coronary arteries.

In a prior review of machine learning segmentation Slomka et al. [57] reported that most 

coronary segmentation methods require some manual initialization. Another review by 

Moccia et al. [58] reported that vascular segmentation requires a variety of approaches partly 

because there is no single approach for different types of vessels and that pathologic vessels 

may require different approaches than normal vessels.

The most commonly used automatic segmentation techniques that were identified in this 

review are generally the same as those identified in other published reviews. In particular, 

for segmentation of the heart on MRI, deformable models were the most common 

techniques [59]. Automated segmentation of the cardiac chambers is particularly challenging 

owing to normal or pathologic deformation of the heart during the cardiac cycle [60]. The 

field is very active, with many automated cardiac segmentation methods presented in recent 

conferences and on preprint websites that have not yet reached peer-reviewed journals [61].

The datasets used to evaluate automated segmentation methods in the thorax are relatively 

small. This is likely because the ground-truth used to evaluate these methods is resource-

intensive and time-consuming to produce. Unlike in brain imaging, there are significantly 

fewer automated segmentation methods in the thorax that use public datasets.

Surprisingly, only 6% of the studies in our review used neural network approaches to 

automated segmentation in the thorax. Currently, these techniques are widely used for 

thoracic classification, but not segmentation. Since there is increasing number of studies 

using neural networks for pulmonary nodule segmentation [62,63], it is likely that the same 

methods will eventually be applied to other tissues in the thorax.

Abdominal Segmentation

The development of automated segmentation techniques for abdominal and pelvic organs 

lags behind other body regions, especially the brain. The major challenges include: 1) 

variability in the shape, size and position of the anatomical structures of interest, 2) poor 
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contrast between adjacent organs and surrounding tissues (edge detection), 3) motion 

artifacts that can cause image blurring, and 4) change in organ position relative to other fixed 

anatomical structures [64].

Despite these challenges, an accurate approach to automated segmentation and 

measurements of abdominopelvic organs is highly desirable for many clinical indications. 

For example, accurate preoperative liver volumetry is becoming standard of care prior to 

major hepatic resection or for partial living donor transplantation [65]. Manual and semi-

automated liver segmentation techniques are time-consuming and have high inter- and intra- 

reader variability. Accurate automated segmentation of kidneys is especially valuable when 

monitoring patients with autosomal dominant polycystic kidney disease [66]. Accurate 

segmentation of splenic volume aids in monitoring patients with infection and splenic 

diseases [67,68]. There are many other current clinical applications, including focal lesion 

detection in all abdominal organs, bowel segmentation for the detection of obstruction and 

inflammatory bowel disease, lymph node measurement, radiation treatment planning, and 

detection of aortoiliac atherosclerosis [12].

Common approaches to segmentation in abdominopelvic organs include detection of 

features, edges or intensities, strong or weak shape and/or location priors, thresholding, 

clustering methods, and deformable models with most automated segmentation techniques 

employing a combination of these techniques. Based on this systematic review, there are 

many automated segmentation techniques that can be applied to abdominal organs. However 

most of these have been validated in relatively small studies.

Direct comparison of the different approaches to automated segmentation is problematic as 

validation techniques vary from study to study. Challenges such as those sponsored by the 

MICCAI conferences and online publicly available datasets, will certainly foster the 

development of many more automated segmentation techniques for the abdomen.

Musculoskeletal Segmentation

Studies of automated segmentation of bone commonly use CT, owing to the high image 

contrast between bone and soft tissue structures [69]. Studies using MRI are increasingly 

common for the evaluation of joints and soft tissues [70]. Although many studies use a 

combination of methods to automatically segment bone, the deformable model, atlas-based, 

statistical, and graph search methods are the typical components of these automated 

algorithms. Many approaches also incorporate first-generation segmentation methods such 

as thresholding, region growing, edge detection, and edge tracing into the segmentation 

framework.

Some studies have compared the performance of different segmentation methods in the same 

cohort of healthy and diseased subjects from public datasets such as SpineWeb [71]. Recent 

studies of six automated vertebral segmentation methods reported DSCs of 0.87–0.95 for 

normal spines and 0.54–0.90 for osteoporotic spines [72,73].

Studies that automatically segmented intervertebral discs most commonly use deformable 

models and statistical segmentation approaches. Recent segmentation competition challenge 
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reported on eight automated segmentation algorithms with DSC ranging from 0.82–0.92 

[74].

Automated segmentation of musculoskeletal tissues has also benefited from ML. Neural 

networks [75] can now automatically segment joint tissues in approximately 5 seconds, 

while maintaining high DSCs.

The most common techniques used to segment cartilage and muscle include random forests, 

nearest neighbors, SVM, and k-mean clustering. When comparing different ML approaches, 

the results may vary based on study population. For MRI of muscle, Gadermayr et al. [76] 

reported that a basic thresholding approach was often sufficient, but shape based graph cuts 

produced the best results in patients with severe fatty infiltration of muscle. Many recent 

studies incorporate multiple models, such as combining localized classification via 2D and 

3D convolutional neural networks (CNNs) with statistical anatomical knowledge via 3D 

statistical shape models [77].

Many studies have focused on automated articular cartilage segmentation on knee MRI 

using large publicly available datasets including the Osteoarthritis Initiative (OAI) and the 

MICCAI grand challenge “Segmentation of Knee Images 2010”. Recent studies used voxel-

based relaxometry to obtain fully automated analysis of cartilage composition using T1-rho 

MRI [78]. Although early studies focused on only one anatomic structure (e.g., cartilage), it 

is increasingly common to segment multiple structures (e.g., bone, cartilage, meniscus). For 

example, a fully automated segmentation pipeline has been constructed for evaluation of 

both morphological and quantitative knee MRI data by combining a deep CNN and three 

dimensional (3D) simplex deformable modeling [79].

For skeletal muscle segmentation, most studies still use manual or semi-automated 

techniques, but this is beginning to change [80–84]. With MRI, one proposed strategy is 

automated quantification of whole-body muscle volumes. Karlsson et al. [81] developed an 

automated segmentation method based on multiatlas segmentation of intensity corrected 

water-fat separated image volumes, reporting high accuracy and reproducibility. Yang et al. 

[82] segmented muscle on a single image at the mid femur level (rather than tissue volumes), 

reporting shorter scan times and diminished post-processing computational costs.

The use of automated segmentation of muscle using CT is also increasing [11]. Lee et al. 

[82] used a deep learning system to automatically segment the muscle cross-sectional area of 

CT slices at the L3 vertebral body level, with an average of less than 3.7% difference 

between predicted and ground truth muscle cross-sectional area, while reducing 

segmentation time from 30 minutes to 0.17 seconds.. Current challenges for automated 

segmentation of muscle using CT include a tendency to underestimate muscle area in 

general, while overestimating muscle area in subjects with edematous fat [83].

Breast Segmentation

Breast segmentation on MRI consists of three separate challenges: 1) distinguishing breast-

chest wall and breast-air boundaries, 2) separating breast FGT from fat, and 3) 

distinguishing abnormal breast enhancement from normal BPE.
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There are unique challenges to breast segmentation that have limited large-scale application 

to date. Although Dixon-based sequences and other fat-specific sequences offer superior fat 

and glandular tissue segmentation, these are not routinely incorporated into most clinical 

breast MRI protocols. In comparison, T1-weighted pre- and post-contrast acquisitions are 

essential to diagnostic breast MRI but demonstrate B0 and B1 inhomogeneity across the 

parenchyma at the breast-air boundary and across the coil gradient [84]. Without appropriate 

correction of the varying enhancement caused by sources of inhomogeneity, image-

processing methods can be inaccurate. Finally, the routine use of fat suppression can 

introduce additional artifact that must be corrected. Although breast MRI can be performed 

at both 1.5T and 3.0T, there is no evidence that segmentation differs between these field 

strengths.

There are two prior systematic reviews of breast segmentation. Wang et al. [85] reviewed 

breast and chest segmentation studies but did not include lesion-level automated 

segmentation studies or ML studies. Codari et al. [86] reviewed only ML studies. In 

contrast, our review includes fully automated breast segmentation examining FGT, BPE and 

lesion segmentation approaches.

In developing approaches for fully automated breast segmentation, hybrid approaches, 

incorporating both statistical and atlas-based methods are most common. For example, Wu 

et al. [87] used a fuzzy C means atlas-based method on sagittal T1W fat-suppressed imaging 

in 60 breast MRIs, achieving a Pearson correlation coefficient of r = 0.92 for FGT% and a 

DSC of 0.67.. Similar template based approaches using fat-water separation have 

demonstrated high reliability for FGT separation [88,89]. However, fat-water separation 

techniques are not commonly used in routine clinical breast imaging. Statistical (particularly 

fuzzy c-means) and thresholding techniques have also shown promise in FGT segmentation. 

However, ML approaches will likely predominate in the future. Recent studies of SVM-

based approaches and U-net approaches have resulted in higher DSCs and relatively fast 

processing times compared to more traditional approaches [90,91].

Lesion segmentation on breast MRI is particularly challenging. Deep learning techniques 

show the most promise in automatic lesion segmentation. Dalmiş et al. [92] used a 2D U-net 

CNN to evaluate 361 cases using early post-contrast images to create a CADe system with a 

computation performance metric (CPM) of 0.6429, significantly higher than the CPM value 

of 0.5325 obtained by a previous CADe system utilizing a full dynamic breast MRI 

(p=0.008).

Strengths and Limitations

Our systematic review has several strengths and limitations. A major strength is that we used 

a comprehensive search strategy using three databases (PubMed, Embase, and Cochrane), 

yielding 7770 citations reviewed by sub-specialty experts using strict exclusion and 

inclusion criteria, resulting in 408 studies. Another strength is that we included organs and 

tissues of the entire body, rather than one region, and that we included both CT and MRI. 

One limitation is that we did not perform a meta-analysis to determine which automated 

method is most valuable. However, due to wide variability in the segmentation methods as 

well as the approaches to their validation, such meta-analysis is currently not feasible.
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Future Directions—Future studies of automated image segmentation will undoubtedly 

involve methodological innovations as well as new clinical applications.

Most innovative methods at this time appear to involve deep learning (DL). DL is a subfield 

of machine learning (ML), which in turn is a subfield of artificial intelligence (AI). DL is 

based on artificial neural networks. Neural networks are machine learning devices modeled 

after the human brain. DL employs neural networks, consisting of layers of nonlinear 

processing units that successively process the numerical input data. A single processing unit 

(the artificial neuron) typically receives multiple inputs, combines them as a weighted sum, 

and applies to the results some form of a nonlinear transformation [93, 94]. Through 

training, the network learns the weights required to achieve its task [93, 94]. Especially well-

suited to image analysis are the convolutional neural networks (CNNs). These networks use 

convolution kernels (i.e., filters) that are shared among all neurons in the same layer, 

drastically reducing the number of parameters in the network and allowing training with a 

relatively smaller number of datasets. CNNs have been successfully applied to image 

processing, segmentation, classification, and prediction [95]. U-net is a CNN that consists of 

encoding and decoding stages and is particularly well suited for image segmentation [96]. 

Recently, generative adversarial networks have also been gaining popularity [97, 98]. One 

major hurdle for further development of DL methods is the need for large datasets of 

annotated images for training. However, increasing availability of publicly available image 

databases such as ADNI, LONI, OASIS, should improve access to training images. 

Importantly, all DL methods require significant computational power. Increased availability 

of graphical processing units as well as open source frameworks such as Apache MXNet, 

PyTorch, Caffe, and Chainer has provided the needed computational resources to allow for 

increased application of DL methods to CT and MR image segmentation.

Future clinical applications of DL methods may include triaging patients with potentially 

life-threatening conditions or reducing common interpretive errors [12]. Future research 

applications will include large-scale integration of clinical, genomic, proteomic, 

metabolomic, and radiomic data as part of epidemiological studies as well as pragmatic 

trials [10].

Conclusion

We conducted a systematic review that includes automated segmentation using CT and MRI 

of the entire body. Our findings have implications for both research and clinical practice. 

Automated CT and MR image segmentation allows for an objective evaluation of diseases 

by identifying quantitative imaging markers that are widely used in research. Major 

challenges to implementation of automated segmentation tools to clinical practice remain. 

For all the anatomic regions evaluated in our study, there is continuing need for further 

validation studies across different centers, scanner platforms, and acquisition parameters. 

Increasing use of machine learning approaches has accelerated the development of robust 

automated segmentation techniques. For this field to advance, it is imperative that 

radiologists who are the custodians of medical imaging data help create larger databases. 

More studies on larger populations are needed to validate automated segmentation 

techniques. Publicly available databases can provide access to large number of images. A list 
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of these databases can be found at (https://wiki.cancerimagingarchive.net/display/Public/

RIDER+NEURO+MRI; https://en.wikipedia.org/wiki/List_of_neuroscience_databases; 

http://www.aylward.org/notes/open-access-medical-image-repositories). Eventually, 

automated segmentation techniques will be used in routine clinical practice to help improve 

patient care. Radiologists, biomedical engineers, and medical physicists will play a key role 

in transforming clinical radiology practice from being focused on qualitative image 

interpretation to a more objective quantitative identification of disease markers.
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Appendix A1: Initial Search Strategy

(“Automatic”[tw] OR “Automated”[tw]) AND (((“Image Analysis”[tw] OR “Image 

Analytics”[tw]) OR (“Segmentation”[tw] OR “Segmentations”[tw]) OR (“Volumetric”[tw] 

OR “Volumetrics”[tw])) OR ((“Neural Networks”[tw] OR “Neural Network”[tw] OR 

“Neural Network Models”[tw] OR “Neural Network Model”[tw] OR “Connectionist Models 

“[tw] OR “Connectionist Model”[tw] OR “Perceptrons”[tw] OR “Perceptron”[tw] OR 

“Convolutional Neural Network”[tw] OR “Convolutional Neural Networks”[tw] OR “CNN”

[tw] OR “CNNs”[tw]) OR (“Machine Learning”[tw]) OR (“Automated Pattern Recognition”

[tw] OR “Pattern Recognition System”[tw] OR “Pattern Recognition Systems”[tw]) OR 

(“Computer-Assisted Image Processing”[tw] OR “Computer-Aided Image Processing”[tw] 

OR “Computer-Assisted Image Analysis”[tw] OR “Computer-Assisted Image Analyses”

[tw] OR “Computer-Aided Image Analysis”[tw] OR “Computer-Generated Image Analysis”

[tw] OR “Image Reconstruction”[tw] OR “Image Reconstructions”[tw]) OR (“Finite 

Element Analysis”[tw] OR “Finite Element Analyses”[tw] OR “Finite Element Method”[tw] 

OR “Finite Element Methods”[tw] OR “FEM”[tw]) OR (“Cluster Analysis”[tw] OR 

“Cluster Analyses”[tw] OR “Clustering”[tw] OR “Clusterings”[tw] OR “Disease 

Clustering”[tw]) OR (“Principal Component Analyses”[tw])) OR (“Neural Networks 

(Computer)”[majr:noexp] OR “Machine Learning”[majr:noexp] OR “Pattern Recognition, 

Automated”[majr:noexp] OR “Image Processing, Computer-Assisted”[majr:noexp] OR 

“Finite Element Analysis”[majr:noexp] OR “Cluster Analysis”[majr:noexp] OR “Principal 

Component Analysis “[majr:noexp])) AND (“Cardiac-Gated Imaging Techniques”

[mesh:noexp] OR “Cardiac-Gated Imaging Techniques”[tw] OR “Radiographic Image 

Enhancement”[mesh:noexp] OR “Radiographic Image Enhancement”[tw] OR 

“Radiography, Dual-Energy Scanned Projection”[mesh:noexp] OR “Dual-Energy Scanned 

Projection Radiography”[tw] OR “Tomography, X-Ray Computed”[mesh:noexp] OR “X-

Ray Computed Tomography”[tw] OR “Xray Computed Tomography”[tw] OR “Computed 

X-Ray Tomography”[tw] OR “X-Ray Computerized Tomography”[tw] OR “Computerized 

X-Ray Tomography”[tw] OR “CT X-Ray”[tw] OR “CT Xray”[tw] OR “CT X-Rays”[tw] 

OR “X-Ray CT Scan”[tw] OR “X-Ray CT Scans”[tw] OR “X-Ray Computer Assisted 

Tomography”[tw] OR “X-Ray Computer Aided Tomography”[tw] OR “X-Ray CAT Scan”

[tw] OR “Transmission Computed Tomography”[tw] OR “Transmission CT”[tw] OR “Cine 

Computed Tomography”[tw] OR “Cine Computerized Tomography”[tw] OR “Cine CT”[tw] 
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OR “Cine CTs”[tw] OR “Electron Beam Computed Tomography”[tw] OR “Electron Beam 

CT”[tw] OR “Electron Beam Tomography”[tw] OR “Colonography, Computed 

Tomographic”[mesh:noexp] OR “Computed Tomographic Colonography”[tw] OR “CT 

Colonography”[tw] OR “Colonography, CT”[tw] OR “Virtual Colonoscopy”[tw] OR 

“Virtual Colonoscopies”[tw] OR “Four-Dimensional Computed Tomography”[mesh:noexp] 

OR “Four-Dimensional Computed Tomography”[tw] OR “Four-Dimensional Computerized 

Tomography”[tw] OR “Four-Dimensional CT”[tw] OR “4-D CT”[tw] OR “4D Computed 

Tomography”[tw] OR “4D CT”[tw] OR “Four-Dimensional Computed Tomography Scan”

[tw] OR “Four-Dimensional Computed Tomography Scans”[tw] OR “Four-Dimensional CT 

Scan”[tw] OR “Four-Dimensional CT Scans”[tw] OR “4-D CT Scan”[tw] OR “4D CT 

Scan”[tw] OR “4D CT Scans”[tw] OR “Tomography, Spiral Computed”[mesh:noexp] OR 

“Spiral Computed Tomography”[tw] OR “Spiral Computerized Tomography”[tw] OR 

“Spiral Computer-Assisted Tomography”[tw] OR “Spiral CT”[tw] OR “Spiral CTs”[tw] OR 

“Spiral CT Scan”[tw] OR “Spiral CT Scans”[tw] OR “Spiral CAT Scan”[tw] OR “Spiral 

CAT Scans”[tw] OR “Helical Computed Tomography”[tw] OR “Helical Computerized 

Tomography”[tw] OR “Helical CT”[tw] OR “Helical CTs”[tw] OR “Helical CT Scan”[tw] 

OR “Helical CT Scans”[tw] OR “Multidetector Computed Tomography”[mesh:noexp] OR 

“Multidetector Computed Tomography”[tw] OR “Multidetector Computerized 

Tomography”[tw] OR “Multisection Computed Tomography”[tw] OR “Multislice 

Computed Tomography”[tw] OR “Multislice Computerized Tomography”[tw] OR “Multi-

detectorRow Computed Tomography”[tw] OR “Multidetector-Row Computerized 

Tomography”[tw] OR “Multidetector CT”[tw] OR “Multisection CT”[tw] OR “Multislice 

CT”[tw] OR “Multislice CTs”[tw] OR “Multidetector-Row CT”[tw] OR “Radiographic 

Image Interpretation, Computer-Assisted”[mesh:noexp] OR “Radiographic Image 

Interpretation, Computer-Assisted”[tw] OR “Computer-Assisted Radiographic Image 

Interpretation”[tw] OR “Computer-Aided Radiographic Image Interpretation”[tw] OR 

“Magnetic Resonance Imaging”[mesh:noexp] OR “Magnetic Resonance Imaging”[tw] OR 

“Magnetic Resonance Imagings”[tw] OR “MR Imaging”[tw] OR “MR Imagings”[tw] OR 

“MRI”[tw] OR “MRIs”[tw] OR “Spin Echo Imaging”[tw] OR “Magnetization Transfer 

Contrast Imaging”[tw] OR “Steady-State Free Precession MR Imaging”[tw] OR “Steady-

State Free Precession MRI”[tw] OR “Magnetic Resonance Tomography”[tw] OR “Magnetic 

Resonance Tomographies”[tw] OR “MR Tomography”[tw] OR “MR Tomographies”[tw] 

OR “Nuclear Magnetic Resonance Tomography”[tw] OR “NMR Tomography”[tw] OR 

“Proton Spin Tomography”[tw] OR “Zeugmatography”[tw] OR “Magnetic Resonance 

Imaging Scan”[tw] OR “Magnetic Resonance Imaging Scans”[tw] OR “MR Imaging Scan”

[tw] OR “MR Imaging Scans”[tw] OR “MRI Scan”[tw] OR “MRI Scans”[tw] OR 

“Cholangiopancreatography, Magnetic Resonance”[mesh:noexp] OR “Magnetic Resonance 

Cholangiopancreatography”[tw] OR “Magnetic Resonance Cholangiopancreatographies”

[tw] OR “MR Cholangiopancreatography”[tw] OR “Echo-Planar Imaging”[mesh:noexp] OR 

“Echo-Planar Imaging”[tw] OR “Echoplanar Imaging”[tw] OR “Echo-Planar Magnetic 

Resonance Imaging”[tw] OR “Echoplanar Magnetic Resonance Imaging”[tw] OR “Echo-

Planar MR Imaging”[tw] OR “Echo-Planar MRI”[tw] OR “Echoplanar MRI”[tw] OR 

“Echoplanar MR Tomography”[tw] OR “Magnetic Resonance Angiography”[mesh:noexp] 

OR “Magnetic Resonance Angiography”[tw] OR “Magnetic Resonance Imaging 

Angiography”[tw] OR “MR Angiography”[tw] OR “MR Angiographies”[tw] OR “MRI 
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Angiography”[tw] OR “MRI Angiographies”[tw] OR “Magnetic Resonance Imaging, Cine”

[mesh:noexp] OR “Cine Magnetic Resonance Imaging”[tw] OR “Cine MR Imaging”[tw] 

OR “Cine MRI”[tw] OR “Cine MRIs”[tw] OR “Whole Body Imaging”[mesh:noexp] OR 

“Whole Body Imaging”[tw] OR “Whole Body Image”[tw] OR “Whole Body Images”[tw] 

OR “Whole Body Scanning”[tw] OR “Whole Body Scan”[tw] OR “Whole Body Scans”[tw] 

OR “Whole Body Screening”[tw] OR “Whole Body Screenings”[tw] OR “Whole Body 

Screen”[tw] OR “Computed Tomography”[tw] OR “Computed Tomographies”[tw] OR 

“Computerized Tomography”[tw] OR “Computerized Tomographies”[tw] OR “CT”[tw] OR 

“CTs”[tw] OR “Computed Tomography Imaging”[tw] OR “Computed Tomography 

Imagings”[tw] OR “Computerized Tomography Imaging”[tw] OR “CT Imaging”[tw] OR 

“CT Imagings”[tw] OR “Computed Tomography Image”[tw] OR “Computed Tomography 

Images”[tw] OR “Computerized Tomography Image”[tw] OR “Computerized Tomography 

Images”[tw] OR “CT Image”[tw] OR “CT Images”[tw] OR “Three-Dimensional Computed 

Tomography”[tw] OR “Three-Dimensional Computerized Tomography”[tw] OR “Three-

Dimensional CT”[tw] OR “3-D Computed Tomography”[tw] OR “3-D CT”[tw] OR “3D 

Computed Tomography”[tw] OR “3D CT”[tw] OR “Three-Dimensional Computed 

Tomography Scan”[tw] OR “Three-Dimensional Computed Tomography Scans”[tw] OR 

“3D Computed Tomography Scan”[tw] OR “Three-Dimensional CT Scan”[tw] OR “Three-

Dimensional CT Scans”[tw] OR “3-D CT Scan”[tw] OR “3-D CT Scans”[tw] OR “3D CT 

Scan”[tw] OR “3D CT Scans”[tw] OR “Three-Dimensional CAT Scan”[tw] OR “Cross-

Sectional Imaging”[tw] OR “Cross-Sectional Diagnostic Imaging”[tw] OR “Cross-Sectional 

Computed Tomography”[tw] OR “Cross-Sectional Computerized Tomography”[tw] OR 

“Cross-Sectional CT”[tw] OR “Cross-Sectional Magnetic Resonance Imaging”[tw] OR 

“Cross-Sectional MRI”[tw]) AND (“Cardiac-Gated Imaging Techniques”[majr:noexp] OR 

“Cardiac-Gated Imaging Techniques”[tw] OR “Radiographic Image Enhancement”

[majr:noexp] OR “Radiographic Image Enhancement”[tw] OR “Radiography, Dual-Energy 

Scanned Projection”[majr:noexp] OR “Dual-Energy Scanned Projection Radiography”[tw] 

OR “Tomography, X-Ray Computed”[majr:noexp] OR “X-Ray Computed Tomography”[tw] 

OR “Xray Computed Tomography”[tw] OR “Computed X-Ray Tomography”[tw] OR “X-

Ray Computerized Tomography”[tw] OR “Computerized X-Ray Tomography”[tw] OR “CT 

X-Ray”[tw] OR “CT Xray”[tw] OR “CT X-Rays”[tw] OR “X-Ray CT Scan”[tw] OR “X-

Ray CT Scans”[tw] OR “X-Ray Computer Assisted Tomography”[tw] OR “X-Ray 

Computer Aided Tomography”[tw] OR “X-Ray CAT Scan”[tw] OR “Transmission 

Computed Tomography”[tw] OR “Transmission CT”[tw] OR “Cine Computed 

Tomography”[tw] OR “Cine Computerized Tomography”[tw] OR “Cine CT”[tw] OR “Cine 

CTs”[tw] OR “Electron Beam Computed Tomography”[tw] OR “Electron Beam CT”[tw] 

OR “Electron Beam Tomography”[tw] OR “Colonography, Computed Tomographic”

[majr:noexp] OR “Computed Tomographic Colonography”[tw] OR “CT Colonography”[tw] 

OR “Colonography, CT”[tw] OR “Virtual Colonoscopy”[tw] OR “Virtual Colonoscopies”

[tw] OR “Four-Dimensional Computed Tomography”[majr:noexp] OR “Four-Dimensional 

Computed Tomography”[tw] OR “Four-Dimensional Computerized Tomography”[tw] OR 

“Four-Dimensional CT”[tw] OR “4-D CT”[tw] OR “4D Computed Tomography”[tw] OR 

“4D CT”[tw] OR “Four-Dimensional Computed Tomography Scan”[tw] OR “Four-

Dimensional Computed Tomography Scans”[tw] OR “Four-Dimensional CT Scan”[tw] OR 

“Four-Dimensional CT Scans”[tw] OR “4-D CT Scan”[tw] OR “4D CT Scan”[tw] OR “4D 
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CT Scans”[tw] OR “Tomography, Spiral Computed”[majr:noexp] OR “Spiral Computed 

Tomography”[tw] OR “Spiral Computerized Tomography”[tw] OR “Spiral Computer-

Assisted Tomography”[tw] OR “Spiral CT”[tw] OR “Spiral CTs”[tw] OR “Spiral CT Scan”

[tw] OR “Spiral CT Scans”[tw] OR “Spiral CAT Scan”[tw] OR “Spiral CAT Scans”[tw] OR 

“Helical Computed Tomography”[tw] OR “Helical Computerized Tomography”[tw] OR 

“Helical CT”[tw] OR “Helical CTs”[tw] OR “Helical CT Scan”[tw] OR “Helical CT Scans”

[tw] OR “Multidetector Computed Tomography”[majr:noexp] OR “Multidetector Computed 

Tomography”[tw] OR “Multidetector Computerized Tomography”[tw] OR “Multisection 

Computed Tomography”[tw] OR “Multislice Computed Tomography”[tw] OR “Multislice 

Computerized Tomography”[tw] OR “Multidetector-Row Computed Tomography”[tw] OR 

“Multidetector-Row Computerized Tomography”[tw] OR “Multidetector CT”[tw] OR 

“Multisection CT”[tw] OR “Multislice CT”[tw] OR “Multislice CTs”[tw] OR 

“Multidetector-Row CT”[tw] OR “Radiographic Image Interpretation, Computer-Assisted”

[majr:noexp] OR “Radiographic Image Interpretation, Computer-Assisted”[tw] OR 

“Computer-Assisted Radiographic Image Interpretation”[tw] OR “Computer-Aided 

Radiographic Image Interpretation”[tw] OR “Magnetic Resonance Imaging”[majr:noexp] 

OR “Magnetic Resonance Imaging”[tw] OR “Magnetic Resonance Imagings”[tw] OR “MR 

Imaging”[tw] OR “MR Imagings”[tw] OR “MRI”[tw] OR “MRIs”[tw] OR “Spin Echo 

Imaging”[tw] OR “Magnetization Transfer Contrast Imaging”[tw] OR “Steady-State Free 

Precession MR Imaging”[tw] OR “Steady-State Free Precession MRI”[tw] OR “Magnetic 

Resonance Tomography”[tw] OR “Magnetic Resonance Tomographies”[tw] OR “MR 

Tomography”[tw] OR “MR Tomographies”[tw] OR “Nuclear Magnetic Resonance 

Tomography”[tw] OR “NMR Tomography”[tw] OR “Proton Spin Tomography”[tw] OR 

“Zeugmatography”[tw] OR “Magnetic Resonance Imaging Scan”[tw] OR “Magnetic 

Resonance Imaging Scans”[tw] OR “MR Imaging Scan”[tw] OR “MR Imaging Scans”[tw] 

OR “MRI Scan”[tw] OR “MRI Scans”[tw] OR “Cholangiopancreatography, Magnetic 

Resonance”[majr:noexp] OR “Magnetic Resonance Cholangiopancreatography”[tw] OR 

“Magnetic Resonance Cholangiopancreatographies”[tw] OR “MR 

Cholangiopancreatography”[tw] OR “Echo-Planar Imaging”[majr:noexp] OR “Echo-Planar 

Imaging”[tw] OR “Echoplanar Imaging”[tw] OR “Echo-Planar Magnetic Resonance 

Imaging”[tw] OR “Echoplanar Magnetic Resonance Imaging”[tw] OR “Echo-Planar MR 

Imaging”[tw] OR “Echo-Planar MRI”[tw] OR “Echoplanar MRI”[tw] OR “Echoplanar MR 

Tomography”[tw] OR “Magnetic Resonance Angiography”[majr:noexp] OR “Magnetic 

Resonance Angiography”[tw] OR “Magnetic Resonance Imaging Angiography”[tw] OR 

“MR Angiography”[tw] OR “MR Angiographies”[tw] OR “MRI Angiography”[tw] OR 

“MRI Angiographies”[tw] OR “Magnetic Resonance Imaging, Cine”[majr:noexp] OR “Cine 

Magnetic Resonance Imaging”[tw] OR “Cine MR Imaging”[tw] OR “Cine MRI”[tw] OR 

“Cine MRIs”[tw] OR “Whole Body Imaging”[majr:noexp] OR “Whole Body Imaging”[tw] 

OR “Whole Body Image”[tw] OR “Whole Body Images”[tw] OR “Whole Body Scanning”

[tw] OR “Whole Body Scan”[tw] OR “Whole Body Scans”[tw] OR “Whole Body 

Screening”[tw] OR “Whole Body Screenings”[tw] OR “Whole Body Screen”[tw] OR 

“Computed Tomography”[tw] OR “Computed Tomographies”[tw] OR “Computerized 

Tomography”[tw] OR “Computerized Tomographies”[tw] OR “CT”[tw] OR “CTs”[tw] OR 

“Computed Tomography Imaging”[tw] OR “Computed Tomography Imagings”[tw] OR 

“Computerized Tomography Imaging”[tw] OR “CT Imaging”[tw] OR “CT Imagings”[tw] 
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OR “Computed Tomography Image”[tw] OR “Computed Tomography Images”[tw] OR 

“Computerized Tomography Image”[tw] OR “Computerized Tomography Images”[tw] OR 

“CT Image”[tw] OR “CT Images”[tw] OR “Three-Dimensional Computed Tomography”

[tw] OR “Three-Dimensional Computerized Tomography”[tw] OR “Three-Dimensional 

CT”[tw] OR “3-D Computed Tomography”[tw] OR “3-D CT”[tw] OR “3D Computed 

Tomography”[tw] OR “3D CT”[tw] OR “Three-Dimensional Computed Tomography Scan”

[tw] OR “Three-Dimensional Computed Tomography Scans”[tw] OR “3D Computed 

Tomography Scan”[tw] OR “Three-Dimensional CT Scan”[tw] OR “Three-Dimensional CT 

Scans”[tw] OR “3-D CT Scan”[tw] OR “3-D CT Scans”[tw] OR “3D CT Scan”[tw] OR 

“3D CT Scans”[tw] OR “Three-Dimensional CAT Scan”[tw] OR “Cross-Sectional Imaging”

[tw] OR “Cross-Sectional Diagnostic Imaging”[tw] OR “Cross-Sectional Computed 

Tomography”[tw] OR “Cross-Sectional Computerized Tomography”[tw] OR “Cross-

Sectional CT”[tw] OR “Cross-Sectional Magnetic Resonance Imaging”[tw] OR “Cross-

Sectional MRI”[tw]) NOT (“Animals”[mh] NOT “Humans”[mh]) AND (“2013/01/23”

[PDat] : “2018/01/23”)

Appendix A2: Secondary Search Strategy

(“tomography, x-ray computed”[MeSH Terms] OR (“tomography”[All Fields] AND “x-ray”

[All Fields] AND “computed”[All Fields]) OR “x-ray computed tomography”[All Fields] 

OR (“computed”[All Fields] AND “tomography”[All Fields]) OR “computed tomography”

[All Fields])) OR ((“magnetic resonance imaging”[MeSH Terms] OR (“magnetic”[All 

Fields] AND “resonance”[All Fields] AND “imaging”[All Fields]) OR “magnetic resonance 

imaging”[All Fields] OR “mri”[All Fields])) AND ((“tissue segmentation”[All fields] OR 

“tissue classification”[All fields] OR “machine learning”[All fields] OR “volumetry”[All 

fields] OR “neural networks”[All fields] OR “segmentation”[All fields]) AND (“automatic”

[All Fields] OR “automated”[All Fields] OR “automatically”[All Fields]))
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Figure 1: 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow 

diagram showing identification, screening, eligibility, and inclusion of articles.
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Table 1:

Exclusions during sub-specialty review

Reason for Exclusion Neuro n=237 Thoracic n=67 Abd n=40 MSK n=63 Breast n=20 Adipose n=13

Sample size < 20 41 26 20 14 4 7

Not fully automated 5 5 6 7 1 3

Classification without segmentation 0 1 3 7 4 2

Insufficient detail on segmentation method 10 0 1 9 0 0

Application of existing methods 79 0 0 0 3 0

Conference abstract 58 8 0 14 5 1

Full text not available 5 7 1 6 0 0

Outside the scope 13 4 7 0 0 0

Other exclusions 26 16 2 6 3 0
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Table 2:

Classification of segmentation methods

Method Segmentation sub-categories

Thresholding
Intensity

Adaptive

Statistical

Statistical pattern recognition

Mixture model, k-nearest neighbor classifiers, Bayesian classifiers

Expectation-maximization, Markov random field, iterative procedure

Prior information modeling

C-means clustering, fuzzy c-means clustering, random forests

Deformable model

Active contour, active surface, active shape, snake, level-set

Statistical shape

Appearance model

Graph search

Dynamic programming

Graph cut

Watershed

Multi-resolution Scale reduction

Atlas-based
Single atlas

Multi-atlas

Texture analysis Neighboring voxel relationships (intensity, gradient, entropy, etc.)

Neural network

Convolutional neural networks (CNN)

Multi-class CNN

Multi-scale CNN

Visual geometry group (VGG)

Adversarial network

Deep learning

Deep belief network

Hybrid More than one method listed above
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Table 3:

Automated segmentation methods by anatomic region

Segmentation Method Neuro n=145 Thoracic n=78 Abd n=87 MSK n=58 Breast n=20 Adipose n=20

Thresholding 10 19 7 0 1 1

Statistical 59 15 7 4 5 0

Deformable model 6 24 14 13 2 3

Graph search 3 2 9 1 1 0

Multi-resolution 0 0 0 0 0 0

Atlas-based 38 8 19 6 0 3

Texture analysis 6 7 0 0 0 0

Neural network 19 5 14 4 3 1

Hybrid (combination of more than one 
method)

6 8 17 30 8 12
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