
Sociodemographic and behavioral determinants of serum 
concentrations of per- and polyfluoroalkyl substances in a 
community highly exposed to aqueous film-forming foam 
contaminants in drinking water.

Kelsey E. Barton1, Anne P. Starling1,2, Christopher P. Higgins3, Carrie McDonough3, 
Antonia M. Calafat4, John L. Adgate1

1Department of Environmental and Occupational Health, Colorado School of Public Health, 
University of Colorado, Anschutz Medical Campus, Aurora, CO, USA

2Department of Epidemiology, Colorado School of Public Health, University of Colorado, Anschutz 
Medical Campus, Aurora, CO, USA

3Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 
USA

4Centers for Disease Control and Prevention, National Center for Environmental Health, Atlanta, 
GA, USA

Abstract

Background: Per- and polyfluoroalkyl substances (PFAS) are a chemical class widely used in 

industrial and commercial applications because of their unique physical and chemical properties. 

Between 2013 and 2016 PFAS were detected in public water systems and private wells in El Paso 

County, Colorado. The contamination was likely due to aqueous film forming foams used at a 

nearby Air Force base.

Objective: To cross-sectionally describe the serum concentrations of PFAS in a highly exposed 

community, estimate associations with drinking water source, and explore potential demographic 

and behavioral predictors.

Methods: In June 2018, serum PFAS concentrations were quantified and questionnaires 

administered in 213 non-smoking adult (ages 19–93) participants residing in three affected water 
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districts. Eighteen PFAS were quantified and those detected in >50% of participants were 

analyzed: perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), 

perfluorooctanoate (PFOA), perfluorononanoate (PFNA) and perfluoroheptane sulfonate (PFHpS). 

Unadjusted associations were estimated between serum PFAS concentrations and several 

predictors, including water consumption, demographics, personal behaviors and employment. A 

multiple linear regression model estimated adjusted associations with smoking history.

Results: Study participants’ median PFHxS serum concentration (14.8 ng/mL) was 

approximately 12 times as high as the U.S. national average. Median serum concentrations for 

PFOS, PFOA, PFNA and PFHpS were 9.7 ng/mL, 3.0 ng/mL, 0.4 ng/mL and 0.2 ng/mL, 

respectively. Determinants of PFHxS serum concentrations were water district of residence, 

frequency of bottled water consumption, age, race/ethnicity, and smoking history. Determinants of 

serum concentrations for the other four PFAS evaluated included: water district of residence, 

bottled water consumption, age, sex, race/ethnicity, smoking history, and firefighter or military 

employment.

Conclusions: Determinants of serum concentrations for multiple PFAS, including PFHxS, 

included water district of residence and frequency of bottled water consumption. Participants’ 

dominant PFAS exposure route was likely consumption of PFAS-contaminated water, but certain 

demographic and behavioral characteristics also predicted serum concentrations.

Introduction:

Per- and polyfluoroalkyl substances (PFAS), a class of chemicals with unique physical and 

chemical properties, are widely used in industrial and commercial applications (Buck et al, 

2011). PFAS have been in widespread production and use since the 1950s and have become 

ubiquitous in human serum in industrialized countries (CDC 2019). Animal studies have 

demonstrated that PFAS are hepatotoxic, immunotoxic, tumorigenic, and may produce 

reproductive and developmental toxicity following exposure to pregnant females (Dewitt 

2012; Dewitt et al. 2009; Lau 2007). Studies of populations with higher-than-background 

environmental exposures (mostly via drinking water) and occupational exposures have been 

essential for comparing the toxic effects of low-to-moderate chronic exposure to PFAS in 

humans with the effects reported in animal studies(Barry, 2013; Darrow, 2016; Frisbee et al. 

2010; Gallo et al. 2012; Winquist 2014). Among the clinical parameters repeatedly 

associated with PFAS exposure in humans are elevated serum lipids, liver enzymes, and 

markers of immunologic function (Dalsager et al. 2016; Darrow 2016; Eriksen et al. 2013; 

Fisher 2013; Frisbee et al. 2010; Fu 2014; Gallo et al. 2012; Gleason 2015; Grandjean 2016; 

Lin et al. 2010; Steenland 2009). The C8 study reported probable links between PFOA 

exposure and certain autoimmune diseases and cancers (Barry 2013; Steenland 2013; Vieira 

2013), however, studies of chronic cardiovascular, immune system and metabolic disease 

risks associated with these biomarker alterations have so far been inconclusive (Averina 

2019; Karnes 2014; Mattsson et al. 2015; Sun 2018; Sunderland 2019; Winquist 2014).

Previous reports of PFAS water contamination in the U.S. have generally focused on 

facilities with current or historical manufacturing of PFAS (Emmett et al. 2006; Hansen 

2002; MPCA, 2019; Herrick et al. 2017). Another potential source of PFAS in drinking 

water is the contamination of ground and surface water due to use of aqueous film-forming 
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foams (AFFF) at airports, military installations, and fire-fighting training sites (Anderson 

2016; Hu et al. 2016; Weiss et al. 2012). PFAS have been recently detected in hundreds of 

public water systems more than half of U.S. states (Anderson 2016; Hu et al. 2016; Weiss et 

al. 2012). While no national enforceable standards have been set for PFAS in drinking water, 

in 2016, the United States Environmental Protection Agency (USEPA) established health 

advisory levels (70 ng/L) for two commonly measured PFAS, perfluorooctane sulfonate 

(PFOS) and perfluorooctanoate (PFOA) (USEPA 2016).

Between 2013 and 2016, PFAS concentrations above the USEPA health advisory level for 

PFOS and PFOA were detected in public water systems in Fountain, Security and Widefield 

in El Paso County, Colorado, where the concentration gradient of the AFFF-contaminated 

plume decreases from north to south along the aquifer, away from Peterson Air Force Base 

(CDPHE 2018; Finley 2016) (Figure 1). These three water systems, that combined serve 

approximately 80,000 people, were likely contaminated prior to 2013 and potentially much 

earlier. The impacted public water systems either installed effective treatment facilities or 

changed water sources so that most drinking water-related exposure to PFAS in these 

communities was reduced considerably beginning in August, 2015 (CDPHE 2018; El Paso 

County Health Dept. 2017). The highest level among the measured PFAS in water was 

generally for perfluorohexane sulfonate (PFHxS), which is structurally similar to PFOS but 

does not have a USEPA-established health advisory level. However, in 2018 the Agency for 

Toxic Substances and Disease Registry (ATSDR) identified an intermediate oral intake 

minimal risk level for PFHxS of 2×10−5 mg/kg/day (ATSDR 2018), and the Minnesota 

Department of Health has designated a maximum health based value (HBV), equal to their 

HBV of PFOS, of 27ng/L in drinking water (ITRC 2019).

This PFHxS-dominant exposure mixture is unlike the PFOA-dominant exposure profile 

examined in other cohorts also exposed to PFAS contaminated drinking water, such as the 

C8 Health Project (C8 Science Panel 2017), and may pose unique health risks to the exposed 

population. Little is known about the health effects of human exposure to PFAS in areas with 

drinking water contaminated by AFFF, and no systematic biomonitoring has been done in 

this Colorado community until the present study: PFAS Assessment of Water and Resident 

Exposure, hereafter referred to as “PFAS-AWARE”. At present, few studies have been 

published on populations exposed specifically to AFFF-related PFAS contamination (Daly et 

al., 2018; Gyllenhammer et al., 2015; Li et al., 2017; Rotander 2015).

The objective of this work is to describe the serum concentrations of PFAS in a highly 

exposed community, to estimate the associations between serum concentrations of these 

PFAS and drinking water source, as well as to explore other potential determinants of PFAS 

serum concentrations, such as participant demographics, dietary and cleaning habits, 

employment, and smoking history. In addition, smoking history was explored in a 

multivariable linear regression model to investigate whether the observed associations were 

robust to covariate adjustment.
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Methods:

Study Population

Throughout the first half of 2018, the PFAS-AWARE study enrolled 213 adults whose 

primary residence was in Fountain, Security or Widefield, Colorado for at least two years 

during the period of known public water-system contamination, which was August 2012 to 

August 2015. Participants were recruited via outreach to community groups, newspaper ads, 

television news stories, and mailings to affected households between January and June 2018. 

To be eligible, participants were required to live on an impacted private well or public water 

system, be over 18 years old, not currently pregnant, non-smokers, and willing to provide a 

blood sample.

All participants attended a clinic at a central location in Security, Colorado in June 2018. 

Each participant provided a 20-mL non-fasting blood sample to quantify serum PFAS 

concentrations. At the same study visit, a questionnaire was administered by study personnel 

to assess potential sources of PFAS exposure as well as to collect demographic information 

and an abbreviated health history. The study protocol was approved by the Colorado 

Multiple Institutional Review Board (protocol 17–2182) and all participants provided 

informed consent prior to study procedures. The analysis of blinded specimens at the 

Centers for Disease Control and Prevention (CDC) laboratory was determined not to 

constitute engagement in human subject research.

Exposure Assessment Questionnaire

The questionnaire aimed to assess the contribution to serum PFAS concentrations from 

drinking PFAS-contaminated water versus other sources of exposure. Variables used to 

assess exposure to PFAS-impacted water include: water district of residence, bottled water 

use, workplace water district, and home water source (public system versus private well). 

Participants also reported on potential non-water sources of PFAS including: frequency of 

dusting and vacuuming, dietary habits, and potential occupational exposures. Basic 

demographic information, an abbreviated health history, and a complete list of medications 

and supplements were also collected. The questionnaire was developed based on previous 

literature and guidance on evaluating PFAS exposure from multiple sources (ATSDR 2018; 

Siebenaler et al. 2017). The complete questionnaire is available in the Supplemental 

Materials.

Quantification of Serum PFAS

Blood was centrifuged within 30 minutes of collection to obtain 0.5 mL aliquots of serum, 

which were then transferred to 2mL polypropylene cryovials and stored at −80°C prior to 

shipment to the laboratory. Twenty PFAS were quantified in serum at CDC using HPLC-

Turbo Ion Spray ionization tandem mass spectrometry (HPLC-MS/MS) with isotope 

dilution. The PFAS measured included: perfluorobutane sulfonate (PFBS), PFHxS, 

perfluoroheptane sulfonate (PFHpS), linear PFOS (n-PFOS), sum of 

perfluoromethylheptane sulfonate isomers (Sm-PFOS), 2-(N-methyl-perfluorooctane 

sulfonamido) acetate (Me-FOSAA), 2-(N-ethyl perfluorooctane sulfonate l-perfluorooctane 

sulfonamido) acetate (Et-FOSAA), perfluorobutanoate (PFBA), perfluoropentanoate 
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(PFPeA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), linear PFOA (n-

PFOA), sum of branched PFOA isomers (Sb-PFOA), perfluorononanoate (PFNA), 

perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnDA), perfluorododecanoate 

(PFDoDA), tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoroproppoxy)-propanoate (HFPO-DA), 

dodecafluoro-3H-4,8-dioxanoate (NADONA), 9-chlorohexadecafluoro-3-oxanonane-1-

sulfonate (9CL-PF) (Table 3 and Supplementary Table 1). One hundred μL aliquots of serum 

were diluted with formic acid and processed with online solid phase extraction coupled to 

HPLC-MS/MS; the limit of detection (LOD) was 0.1 ng/mL for all PFAS. Personnel 

conducting the laboratory analysis were blinded to the identity of the participant providing 

the specimen. Additional information on laboratory analysis performed at the CDC can be 

found in Kato et al. 2018.

Statistical Analysis

All study data were input into and managed using REDCap (Research Electronic Data 

Capture) tools hosted at the University of Colorado Denver (Harris et al. 2009).

Summary statistics including median, interquartile range (IQR), and 90th percentiles were 

computed for all PFAS measured. Spearman’s Rank test was conducted to evaluate pairwise 

correlations among PFAS. Total PFOA and Total PFOS were computed as the sum of the 

linear and branched isomers where Total PFOA=n-PFOA+sb-PFOA and Total PFOS=n-

PFOS + Sm-PFOS. We initially analyzed n-PFOS and Sm-PFOS separately and as a sum 

(Total PFOS) to evaluate if the linear and branched isomers behaved differently from one 

another. However, findings between the two were generally consistent (supplementary tables 

2, 4–7), therefore, in this work we only present the analyses for Total PFOS, or PFOS. No 

samples had detectable concentrations of Sb-PFOA, therefore, Total PFOA is equal to n-

PFOA and in the remainder of this work is referred to as Total PFOA, or PFOA. Additional 

statistical analyses were only conducted for PFAS with a detection frequency of greater than 

50%, i.e., the following five PFAS: PFHxS, Total PFOS, Total PFOA, PFNA and PFHpS. 

Detection frequency for the other PFAS ranged from 0% to 44.6% (Supplementary Table 1).

Unadjusted associations between each of these five PFAS concentration and each of several 

behavioral and demographic predictors were analyzed using 1) linear or Tobit (for PFAS 

with <85% detectable concentration-PFHpS only) regression for natural log-transformed 

continuous predictors and 2) nonparametric Kruskal-Wallis rank-sum tests to determine 

differences between groups for categorical predictors. Dunn’s test with Holm-Šidák 

adjustment for multiple comparisons was conducted as a post-hoc test for the Kruskal-Wallis 

analysis (Dinno 2015; Holm 1979).

All of the aforementioned PFAS that were included in the analysis, with the exception of 

PFHpS, were detected in 212 of 213 samples. For the one sample out of 213 with PFAS 

concentrations below the LOD, one half the LOD (0.05) was substituted (Eastoe 2006) and 

linear regression was performed for evaluating associations with continuous predictors. For 

PFHpS, because ~18% of samples had concentrations below the LOD, Tobit regression was 

performed to account for the left censored data (Lubin 2004). Kruskal-Wallis was used to 

test for differences in serum concentrations between categories of predictors (Helsel 2005). 

Additionally, a multiple linear regression model was fit to evaluate if smoking history 
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predicts PFAS concentrations independent of age, sex, race/ethnicity, water district or 

residence and bottled water consumption. The covariates included in the multiple regression 

model were those that were either a) likely confounders associated with both smoking and 

serum PFAS or b) highly associated with just the outcome, serum PFAS concentration. All 

PFAS serum concentrations were log-normally distributed and were therefore natural-log 

transformed to better approximate a normal distribution or analyzed using nonparametric 

statistics.

All statistical analyses were conducted using the statistical software Stata (Version 15, 

StataCorp, College Station, TX, USA). The significance levels for all statistical analyses 

were set at p<0.05.

Results:

Study population demographics and behavioral characteristics

The original study population consisted of 220 adults recruited from the Fountain, Security 

and Widefield, Colorado area. Seven participants were excluded from the analysis because 

they did not live in the area for at least two years during the period of known contamination 

(August, 2012 to August, 2015), resulting in 213 individuals being included in this analysis. 

Table 1 shows the baseline characteristics reported by participants via questionnaire. The 

population was largely female (62%), age greater than 50 (75.1%), non-Hispanic white 

(74.6%), never smokers (61.5%), and served by the public water systems (92.5%). About 

half of the participants reported current employment (55.9%) and about a quarter (23%) 

reported their 2012–2015 workplace was served by one of the three contaminated drinking 

water systems. Furthermore, 30.5% reported ever having served in the military and 8.0% 

reported ever working as a firefighter.

Table 2 shows self-reported behaviors evaluated as potential predictors of exposure. These 

factors include bottled water use, vacuuming and dusting frequencies, and frequency of fast 

food and microwave meal consumption. Some responses were condensed into fewer groups 

due to small cell sizes. For example, fewer than five individuals each stated that they never 

vacuumed or that they never dusted, so the “never” and “once a month” answers were 

combined into one group. More than half of participants reported vacuuming (67.8%), 

dusting (84.1%), consuming fast food (81.2%) and consuming microwave meals (84.1%) at 

frequencies of once a week or less, and about half of the participants (48.8%) reported 

drinking mostly or only tap water.

Serum PFAS concentrations

Table 3 shows summary statistics for the five PFAS included in the analysis. PFHxS, PFOS, 

PFOA and PFNA were detected in 99.5% of samples, and PFHpS was detected in 82.6%. 

While we initially analyzed n-PFOS and Sm-PFOS separately and as a sum (Total PFOS) to 

evaluate if the isomers behaved differently from one another, findings were generally 

consistent regardless of the way we treated the isomers (supplementary tables 2, 4–7), so 

only analyses for Total PFOS are presented in the main tables. However, it is worth noting 
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that some of the water-related associations are stronger for n-PFOS than for Sm-PFOS 

(Supplementary Table 7).

The PFAS quantified at the highest serum concentration in this population was PFHxS. For 

PFHxS, the median and 90th percentile were 14.8 ng/mL and 49.7 ng/mL, respectively, 

which are 12 and 15 times as high as the U.S. median (1.2 ng/mL) and 90th percentile (3.40 

ng/mL) observed in the 2015–2016 National Health and Nutrition Examination Survey 

(NHANES) (CDC 2019). Similarly, the PFAS-AWARE PFOS median (9.7 ng/mL) and 90th 

percentile (28.1 ng/mL) were 2.0 and 2.1 times as high as the NHANES median (4.80 

ng/ml) and 90th percentile (13.2 ng/ml). PFOA concentrations were also about twice as high 

in this study population (median 3.0 ng/mL, 90th percentile 7.4 ng/mL) compared to 

NHANES (median 1.57 ng/mL, 90th percentile 3.37 ng/mL), while PFNA concentrations 

were lower (median 0.4 ng/mL, 90th percentile 0.8 ng/mL) than those seen in NHANES 

(median 0.6 ng/mL, 90th percentile 1.4 ng/mL). No information is available in NHANES for 

PFHpS. However, in 50 serum samples purchased from a commercial lab in 2016, Kato et al. 

found a serum PFHpS median of 0.3 ng/mL and 90th percentile of 0.7 ng/mL, concentrations 

quite similar to the median (0.2 ng/mL) and 90th percentile (0.6 ng/mL) observed in this 

study population (Kato et al., 2018).

Spearman’s rank correlation analysis (rs, Supplementary Table 2) shows that all compounds 

are moderately to strongly correlated with one another (p<0.05). The most highly correlated 

compounds are PFHpS with PFHxS (rs =0.87), PFOS (rs =0.87) and PFOA (rs =0.82), and 

PFOA with PFHxS (rs =0.85). While still significant, the least correlated are PFNA with 

PFHxS (rs =0.25), PFHpS (rs =0.42) and PFOA (rs =0.48).

Demographic and behavioral predictors of PFAS

All serum PFAS concentrations were significantly positively associated with age (Table 4). 

Age was most highly correlated with PFOS (R2=0.19) followed by PFHxS (R2=0.12) and 

PFOA (R2=0.10) and least strongly correlated with PFNA (R2=0.06). Tobits regression 

showed that PFHpS correlation was in the same range as PFHxS and PFOA (pseudo R2 of 

0.11).

Tables 5 and 6 show the associations between categorical predictors and serum PFAS 

concentrations. Serum PFAS concentrations varied significantly between groups for water 

district of residence and bottled water consumption. There was no significant difference in 

serum concentrations between individuals living on private wells versus those served by a 

public water system. However, most private well-owners lived in Fountain (62.5%), and 

Fountain residents had lower PFAS serum concentrations than residents of Widefield or 

Security. Furthermore, a quarter of private well owners reported drinking mostly or only 

bottled water, and ~19% reported use of either granular activated carbon or reverse osmosis 

treatment systems (Supplementary Table 3).

Evaluation of demographic characteristics showed significant differences in serum PFAS 

concentrations between groups for sex, race/ethnicity, smoking status and employment as a 

firefighter or service in the military. No significant differences were observed by BMI 
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category or by frequency of any of the following behaviors: vacuuming, dusting, fast food 

consumption, and microwave meal consumption.

Categorical Predictors of PFHxS

Serum concentrations of PFHxS were significantly higher in those that lived in the Security 

water district (Geometric Mean (GM), 19.1 ng/mL) compared to either Fountain (GM, 9.3 

ng/mL) or Widefield (GM, 13.7 ng/mL) water district residents. PFHxS concentrations were 

also significantly higher in those that reported drinking mostly or only tap water (GM, 18.9 

ng/mL) compared to individuals who reported drinking either half bottled and half tap (GM, 

12.4 ng/mL), or, only or mostly bottled water (GM, 10.8 ng/mL) (Table 6). Serum 

concentrations of PFHxS also varied significantly by race/ethnicity and smoking status: non-

Hispanic whites (GM, 16.0 ng/mL) and former-smokers (GM, 20.9 ng/mL) had higher 

serum PFHxS concentrations than Hispanics (GM, 9.5 ng/mL) and never-smokers (GM, 

11.5 ng/mL), respectively.

Categorical Predictors of PFOS

Residents of the Fountain water district had significantly lower concentrations of PFOS 

(GM, 7.2 ng/mL) than either Security water district residents (GM, 10.0 ng/mL) or 

Widefield water district residents (GM, 11.0 ng/mL). PFOS concentrations also differed by 

sex and smoking history: females (GM, 8.4 ng/mL) and never smokers (GM, 7.9 ng/mL) had 

significantly lower serum concentrations than males (GM, 11.7 ng/mL) and former smokers 

(GM, 12.7 ng/mL). Additionally for PFOS, serum concentrations were significantly different 

by firefighter employment and military service. Individuals who were never a firefighter 

(GM, 9.2 ng/mL) or had never served in the military (GM, 8.7 ng/mL) had significantly 

lower concentrations of PFOS than those who had (GM firefighter, 14.0 ng/mL; GM 

military, 11.8 ng/mL).

Categorical Predictors of PFOA

While serum PFOA concentrations did not vary significantly by water district of residence, 

they were significantly higher in those reporting drinking only or mostly tap-water (GM, 3.4 

ng/mL) compared to those reporting drinking only or mostly bottled water (GM, 2.4 ng/mL). 

Further, serum PFOA concentrations were significantly higher for non-Hispanic whites 

(GM, 3.1 ng/mL) compared to other racial/ethnic groups (GM Hispanic, 2.3 ng/mL; GM 

non-Hispanic non-white, 2.1 ng/mL). Serum PFOA concentrations also differed significantly 

by smoking history, with former smokers (GM, 3.5 ng/mL) having higher serum 

concentrations than never smokers (GM, 2.5 ng/mL).

Categorical Predictors of PFHpS

Residents of the Fountain water district had significantly lower concentrations of PFHpS 

(GM, 0.16 ng/mL) than those living in the Security water district (GM, 0.25 ng/mL). In 

addition, females (GM, 0.19 ng/mL), Hispanics (GM, 0.15 ng/mL) and never smokers (GM, 

0.18 ng/mL) had significantly lower serum PFHpS concentrations than males (GM, 0.26 ng/

mL), non-Hispanic whites (GM, 0.23 ng/mL), and former smokers (GM, 0.29 ng/mL), 

respectively.
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Categorical Predictors of PFNA

Serum PFNA concentrations were not significantly different across groups for any predictors 

evaluated other than location of participant’s 2012–2015 workplace. Individuals reporting a 

workplace outside of Fountain, Security or Widefield had significantly higher serum 

concentrations (GM, 0.46 ng/mL) than those reporting a workplace within one of the three 

PFAS-affected towns (GM, 0.36 ng/mL).

Multivariable Regression Results

Smoking history as a predictor of PFAS serum concentration was examined with a 

multivariable regression model including the following variables as predictors: age, sex, 

race/ethnicity, water district of residence and bottled water consumption (Table 7). Smoking 

history remained a significant predictor of serum concentrations for PFHxS only (β, 32.3 

[0.20, 75.1], p-value=0.05).

Discussion

Overall, participants in this study had higher-than U.S. national background serum 

concentrations of PFHxS, with the study median approximately twelve times as high as the 

national median. The population also had relatively high concentrations of PFOS and PFOA, 

with the study medians approximately twice as high as the national median. PFNA had 

concentrations slightly lower than those reported in the U.S. general population (CDC 

2019). These findings are consistent with the suspected source of contamination (AFFF) as 

beginning in 1970 AFFF mixtures were typically dominated by sulfonates, including 

PFHxS, PFHpS and PFOS (Place 2012). Water district of residence and tap water versus 

bottled water consumption significantly predicted serum concentrations of PFHxS. Water 

district of residence also predicted PFOS and PFHpS concentrations, and tap vs bottled 

water use predicted PFOA.

Other predictors of PFHxS serum concentrations in this population are age, race/ethnicity, 

and smoking history. Additional factors that predicted higher PFOS, PFOA, and PFHpS 

serum concentrations in this population are age, male sex (PFOS and PFHpS), white non-

Hispanic race/ethnicity (PFOA and PFHpS), history of smoking, and former firefighter or 

military employment (PFOS).

Serum concentrations varied by water district, with a clear trend showing higher 

concentrations closer to the likely source and lower concentrations further away from 

Peterson Air Force base (Figure 1). This trend follows the north to south concentration 

gradient along the aquifer, where Security wells had the highest measured levels of PFAS, 

followed by Widefield, and then Fountain (CDPHE 2018). To our knowledge, only one other 

U.S. study, conducted in New Hampshire, has focused on a community exposed specifically 

to AFFF-contaminated water (Daly et al., 2018). Daly et al. found results in agreement with 

ours, namely that the primary predictors of serum concentrations for PFHxS, PFOS and 

PFOA were related to water consumption. Another study conducted in Sweden also focused 

on an AFFF-impacted community, however, the purpose of that study was primarily to 

develop half-life estimates rather than to identify predictors of exposure (Li et al, 2017). 
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Development of half-life estimates for this Colorado study population is to be completed 

following a second round of blood sampling which will take place approximately one year 

after the initial (June 2018) blood draw.

Participants who reported mostly or only drinking tap water had significantly higher 

concentrations of PFHxS and PFOA than those who reported mostly or only drinking bottled 

water. PFHxS is unique in that persons who drank mostly or only tap water had significantly 

higher concentrations than even individuals who reported drinking half bottled and half tap 

water, suggesting tap water as the primary source of exposure.

In addition, we found that age was positively associated with serum concentrations of all 

PFAS evaluated. This is in agreement with some of the current literature (Cho 2015; Zhang 

2010; Herrick 2017) although others have not found such an association (Calafat 2007; 

Ericson 2007; Vassiliadou 2010; Kannan et al. 2004). As the length of time that the aquifer 

has been contaminated is presently unknown, it is unclear if the association with age is 

related to the number of years during which individuals drank contaminated water or the 

lifelong accumulation of PFAS from other sources. AFFF was used at Peterson Air Force 

base beginning in 1970, so it is probable that the aquifer was contaminated well before the 

EPA testing took place in 2013 (El Paso County Health Dept. 2017).

Serum concentrations of PFHxS, PFOA and PFHpS were significantly higher in non-

Hispanic White participants than their Hispanic and non-Hispanic non-white (PFOA only) 

counterparts. Similarly, serum concentrations of PFOS were marginally higher in non-

Hispanic whites compared to Hispanics. While the current literature on how race and 

ethnicity may influence serum PFAS concentrations is sparse, our findings that non-Hispanic 

white participants had higher PFAS serum concentrations than non-Hispanic non-white or 

Hispanic participants are consistent with the findings of studies evaluating relationships 

between maternal and child PFAS concentrations (Harris et al. 2017; Sagiv et al. 2015), the 

effect of pregnancy on serum PFAS concentrations (Jain 2013), as well as an analysis of 

NHANES data (Calafat 2007).

Several other studies have reported that males have higher concentrations of certain PFAS 

than females (Calafat 2007; Siebenaler 2017; Harada et al. 2004; Herrick et al. 2017; 

Ericson 2007; Góralczyk 2015; Vassiliadou 2010). One explanation for this finding may be 

that females have additional excretion pathways via menstruation, breastfeeding and 

childbirth (Yang 2016; Wong 2014; Lorber 2015; Liu 2011). Our study found that women 

had significantly lower concentrations than men of both PFOS and PFHpS, in agreement 

with some recent literature (Siebenaler 2017; Harada et al. 2004; Ericson 2007; Góralczyk 

2015; Vassiliadou 2010). While we did not see statistically significant differences by sex 

with the other PFAS studied (including PFHxS), across all five PFAS evaluated, females had 

lower geometric mean serum concentrations than males. Other studies have also found no 

difference in serum concentrations or excretion rates between males and females for PFHxS 

(Haug 2009; Zhang 2010) PFOS (Haug 2009; Kannan et al. 2004; Olsen et al. 2004; Zhang 

2010), PFOA (Haug 2009; Kannan et al. 2004; Zhang 2010), PFNA and PFHpS (Haug 

2009; Zhang 2010).
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Except for serum PFNA concentrations, in this study former smokers had significantly 

higher PFAS serum concentrations compared to never smokers. Multiple regression 

examining the influence of smoking status on PFAS concentrations independent of age, sex, 

race/ethnicity, water district of residence and bottled water consumption revealed that a 

significant relationship with smoking history remained for only PFHxS. This indicates that 

other factors may have been confounding the association seen between former smokers and 

serum concentrations of PFOS, PFOA and PFHpS. For example, men are more likely to 

smoke than women, and men also are more likely to have higher PFAS serum concentrations 

than women. To our knowledge, few other studies have evaluated smoking history as a 

predictor of serum PFAS concentrations. A Korean study found significantly higher serum 

PFAS concentrations in smokers compared to non-smokers (Cho 2015) as did a study using 

NHANES data for females (Jain 2013). However, another conducted in Wisconsin found no 

difference in serum concentrations based on smoking status (Christensen 2016) and another 

in Japan also found null results with regard to the influence of smoking (Harada et al. 2004). 

At present, there is limited literature on how a history of smoking may affect PFAS serum 

concentrations.

Individuals who reported ever being employed as a firefighter or ever having served in the 

military had significantly higher concentrations of PFOS compared to those without these 

potential occupational exposures. We speculate that these individuals have experienced 

work-related exposure to PFAS. PFOS is a compound known to be used in both military and 

firefighting operations (Rotander 2015; Posner 2012). While somewhat surprising that there 

was no notable difference for these groups in PFHxS serum concentrations, it is possible that 

limited occupational exposures were obscured by the relatively high non-occupational 

exposures to PFHxS in this population.

This study did not find behavioral factors, such as cleaning frequency and fast food 

consumption frequency, to be important predictors of serum PFAS concentrations. By 

contrast, a recent study conducted in North Carolina (Siebenaler 2017) found that serum 

PFHxS concentrations were significantly higher in individuals who vacuumed once per 

month or less versus in those who vacuumed greater than once per month, and in those who 

ate microwave meals greater than once per month versus those who never ate microwave 

meals. The reason for the discrepancy may be that the population evaluated by Siebenaler et 

al. experienced only background exposures from common sources. In contrast, for the highly 

exposed community in this study, the drinking water source appears to dominate exposure. It 

is likely that the contribution from other sources, such as food wrappings and dust, is 

relatively small in comparison to the contribution of drinking water in this population.

A limitation of this analysis is that it does not consider duration of exposure beyond the 

eligibility criteria of living in one of the affected communities for at least two years during 

the time period of known contamination (August 2012 to August 2015). In future studies, we 

plan to collect residential history information that will allow us to differentiate between 

long-term and short-term residents. In addition, we did not include some other factors 

related to drinking water exposure, such as filter use and quantity of water consumed per 

day.
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Filter use was excluded from the analysis because many filter types (i.e., refrigerator filters) 

are ineffective at removing PFAS, and those that are effective (granular activated carbon and 

reverse osmosis) must be maintained regularly (New Hampshire Dept. of Env. Services 

2016). We did not inquire about filter maintenance in our questionnaire. Further, whether or 

not filters reduced PFAS exposure from the AFFF in drinking water is highly dependent on 

when it was installed, and many participants could not recall this date with certainty. Filters 

installed after August 2015 (for example, in response to the announcement of lower EPA 

health advisories in 2016) likely did not alter the participant’s peak exposure compared to 

participants without filters in their homes. We also opted exclude the question on amount of 

water consumed per day due to uncertainly about whether or not this was truly predictive of 

exposure to contamination. As noted above, participants often had difficulty recalling when 

they had installed filters in their homes and the type of filters they had, so there was 

variation in how often the filters were reportedly used. Similarly, it is worth noting that our 

bottled water variable was defined as current bottled water use rather than bottled water use 

prior to PFAS mitigation efforts. Participants generally had difficulty recalling exactly when 

they switched from tap water to bottled water. Therefore, for our analyses we operated under 

the assumption that current bottled water use is a likely indicator of at least some amount of 

reduced tap-water consumption during the exposure period.

An additional limitation of this study is we did not collect socio-economic data in our 

questionnaires. Some previous studies have shown a relationship between serum PFAS 

levels and indicators of socioeconomic status (Harris et al. 2017; Kato et al. 2014; Sagiv et 

al. 2015).

One important strength of the PFAS-AWARE study is the variability in water PFAS levels 

and, consequently, serum concentrations, in the three impacted communities. In a future 

manuscript we will evaluate the effects of the wide range of PFAS exposure observed for 

multiple PFAS analytes. Secondly, PFAS-AWARE brings a new data to the broader PFAS 

literature because the key compound of interest in this study population is PFHxS rather than 

the more extensively studied PFOS and PFOA. This study is one of few evaluating a 

population highly exposed to PFHxS originating from AFFF in drinking water. Lastly, 

measurement of multiple PFAS allows us to better characterize this unique AFFF dominated 

exposure profile and to distinguish between predictors of PFAS that are likely AFFF-related 

from those that may primarily result from dietary (e.g. PFNA), residential, and other 

potential sources.

Conclusions:

In this highly exposed population the most important factors in predicting serum PFAS 

concentrations were home water district and frequency of bottled water use, as well as age, 

sex and smoking history. No significant associations were found for behaviors that may 

indicate routes of exposure other than drinking contaminated water, such as home cleaning 

frequency and fast food consumption. These findings support our hypothesis that for PFHxS, 

PFOS, PFOA and PFHpS, the dominant exposure route for individuals in these communities 

was likely consumption of PFAS-contaminated water.
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Understanding the varied sources of exposure as well as potential demographic and 

behavioral characteristics that may affect PFAS serum concentrations will be beneficial 

moving forward with remediation of contaminated sites, providing guidance to citizens on 

how to lower their personal PFAS exposure, and identifying vulnerable populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Map of study area, with table indicating the range and median serum PFHxS 
concentrations of PFAS-AWARE participants by water district of residence (ng/mL; N=213).
Abbreviations: N, number of observations; PFHxS, perfluorohexane sulfonate; ng/mL, 

nanograms per milliliter; < LOD, below limit of detection.
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Table 1.

Selected baseline characteristics of study population by water district of residence
1
 (N=213).

Characteristics Total N 213 (%) Fountain 52 (%) Security 96 (%) Widefield 65 (%)

Sex

 Female 132 (62.0) 31 (59.6) 60 (62.5) 41 (63.1)

 Male 81 (38.0) 21 (40.4) 36 (37.5) 24 (36.9)

Age (years)

 19 to 35 17 (8.0) 5 (9.6) 10 (10.4) 2 (3.1)

 36 to 50 36 (16.9) 8 (15.4) 19 (19.8) 9 (13.8)

 51 to 65 82 (38.5) 19 (36.5) 38 (39.6) 25 (38.5)

 > 65 78 (36.6) 20 (38.5) 29 (30.2) 29 (44.6)

Race/Ethnicity

 Non-Hispanic White 159 (74.6) 45 (86.5) 70 (72.9) 44 (67.7)

 Non-Hispanic Non-White 27 (12.7) 4 (7.7) 12 (12.5) 11 (16.9)

 Hispanic 27 (12.7) 3 (5.8) 14 (14.6) 10 (15.4)

BMI (kg/m2)

 Normal (18.5–24.9) 48 (22.5) 21 (40.4) 16 (16.7) 11 (16.9)

 Overweight (25.0–29.9) 94 (44.1) 15 (28.9) 48 (50.0) 31 (47.7)

 Obese (> 30.0) 71 (33.8) 16 (30.8) 32 (33.3) 23 (35.4)

Smoking Status

 Past Smoker 82 (38.5) 14 (26.9) 39 (40.6) 29 (44.6)

 Never Smoker 131 (61.5) 38 (73.1) 57 (59.4) 36 (55.4)

Currently employed

 Yes 119 (55.9) 29 (55.8) 60 (62.5) 30 (46.2)

Military service (ever)

 Yes 65 (30.5) 14 (26.9) 33 (34.4) 18 (27.7)

Firefighter (ever)

 Yes 17 (8.0) 4 (7.7) 6(6.3) 7 (10.8)

2012–2015 workplace served by contaminated water district

 Yes 49 (23.0) 19 (36.5) 21 (21.9) 9 (13.9)

Source of water at home (years 2012–2015)

 Public water system 197 (92.5) 42 (80.8) 91 (94.8) 64 (98.5)

 Private well 16 (7.5) 10 (19.2) 5 (5.2) 1 (1.5)

1
Town that participant lived in during known exposure period of August 1st, 2012 to August 1st, 2015. If participant lived in multiple towns during 

this time period the assigned town is the one they lived in the longest.
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Table 2.

Selected self-reported behaviors of the study population by water district of residence
1
 (N=213).

Behavior Total 213(%) Fountain 52 (%) Security 96 (%) Widefield 65 (%)

Bottled water use (as of date questionnaire was administered)
2

 Mostly/only tap 104 (48.8) 26 (50.0) 45 (46.9) 33 (50.8)

 Half tap/half bottled 30 (14.1) 9 (17.3) 15 (15.6) 6 (9.2)

 Mostly/only bottled 79 (37.0) 17 (32.7) 36 (37.5) 26 (40.0)

Vacuuming frequency
3

 Never/once a month 37 (17.4) 13 (25.0) 15 (15.6) 9(13.9)

 Once a week 107 (50.2) 27 (51.9) 50 (52.1) 30 (46.2)

 > once a week 69 (32.4) 12 (23.1) 31 (32.3) 26 (40.0)

Dusting frequency
3

 Never/once a month 90 (42.3) 25 (48.1) 44 (45.8) 21 (32.3)

 Once a week 89 (41.8) 20 (38.5) 35 (36.5) 34 (52.3)

 > once a week 33 (15.5) 6 (11.5) 17 (17.7) 10 (15.4)

 Missing 1 (0.5) 1 (1.9) 0 (0.0) 0 (0.0)

Fast food consumption frequency
3

 Never 39 (18.3) 12 (23.1) 15 (15.6) 12 (18.5)

 Once a month 65 (30.5) 19 (36.5) 31 (32.3) 15 (23.1)

 Once a week 69 (32.4) 12 (23.1) 29 (30.2) 28 (43.1)

 > once a week 39 (18.3) 9 (17.3) 21 (21.9) 9 (13.9)

 Missing 1 (0.5) 0 (0.0) 0 (0.0) 1 (1.5)

Microwave meal consumption frequency
3

 Never 96 (45.1) 26 (50.0) 42 (43.8) 28 (43.1)

 Once a month 66 (31.0) 17 (32.7) 29 (30.2) 20 (30.8)

 Once a week 17 (8.0) 5 (9.6) 10 (10.4) 2 (3.1)

 > once a week 34 (16.0) 4 (7.7) 15 (15.6) 15 (23.1)

1
Town that participant lived in during known exposure period of August 1st, 2012 to August 1st, 2015. If participant lived in multiple towns during 

this time period the assigned town is the one they lived in the longest.

2
Participants were asked where they get the water that they currently use for drinking.

3
For questions of frequency, participants were asked to give their best estimate of their behaviors over the past year.
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Table 3.

Summary statistics for selected measured serum PFAS concentrations detected in >80% of study participants 

(ng/mL; N=213) compared to those measured in NHANES, 2015–2016
1
.

PFAS
This Study NHANES, 2015–2016

Detection frequency
1 Median (IQR) 90th Percentile Median 90th Percentile

PFHxS 99.5 14.8 (7.4–30.9) 49.7 1.20 3.40

Total PFOS 99.5 9.7 (5.6–16.7) 28.1 4.80 13.2

Total PFOA
2 99.5 3.0 (1.5–5.0) 7.4 1.57 3.37

PFNA 99.5 0.4 (0.3–0.6) 0.8 0.60 1.40

PFHpS 82.6 0.2 (0.1–0.4) 0.6 N/A N/A

Abbreviations: PFAS, poly- and perfluoroalkyl substances; N, number of observations; IQR, interquartile range; ng/mL, nanograms per milliliter; 
PFHxS, perfluorohexane sulfonate; n-PFOS, linear perfluorooctane sulfonate; Sm-PFOS, sum of perfluoromethylheptane sulfonate isomers; Total 
PFOS, sum of n-PFOS and Sm-PFOS; n-PFOA, linear perfluorooctanoate; Total PFOA, sum of linear and branched perfluorooctanoate; PFNA, 
perfluorononanoate; PFHpS, perfluoroheptane sulfonate; N/A, not addressed.

1
https://www.cdc.gov/exposurereport/

2
Limit of detection (LOD) for all compounds is 0.1 ng/mL.

3
There were no branched perfluorooctanoates (PFOA) detected in any samples, therefore the “Total PFOA” value is equal to the concentration of 

linear PFOA.
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Table 4.

Unadjusted associations between age and select serum PFAS
1
 (N=213).

PFAS
Percent Change in PFAS for each 1-year increase in age

Coefficient (95% CI) R2 (adj.) p-value

PFHxS 2.63 (1.71, 3.67) 0.12 < 0.001

Total PFOS 2.63 (1.92, 3.46) 0.19 < 0.001

Total PFOA
1 1.82 (1.11, 2.53) 0.10 < 0.001

PFNA 1.11 (0.50, 1.61) 0.06 < 0.001

PFHpS
2 3.15 (2.33, 3.87) 0.11 < 0.001

Abbreviations: PFAS, poly- and perfluoroalkyl substance; N, number of observations; CI, confidence interval; R2(adj.), adjusted coefficient of 
determination; PFHxS, perfluorohexane sulfonate; Total PFOS, sum of linear perfluorooctane sulfonate and sum of perfluoromethylheptane 
sulfonate isomers; PFOA, sum of linear and branched perfluorooctanoate; PFNA, perfluorononanoate; PFHpS, perfluoroheptane sulfonate.

1
PFAS were natural log-transformed for the analysis, however, results presented above have been back transformed and represent the percent 

change.

2
There were no branched perfluorooctanoates (PFOA) detected in any samples, therefore the “Total PFOA” value is equal to the concentration of 

linear PFOA.

3
Computed using Tobit regression to account for ~18% left-censored data.
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Table 5:

Categorical predictors of select serum PFAS concentrations (ng/mL; N=213).

Characteristic
PFHxS Total PFOS Total PFOA

1 PFNA PFHpS

N GM 95% CI GM 95% CI GM 95% CI GM 95% CI GM 95% CI

Home water district

 Fountain 52 9.3 7.0, 12.2 7.2 5.9, 8.8 2.4 2.0, 2.9 0.42 0.35, 
0.51 0.16 0.12, 

0.21

 Security 96 19.1 15.0, 
24.4 10.0 8.2, 12.2 3.1 2.6, 3.7 0.42 0.37, 

0.48 0.25 0.20, 
0.30

 Widefield 65 13.7 11.0, 
17.1 11.0 9.0, 13.4 2.9 2.4, 3.6 0.46 0.40, 

0.54 0.22 0.18, 
0.28

 p-value < 0.001 0.006 0.05 0.48 0.03

Source of water at home (years 2012–2015)

 Public water system 197 14.1 12.1, 
16.5 9.3 8.2, 10.5 2.8 2.5, 3.1 0.43 0.39, 

0.47 0.21 0.18, 
0.24

 Private well 16 19.3 10.2, 
36.8 12.8 8.7, 18.8 3.9 2.7, 5.6 0.48 0.34, 

0.67 0.31 0.18, 
0.51

 p-value 0.34 0.16 0.09 0.68 0.15

Bottled water use (as of date questionnaire was administered)

 Mostly/only tap 104 18.9 15.3, 
23.3 10.7 9.2, 12.5 3.4 3.0, 4.0 0.45 0.40, 

0.51 0.25 0.21, 
0.30

 Half tap/half bottled 30 12.4 8.6, 17.9 9.5 7.1, 12.7 2.4 1.7, 3.3 0.49 0.37, 
0.64 0.19 0.13, 

0.27

 Mostly/only bottled 79 10.8 8.5, 13.8 8.1 6.5, 10.1 2.4 2.2, 2.9 0.40 0.35, 
0.45 0.19 0.15, 

0.23

 p-value < 0.001 0.06 0.002 0.19 0.06

2012–2015 workplace served by contaminated water district

 No 164 14.5 12.2, 
17.2 9.8 8.5, 11.2 2.9 2.5, 3.3 0.46 0.41, 

0.51 0.22 0.19, 
0.25

 Yes 49 14.0 10.4, 
18.8 8.4 6.6, 10.6 2.7 2.1, 3.4 0.36 0.31, 

0.43 0.20 0.15, 
0.27

 p-value 0.72 0.18 0.52 0.003 0.67

Sex

 Female 132 14.3 12.1, 
17.1 8.4 7.3, 9.6 2.8 2.5, 3.2 0.43 0.38, 

0.48 0.19 0.16, 
0.23

 Male 81 14.7 11.2, 
19.3 11.7 9.4, 14.5 2.9 2.4, 3.6 0.44 0.39, 

0.50 0.26 0.21, 
0.32

 p-value 0.52 < 0.001 0.42 0.40 0.03

Race/Ethnicity

 NH White 159 16.0 13.4, 
19.0 9.9 8.6, 11.4 3.1 2.7, 3.5 0.43 0.39, 

0.47 0.23 0.20, 
0.27

 NH Non-White 27 12.3 8.1, 18.7 9.7 7.8, 12.0 2.1 1.5, 2.8 0.47 0.37, 
0.60 0.21 0.15, 

0.29

 Hispanic 27 9.5 6.3, 14.3 7.3 5.1, 10.4 2.3 1.7, 3.2 0.43 0.32, 
0.57 0.15 0.10, 

0.22

 p-value 0.01 0.08 0.002 0.79 0.04

Smoking status

 Past smoker 82 20.9 17.2, 
25.4 12.7 10.8, 

15.0 3.5 3.1, 4.1 0.45 0.39, 
0.51 0.29 0.24, 

0.35
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Characteristic
PFHxS Total PFOS Total PFOA

1 PFNA PFHpS

N GM 95% CI GM 95% CI GM 95% CI GM 95% CI GM 95% CI

 Never smoker 131 11.5 9.4, 14.0 7.9 6.8, 9.2 2.5 2.1, 2.9 0.43 0.38, 
0.48 0.18 0.15, 

0.21

 p-value < 0.001 < 0.001 0.002 0.34 < 0.001

BMI category

 Normal 48 14.0 10.3, 
19.0 10.0 8.1, 12.5 3.2 2.6, 3.9 0.49 0.41, 

0.59 0.21 0.16, 
0.28

 Overweight 94 15.1 11.8, 
19.4 9.7 7.9, 11.8 2.6 2.2, 3.2 0.40 0.35, 

0.45 0.23 0.19, 
0.28

 Obese 71 14.0 11.1, 
17.6 9.0 7.5, 10.8 2.9 2.5, 3.5 0.45 0.39, 

0.53 0.20 0.16, 
0.25

 p-value 0.61 0.52 0.72 0.44 0.57

Firefighter (ever)

 No 196 14.3 12.3, 
16.8 9.2 8.1, 10.4 2.8 2.5, 3.2 0.43 0.39, 

0.47 0.21 0.19, 
0.24

 Yes 17 16.0 9.9, 25.8 14.0 10.4, 
19.0 3.1 2.2, 4.3 0.47 0.38, 

0.58 0.25 0.17, 
0.38

 p-value 0.83 0.03 0.80 0.66 0.43

Military (Ever)

 No 148 14.3 11.9, 
17.2 8.7 7.5, 10.0 2.9 2.5, 3.3 0.43 0.39, 

0.48 0.21 0.18 0.24

 Yes 65 14.9 11.5, 
19.3 11.8 9.7, 14.3 2.8 2.3, 3.4 0.44 0.38, 

0.51 0.24 0.20, 
0.30

 p-value 0.89 0.02 0.97 0.29 0.23

Vacuuming frequency

 Never/once a month 37 15.1 10.6, 
21.4 9.5 7.3, 12.3 3.2 2.5, 4.1 0.43 0.37, 

0.49 0.21 0.15, 
0.28

 Once a week 107 14.5 11.6, 
18.1 9.3 7.7, 11.1 2.8 2.4, 3.3 0.44 0.38, 

0.50 0.22 0.19, 
0.27

 > once a week 69 14.1 11.1, 
18.1 9.9 8.2, 12.0 2.7 2.3, 3.3 0.43 0.38, 

0.50 0.21 0.17, 
0.27

 p-value 0.80 0.90 0.51 0.95 0.83

Dusting frequency

 Never/once a month 90 13.7 10.7, 
17.6 8.3 6.8, 10.1 2.7 2.3, 3.3 0.43 0.37, 

0.49 0.20 0.16, 
0.24

 Once a week 89 14.4 11.6, 
17.9 10.7 9.0, 12.7 2.9 2.4, 3.4 0.44 0.39, 

0.50 0.23 0.19, 
0.29

 > once a week 33 18.8 13.8, 
25.6 10.9 8.5, 13.8 3.4 2.8, 4.1 0.44 0.36, 

0.54 0.24 0.19, 
0.31

 p-value 0.35 0.10 0.48 0.89 0.23

Fast food consumption frequency

 Never 39 17.1 11.6, 
25.2 10.2 7.9, 13.3 3.3 2.6, 4.2 0.44 0.36, 

0.53 0.24 0.17, 
0.34

 Once a month 65 14.5 11.4, 
18.5 9.6 7.8, 11.7 2.9 2.5, 3.5 0.43 0.36, 

0.50 0.22 0.18, 
0.28

 Once a week 69 15.2 12.0, 
19.2 10.4 8.5, 12.6 2.9 2.4, 3.5 0.47 0.41, 

0.55 0.22 0.18, 
0.28

 > once a week 39 11.4 7.3, 17.7 7.7 5.4, 10.9 2.3 1.7, 3.3 0.38 0.30, 
0.48 0.18 0.14, 

0.24
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Characteristic
PFHxS Total PFOS Total PFOA

1 PFNA PFHpS

N GM 95% CI GM 95% CI GM 95% CI GM 95% CI GM 95% CI

 p-value 0.82 0.61 0.65 0.76 0.54

Microwave meal consumption frequency

 Never 96 15.4 12.4, 
19.1 9.7 8.3, 11.2 2.8 2.4, 3.3 0.44 0.39, 

0.49 0.22 0.18, 
0.27

 Once a month 66 13.6 10.6, 
17.4 10.0 8.2, 12.1 2.9 2.5, 3.5 0.45 0.39, 

0.53 0.21 0.17, 
0.26

 Once a week 17 16.5 9.9, 27.5 8.6 5.5, 13.5 2.9 2.1, 4.2 0.37 0.28, 
0.50 0.20 0.11, 

0.35

 > once a week 34 12.9 7.9, 20.9 8.7 5.5, 13.7 2.7 1.8, 3.9 0.41 0.31, 
0.56 0.23 0.16, 

0.31

 p-value 0.94 0.89 1.00 0.55 0.93

Abbreviations: PFAS, poly- and perfluoroalkyl substance; N, number of observations; GM, geometric mean, CI, confidence interval; PFHxS, 
perfluorohexane sulfonate; Total PFOS, sum of linear perfluorooctane sulfonate and sum of perfluoromethylheptane sulfonate isomers; Total 
PFOA, sum of linear and branched perfluorooctanoate; PFNA, perfluorononanoate; PFHpS, perfluoroheptane sulfonate; NH, non-Hispanic.

1
There were no branched perfluorooctanoates (PFOA) detected in any samples, therefore the “Total PFOA” value represents just the linear PFOA.

2
p-value from Kruskal-Wallis analysis of variance test.
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Table 6.

Results of Dunn’s test post hoc analysis with a Holm– Šidák adjustment for serum PFAS (N=213).

Dunn’s 
Multiple 

Comparison 
Test

PFHxS Total PFOS Total PFOA PFNA PFHpS

Difference 
in Rank 

Sum

p-
value

Difference 
in Rank 

Sum

p-
value

Difference 
in Rank 

Sum

p-
value

Difference 
in Rank 

Sum

p-
value

Difference 
in Rank 

Sum

p-
value

Home water district

Fountain vs. 
Security −4.26 < 

0.001 −2.72 0.007 −2.41 0.02 −0.56 0.29 −2.62 0.01

Fountain vs. 
Widefield −1.87 0.03 −2.96 0.005 −1.71 0.09 −1.20 0.31 −1.62 0.10

Security vs 
Widefield 2.40 0.02 −0.52 0.30 0.60 0.27 −0.79 0.38 0.93 0.18

Bottled water use (as of date questionnaire was administered)

Mostly/only 
tap vs. Half 

tap/half bottled
2.34 0.02 0.64 0.26 2.16 0.03 −0.59 0.28 1.32 0.18

Mostly/only 
tap vs. mostly/

only bottled
3.66 < 

0.001 2.38 0.03 3.31 0.001 1.46 0.14 2.31 0.03

Half tap/half 
bottled vs. 

mostly/only 
bottled

0.29 0.39 1.04 0.28 0.22 0.41 1.59 0.16 0.34 0.37

2012–2015 workplace served by contaminated water district

No vs. Yes 0.36 0.36 1.33 0.09 0.64 0.26 3.00 0.001 0.42 0.33

Sex

Female vs. 
Male −0.65 0.26 −3.40 < 

0.001 −0.81 0.21 −0.84 0.20 −2.20 0.01

Race/Ethnicity

NH White vs. 
Hispanic 2.74 0.009 2.25 0.04 2.52 0.01 −0.17 0.43 2.57 0.02

NH White vs. 
NH Non-White 1.66 0.09 0.39 0.35 2.86 0.006 −0.69 0.57 0.55 0.29

Hispanic vs. 
NH Non-White −0.82 0.21 −1.42 0.15 0.26 0.40 −0.40 0.57 −1.54 0.12

Smoking Status

Never vs. 
Former −4.14 < 

0.001 −3.94 < 
0.001 −3.06 0.001 −0.95 0.17 −3.64 < 

0.001

Firefighter (ever)

No vs. Yes −0.22 0.41 −2.21 0.01 −0.25 0.40 −0.45 0.33 −0.78 0.22

Military (Ever)

No vs. Yes −0.13 0.45 −2.41 0.008 −0.04 0.48 −1.05 0.15 −1.20 0.11

Abbreviations: PFAS, poly- and perfluoroalkyl substances; N, number of observations; NH, non-Hispanic; PFHxS, perfluorohexane sulfonate; 
Total PFOS, sum of linear perfluorooctane sulfonate and sum of perfluoromethylheptane sulfonate isomers; Total PFOA, Sum of linear and 
branched perfluorooctanoate; PFNA, perfluorononanoate; PFHpS, perfluoroheptane sulfonate

1
There were no branched perfluorooctanoates (PFOA) detected in any samples, therefore the “Total PFOA” value represents just the linear PFOA.
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Table 7:

Model estimates for multivariable regression analysis of smoking status, water district, bottled water use, age, 

sex and race/ethnicity as predictors of select serum PFAS
1
 (N=213).

Variable

PFHxS Total PFOS Total PFOA
2 PFNA PFHpS

3

Coefficient 
(95% CI)

p-
value

Coefficient 
(95% CI)

p-
value

Coefficient 
(95% CI)

p-
value

Coefficient 
(95% CI)

p-
value

Coefficient 
(95% CI) p-value

Smoking 

status
4

32.3 (0.20, 
75.1) 0.05 20.9 (−2.5, 

50.7) 0.08 16.2 (−6.8, 
43.3) 0.18 −4.2 (−20.5, 

15.0) 0.65 11.6 (−10.4, 
37.7) 0.34

Home water district
5

Security 116.0 (55.3, 
200.0)

< 
0.001

43.3 (11.6, 
85.9) 0.006 35.0 (4.3, 

73.3) 0.02 1.0 (−18.9, 
25.9) 0.92 66.5 (28.4, 

116.0) <0.001

Widefield 37.7 (−3.9, 
97.4) 0.08 41.9 (6.6, 

87.8) 0.02 19.7 (−9.4, 
58.4) 0.21 7.3 (−15.6, 

36.3) 0.58 25.9 (−5.2, 
66.5) 0.11

Bottled water use (as of date questionnaire was administered)
6

Half tap/
half 

bottled

−30.2 
(−52.8, 3.2) 0.07 −3.9 (−29.5, 

31.0) 0.80
−27.4 

(−46.2, 
−1.7)

0.04 8.5 (−16.5, 
40.5) 0.53 −19.7 

(−51.1, 9.2) 0.16

Mostly/
only 

bottled

−37.5 
(−52.8, 
−16.5)

0.001 −18.1 
(−34.3, 2.8) 0.09

−24.4 
(−39.3, 
−6.0)

0.01 −11.3 
(−26.7, 6.9) 0.20 −18.1 

(−34.3, 2.9) 0.09

Age 2.3 (1.4, 3.4) < 
0.001 2.4 (1.7, 3.1) < 

0.001
1.6 (0.90, 

2.3)
< 

0.001
1.1 (0.50, 

1.7) 0.001 2.9 (2.2, 3.8) < 0.001

Sex
7 0.30 (−22.9, 

31.0) 0.98 39.1 (12.7, 
71.6) 0.002 1.2 (−17.3, 

24.6) 0.91 3.5 (−13.1, 
23.4) 0.70 35.0 (9.9, 

66.5) 0.005

Race/Ethnicity
8

NH-
Nonwhite

−18.1 
(−45.1, 20.9) 0.32 0.20 (−26.7, 

36.3) 0.99
−30.9 

(−48.8, 
−5.9)

0.02 12.7 (−13.1, 
46.2) 0.37 −9.5 (−33.6, 

23.4) 0.53

Hispanic −28.1 
(−51.8, 8.0) 0.11

−17.3 
(−40.0, 
−11.3)

0.23 −13.9 
(−36.9, 18.5) 0.35 7.0 (−18.1, 

40.5) 0.62 −24.4 
(−45.7, 3.9) 0.08

R2 (adj.) 0.25 0.27 0.17 0.04 0.17

Abbreviations: PFAS, poly- and perfluoroalkyl substance; N, number of observations; CI, confidence interval; PFHxS, perfluorohexane sulfonate; 
Total PFOS, sum of linear perfluorooctane sulfonate and sum of perfluoromethylheptane sulfonate isomers; PFOA, Sum of linear and branched 

perfluorooctanoate; PFNA, perfluorononanoate; PFHpS, perfluoroheptane sulfonate; NH, Non-Hispanic; R2 (adj.), adjusted coefficient of 
determination;

1
PFAS were natural log-transformed for the analysis, however, results presented above have been back transformed and represent the percent 

change.

2
There were no branched perfluorooctanoates (PFOA) detected in any samples, therefore the “Total PFOA” value is equal to the concentration of 

linear PFOA.

3
Computed using Tobit regression to account for ~18% left-censored data.

4
Reference group for smoking status is never smoker.

5
Reference group for water district is Fountain.

6
Reference group for bottled water consumption is mostly/only tap water.

7
Reference group for sex is female.
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8
Reference group for race/ethnicity is non-Hispanic white.

Int J Hyg Environ Health. Author manuscript; available in PMC 2021 January 01.


	Abstract
	Introduction:
	Methods:
	Study Population
	Exposure Assessment Questionnaire
	Quantification of Serum PFAS
	Statistical Analysis

	Results:
	Study population demographics and behavioral characteristics
	Serum PFAS concentrations
	Demographic and behavioral predictors of PFAS
	Categorical Predictors of PFHxS
	Categorical Predictors of PFOS
	Categorical Predictors of PFOA
	Categorical Predictors of PFHpS
	Categorical Predictors of PFNA
	Multivariable Regression Results

	Discussion
	Conclusions:
	References
	Figure 1:
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5:
	Table 6.
	Table 7:

