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Abstract

Background and Purpose: Accurate and rapid detection of anterior circulation large vessel 
occlusion (LVO) is of paramount importance in acute stroke patients due to the potentially rapid 

consumption of at-risk tissue and the limited therapeutic window for endovascular clot retrieval 
(ECR). Hence, the optimal threshold of a new, fully automated software-based approach for LVO 

detection was determined and its diagnostic performance evaluated in a large cohort study.

Methods: For this retrospective study, data were pooled from: two stroke trials, DEFUSE 2 

(n=62; 07/08–09/11) and 3 (n=213; 05/17–05/18); a cohort of ECR candidates (n=82; 08/02/14 – 

08/30/15) and normals (n=111; 06/06/17 – 01/28/19) from a single quaternary center; and ‘code 

stroke’-patients (n=501; 01/01/17 – 12/31/18) from a single regional hospital. All CTAs were 

assessed by the automated algorithm. Consensus reads by two neuroradiologists served as the 

reference standard. ROC analysis was used to assess diagnostic performance of the algorithm for 

detection of: 1.) anterior circulation LVOs involving the intracranial internal carotid artery (ICA) 

or M1 segment middle cerebral artery (M1-MCA); 2.) anterior circulation LVOs and proximal M2 

segment middle cerebral artery (M2-MCA) occlusions and; 3.) individual segment occlusions.

Results: CTAs from 926 patients (median age 70 years IQR: 58–80; 422 females) were analyzed. 

395 patients had an anterior circulation occlusion LVO or M2-MCA occlusion (NIHSS 14 

[median], IQR: 9–19). Sensitivity and specificity were 97% and 74%, respectively, for LVO 

detection, and 95% and 79%, respectively, when M2 occlusions were included. On analysis by 
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occlusion site, sensitivities were 90% (M2-MCA), 97% (M1-MCA), and 97% (intracranial ICA) 

with corresponding AUCs of 0.874 (M2), 0.962 (M1), and 0.997 (intracranial ICA).

Conclusions: Intracranial anterior circulation LVOs and proximal M2 occlusions can be rapidly 

and reliably detected by an automated detection tool, which may facilitate intra- and inter-

instutional workflows and emergent imaging triage in the care of stroke patients.
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INTRODUCTION

Large vessel occlusions (LVOs) of the anterior circulation contribute disproportionately to 

stroke-related dependence and death1. Evidence from recent thrombectomy trials has shown 

that patients with LVOs have a substantially better clinical outcome after successful 

endovascular clot retrieval (ECR) than those who were managed medically, provided that 

they were treated within 24h of the time last seen normal2–7. These practice-altering studies 

required having a positive finding of an LVO on vascular imaging and therefore clinical 

guidelines8 stipulate emergent angiographic imaging (predominantly CTA).

The extended time window in which qualifying patients are eligible for ECR has led to a 

paradigm shift in stroke care but as a knock-on effect poses substantial logistical challenges 

for radiology: a 24h-window allows patients to be transferred even from very remote 

hospitals to ECR centers and still be eligible for treatment. In turn, this mandates that 

peripheral hospitals can reliably identify LVOs 24/7 with fast report turn-around to expedite 

treatment decisions. This requirement can pose a challenge for many smaller institutions, 

given their limited neuroradiology staffing and teleradiology coverage. The detection of an 

LVO is relatively straightforward for radiologists9, 10. However, the CTA of a patient with an 

LVO may not always end up at the top of a worklist and it may therefore be overlooked, with 

considerable medico-legal implications. An automated tool that draws attention to a positive 

finding would therefore help avoid situations where emergent CTAs are buried in a worklist 

and positive findings are communicated to the care providers with substantial delay. Even at 

an ECR hub, the ability to screen CTAs for the presence of LVOs (especially after hours) 

would help workflow and staffing, and facilitate rapid mobilization of the stroke and 

interventional neuroradiology teams by alerting them of a positive finding. Aside from 

optimizing patient care, there are looming financial implications, especially in light of the 

2019 Centers for Medicare & Medicaid guideline for payment determination requiring scan 

interpretation within 45 minutes of ED arrival11.

With these factors in mind, the goal for the new algorithm presented here was to 

automatically screen patients’ CTAs for the presence of an LVO and alert the reporting 

radiologist and the stroke team of a positive finding. We hypothesized that an algorithm 

could be developed that detects intracranial LVOs with almost perfect sensitivity and 

acceptable false positives. The purpose of this study was to evaluate the diagnostic 

performance of this algorithm against the reference standard of reads from experienced 

neuroradiologists in a large cohort study.
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Material and Methods

This retrospective study was approved by the IRBs of the participating regional and 

quaternary hospitals, who waived the requirement for informed consent. The data that 

support the findings of this study are available from the corresponding author on reasonable 

request.

a. Patient Selection

A total of 969 patients were included in this retrospective study (Figure. I in the online-only 

Supplement). The patient population comprised five individual cohorts which constituted a 

well-represented sample of scanner models from all major CT vendors and typical variants 

of CTA protocols seen at hospitals: 275 patients pooled from DEFUSE 2 (n=62) (07/08–

09/11) and DEFUSE 3 (n=213) (05/17–05/18), two large multi-center stroke trials7, 12; 193 

patients came from a single quaternary center of which 82 were patients who had been 

imaged as potential ECR candidates (08/02/14–08/30/15), and 111 were imaged for non-

stroke related indications (06/06/17–01/28/19) with normal anterior circulation. The fifth 

cohort was a consecutive series of 501 patients who had CTA as part of a ‘code stroke’ work 

up at a regional hospital that is a primary stroke center (01/01/17–12/31/18). Note that for 

DEFUSE 2 and 3, only the subset of consented patients who had undergone acute CTA were 

used.

43 patients (4.4%) were excluded due to: 1. screen failures (n=4, from DEFUSE 2); 2. CTA 

not being included in the acute CT protocol (n = 7); 3. inadequate data format (thin slice 

CTA raw data unavailable); and 4. the CTA being deemed by an experienced 

neuroradiologist (S.A.A) to be technically inadequate therefore of insufficient quality to 

allow accurate interpretation by a human reader (n = 15 with severe motion in 3, poor/no 

contrast bolus in 8 and incomplete coverage of the intracranial arteries in 4).

The remaining 926 patients (age 70 [median] IQR: 58–80 years) were analyzed, of which 

504 were female (age 69 IQR: 58–78) and 422 male (age 71, IQR: 59–82) (Table 1). 531 of 

these patients, who were imaged for a diagnostic workup of their cervico-cerebral 

vasculature, had either no evidence of an anterior circulation vessel occlusion or distal 

(M3/M4 segments) occlusions only, and for this study were considered controls. Based on 

CTA expert reads, the remaining 395 patients had an occlusion in the anterior circulation at 

the following location:

I. Single site (n=241): cervical ICA (n=15); intracranial ICA (n=16); M1-MCA 

(n=161); M2-MCA (n=37); and distal MCA (n=12).

II. Tandem/multiple lesions (n=154): any ICA+M1 (n=124); any ICA+M2 (n=8); 

M1+M2 (n=5); cervical ICA+intracranial ICA (n=9); and M2+distal MCA 

(n=8).

Of those 395 patients with occluded vessels (Figure 1), 15 patients had isolated cervical ICA 

occlusions and 60 had M2-MCA occlusions without any intracranial LVOs. Of the 

remaining 320 patients with intracranial LVOs, 16 had isolated intracranial ICA, 161 had 

isolated M1-MCA occlusions, and 143 had tandem/multiple occlusions: M1+M2 (n=5); 
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cervical ICA+M1 (n=21); intracranial ICA+M1 (n=103); intracranial ICA+M2 (n=5); and 

intracranial and cervical ICA (n=9).

b. Reference standard

For patients enrolled in DEFUSE 2 and 3, the presence and exact location of an occlusive 

lesion had been previously determined by the investigators, and was verified by a 

neuroradiologist (S.A.A.) with 8 years post fellowship experience. For the remaining 

patients, two neuroradiologists (S.A.A and S.D., with 9 years post fellowship experience) 

evaluated the multimodal CTs including CTA for the presence and site of an occlusive 

lesion, in consensus, with all clinical and imaging data (including perfusion imaging) 

available for review. Any disagreements were resolved by review of all available imaging for 

the patient, including perfusion. These neuroradiologist reads served as the reference 

standard against which the diagnostic performance of the algorithm was assessed.

c. Algorithm Description

The underlying concept of the LVO detection presented here relies on software that performs 

elastic registration of three pre-specified anatomic assessment regions (R1, R2, and R3)13 

onto and then tubular filtering14 of CTAs to detect reduced opacification of anterior 

intracranial vessels relative to the contralateral hemisphere (Figure 1). This algorithm was 

implemented into RAPID 4.9.1 (iSchemaView, Menlo Park, CA) and ran on a conventional 

computer environment (2x Intel Xeon E5–2680 2.7 GHz CPUs with 8 cores and 

hyperthreading each, 64 GB RAM, CentOS 7 Linux). The algorithm used in this study has 

received Conformité Européenne labeling and has been cleared by the US Food and Drug 

Administration. It was used as provided by the vendor, without any modification or any 

further pre- or postprocessing. Relative vessel density thresholds for LVO detection can be 

chosen arbitrarily by the user but for this study the software’s default values were used: 

<80%–75% (BLUE), <75%–60% (GREEN), <60%–45% (YELLOW), and <45% (RED). 

For details of the algorithm, including definitions of the R1, R2, and R3 regions, the 

interested reader is referred to the Supplemental Material.

d. Statistical Analysis

The primary outcome was the diagnostic performance of the algorithm for detecting 

intracranial LVOs. Sensitivity and specificity for detecting an intracranial LVO was assessed 

using ROC analysis. Specifically, the algorithm’s ability to detect the presence of CT 

angiographic signs of an LVO – as indicated by absence or severe reduction of arterial 

opacification – was assessed for the intracranial ICA and the M1-MCA. The assessment of 

diagnostic performance was then repeated with proximal M2-MCA occlusions added to the 

LVO group.

Bootstrap analysis (1,000 repeats) was used to compute 95% confidence intervals for all 

parameters. The Area-under-the-ROC-curve (AUC) was used in conjunction with the 

DeLong algorithm for calculating the Standard Error of the AUC15. As the software is 

primarily intended to be used as a screening tool, a diagnostic sensitivity of ≥95% was made 

a requirement.
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Secondary outcomes were diagnostic performance of the algorithm for detecting LVOs in 

specific vessel segments and the processing speed. The algorithm’s diagnostic performance 

was evaluated for detecting occlusions at the following sub-sites: 1. Intracranial ICA 

(including terminal ICA); 2. M1-MCA; and 3. proximal M2-MCA. For analysis of each 

occlusion site, occlusions at the other two subsites were excluded.

All statistical testing was performed using MedCalc (MedCalc Version 17.2, MedCalc 

Software, Ostend, Belgium, 2017). An α level of 0.05 was used to indicate significance for 

all tests.

Results

Representative examples of automatic lesion detection in four patients with intracranial 

LVOs are shown in Figure 2. For the 926 cases that were processed, the median turn-around 

time, i.e. from start of data transmission to receipt of results, was 158 sec (IQR: 140–176 

sec) of which the elastic registration was the most time-consuming step (approx. 130 sec).

a. Intracranial LVOs

Intracranial LVOs: 320 patients had an intracranial anterior circulation LVO while the 

remaining 588 did not (Table 2). The automatic algorithm yielded an AUC of 0.941 (95%CI: 

0.926–0.957). The sensitivity target of ≥95% was achieved at a <75%–60% (GREEN) 

threshold, yielding a sensitivity of 96.87% (310/320) (95%CI: 94.3%–98.5%) and specificity 

of 74.32% (437/588) (95%CI: 70.6%–77.8%) (Figure 3A).

Intracranial LVOs + M2-MCA occlusions: 368 patients had an anterior circulation LVO 

or a proximal M2-MCA occlusion, while 543 patients did not. The target sensitivity of 

≥95% was met at the <75%–60% (GREEN) threshold, which yielded a sensitivity of 

(351/368) 95.38% (95%CI: 92.7%–97.3%) and specificity of (431/543) 79.37% (95%CI: 

75.7%–82.7%). The overall diagnostic performance – as measured by an AUC of 0.947 

(95%CI: 0.933–0.962) – improved slightly by adding M2 segments; this was due primarily 

to improved specificity with only a minor (1.49%) drop in sensitivity. (Figure 3B). For more 

details on the ROC analysis, the interested reader is referred to Table I (online-only 

Supplement).

b. Individual Vessel Segments

For this sub-analysis, the 531 patients who had no LVO or M2-MCA occlusion served as 

controls.

Intracranial ICA (including ICA terminus): 133 patients had an intracranial ICA 

occlusion. The algorithm yielded an AUC of 0.977 (95%CI: 0.965–0.989). The ≥95% 

sensitivity target was achieved with the <60%–45% (YELLOW) threshold that yielded a 

very high sensitivity of 96.99% (129/133) (95%CI: 92.5%–99.2%) at a specificity of 86.44% 

(459/531) (95%CI: 83.2%–89.2%) (Figure IIA online-only Supplement) (Table 3).

M1-MCA: 290 patients had an M1-MCA occlusion. The algorithm yielded an AUC of 0.962 

(95%CI: 0.948–0.976). Although the diagnostic performance as measured by AUCs was 
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slightly inferior for detection of M1-MCA occlusions compared to intracranial ICA 

occlusions. The ≥95% sensitivity target was met at the <75%–60% (GREEN) threshold, 

which yielded a sensitivity of 96.90% (281/290) (95%CI: 94.2–98.6) and specificity of 

79.66% (423/531) (95%CI: 76.0%–83.0%) (Figure IIB online-only Supplement).

M2-MCA: 60 patients had a proximal M2-MCA segment occlusion. The automated 

algorithm performed slightly worse than for detection of the M1-MCA segment occlusions, 

nevertheless yielding an AUC of 0.874 (95%CI: 0.826–0.921). The ≥95% sensitivity target 

could not be reached at any threshold but at the <80%–75% (BLUE) threshold a sensitivity 

and specificity of 90.00% (54/60) (95%CI: 79.5%–96.2%) and 74.95% (398/531) (95%CI: 

71.0–78.6), respectively, was achieved (Figure IIC online-only Supplement). For more 

details on the ROC analysis for individual vessel segments, the interested reader is referred 

to Table II (online-only Supplement).

c. False Negatives

The number of false negative, where an intracranial LVO was not detected even at the most 

sensitive threshold (<80%–75%; BLUE), were relatively small (n=14): 1 intracranial ICA, 8 

M1-MCA occlusion and 5 proximal M2-MCA occlusions.

For the 8 M1-MCA lesions, there were 3 short-segment or incomplete occlusions with 

reconstitution of flow immediately distal to the occlusion. Here, trickle flow across an 

incomplete occlusion or retrograde filling via leptomeningeal collaterals led to normal or 

increased ipsilateral vessel density. The 5 remaining were mid-to-distal M1-MCA occlusions 

distal to the R1 region level (Figure 1) with robust leptomeningal collaterals reconstituting 

the M2-MCA segments, resulting in normal or increased vessel density in the ipsilateral R2 

and R3 regions. (Figure III in the online-only Supplement provide examples of these false 

negative cases). The only intracranial ICA occlusion that was missed was at the skullbase, 

with normal opacificiation of the supraclinoid ICA (Figure IVa, online-only Supplement)

5 M2-MCA occlusions were missed: one occlusion was located in the upper half of the 

Sylvian cistern, which was not covered by the R2 template; two were occluded non-

dominant proximal superior M2-MCA branches; two were short-segment proximal 

occlusions of their inferior M2 divisions with reconstitution immediately distal to the 

occlusion (Figure IVb, online-only Supplement), indicating robust leptomeningeal 

collaterals. When proximal M2-MCA occlusions were included in the group, in addition to 

intracanial LVOs, the total number of false negatives decreased from 14 to 9.

d. False Positives

There were 11 false positives for LVO detection at the most specific threshold (RED, where 

there was a marked inter-hemispheric vessel density difference of <45%). These were 

attributed to: 1. substantial inter-hemispheric variation in MCA anatomy (n=4) or fetal-

origin of the posterior cebebral artery (PCA, n=1); 2. holohemispheric subdural hematoma 

with mass effect resulting in 17mm midline shift (n=1); 3. an 8mm distal MCA aneurysm; 4. 
M2-MCA stenosis (n=3); and 5. incomplete recanalization (TICI 2b) after a mechanical 

thrombectomy attempt 24 hours prior to the CTA (n=1). There were an additional 17 false 
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positives for LVOs detection when M2-MCAs were not included in the LVO group; all 17 

were proximal M2-MCA occlusions.

False positives at the <80%–75% (BLUE), <75%–60% (GREEN) and <60%–45% 

(YELLOW) thresholds were due to: anatomical variation in M1-MCA branching patterns 

and vessel calibers, fetal origin of the PCAs and other vascular pathology, such as ipsilateral 

segmental flow reduction in chronic steno-occlusive disease and contralateral increase in 

blood flow due to reactive hyperaemia (eg due to reperfusion of an infarct or seizures in a 

patient with a glioblastoma). These examples can be found in the online-only supplement 

(Figures V and VI).

Discussion

This study evaluated a new algorithm for automated detection of intracranial anterior 

circulation LVOs and demonstrated that it has excellent diagnostic sensitivity and high 

specificity. The short processing time (<160 sec) makes its application feasible in the 

emergent clinical setting.

Previous studies have shown that neuroradiologists can detect LVOs with 89–98% sensitivity 

and 95–98% specificity9, 16. Automation, which does not achieve this high specificity, 

cannot replace radiologists; rather, its strength and utility lie in the high sensitivity, which 

allows expedited diagnosis of LVOs by flagging and prioritizing these scans as requiring 

urgent radiologist review. A very high sensitivity is a requirement for a screening tool. The 

algorithm met the targeted sensitivity of ≥95% for the detection of any intracranial LVO. 

This is comparable to that of experienced neuroradiologists, whose sensitivity for detecting 

LVOs is high but imperfect, reported to be 90% for detection of ICA occlusions in one 

study16. Sensitivity is lower for readers with less experience in interpreting cranial CTA, 

such as general radiologists and trainees, with sensitivity as low as 63% in one study17.

At many centers around the world, trainees are the first to interpret multimodal stroke CTs, 

which are subsequently formally read by a neuroradiologist. Further, not all hospitals and 

healthcare services around the world have access to around-the-clock neuroradiology 

expertise. At some primary stroke centers and community hospitals, such as that from which 

cohort 5 was drawn, general radiologists interpret multi–modal stroke CTs and there is 

typically only one on-call radiologist or resident after-hours due to limited resources. Acute 

stroke scans may be overlooked in this setting when other emergent scans such as trauma are 

given priority. These factors can contribute to delayed and missed diagnosis of LVOs in the 

authors’ experience. The fully automated algorithm is likely to be both a valuable diagnostic 

aide and screening tool in these settings. It can expedite the correct diagnosis by bringing 

positive findings to the reporting radiologist’s or resident’s attention. It can also facilitate 

notification of the stroke team and neurointerventionalist, allowing mobilization of the clot 

retrieval team which in turn would expedite treatment of eligible patients. Another important 

consideration is that the algorithm provides consistency, in contrast to the surprisingly poor 

inter-rater agreement between human readers18.
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For individual segments, an almost perfect sensitivity was achieved for occlusion of the 

intracranial ICA or M1-MCA; sensitivity for detection of proximal M2-MCAs was slightly 

lower. This was attributable to false negatives resulting from short segment (where 

collaterals reconstituted the M2 segment immediately distal to the occlusion) and incomplete 

(with antegrade flow) occlusions, where the interhemispheric vessel density reduction was 

too small for the algorithm to detect. It is thought that robust collaterals confer a longer 

time-window for treatment19, 20. On post hoc analysis, the algorithm did not miss an LVO in 

any patient with poor collaterals; these patients are likely to be “fast progressors”, in whom 

expeditious reperfusion is imperative for tissue salvage19, 20. It is important that radiologists 

and neurologists are cognizant of the presence and causes of false negatives, and a negative 

result should not dissuade thorough and careful evaluating the CTA as soon as practicable.

The algorithm’s overall specificity was >74% for intracranial LVO detection and >79% 

when M2-MCAs were included. For individual segments, specificity was 75% for detection 

of M2-MCA occlusions, increasing to 80% for M1-MCA and 86% for intracranial ICA 

occlusions. The justification for including M2-MCA occlusions in the LVO detection 

algorithm is that they are now a subject of interest as a mainstream target for ECR. 

Thrombectomy may improve outcomes compared to standard medical management in 

patients with M2-MCA occlusions21. Detection of M2-MCA occlusions was, however, more 

challenging due to the greater anatomic variability and smaller caliber of these vessels. 

Moreover, the version of the software used for this study constrained the region of interest, 

in which vessel density was determined, to cover only the proximal half of the M2 segments, 

to the mid-point of the Sylvian cistern; future implementations will expand the region 

further distally.

The LVO detection tool evaluated in this study had three regions, R1-R3, and four different 

thresholds for LVO detection, reflecting lesion location and increasing severity of vessel 

density reduction. The diagnostic sensitivity decreased while specificity increased when the 

threshold was changed from <80% to <45% vessel density reduction. The (<75%–60%) 

threshold was found to be optimal; it yielded the desired sensitivity of ≥95% with an 

acceptable specificity between 70%–80%. For radiologists, this would still substantially 

decrease the number of scans that require emergent review. If, however, fewer ‘false LVO 

alerts’ are desired, this can be achieved simply by moving along the ROC curve and trading 

the target >95% sensitivity for increased specificity.

To our knowledge, this is the first peer-reviewed publication which has introduced an 

automated LVO detection tool and evaluated its performance in a multicenter study that 

incorporates a large and diverse cohort of patients. A few conference abstracts have been 

published recently related to this topic yet unrelated to this algorithm22–24. The number and 

mix of patients enrolled and the results reported in these abstracts vary widely, with a 

sensitivity for LVO detection of 90%–97% and a broad specificity range of 52%–83%.

A strength of this pooled cohort study is that we included patients who were enrolled in two 

high-profile multicenter stroke trials7, 12. This provided validation of the algorithm in a 

preselected cohort of acute ischemic stroke patients with an LVO who were considered 

thrombectomy candidates. The large number of patients with LVOs allowed robust testing of 
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diagnostic sensitivity. The other large cohort consisted of consecutive patients presenting to 

a regional hospital with a suspected acute ischemic stroke. Inclusion of this cohort of “all 

comers” allowed testing of the algorithm on a broad spectrum of stroke mimicks and ensures 

broad applicability of our findings to the population of patients in whom LVO detection 

tools will most likely be used. Inclusion of multiple patient cohorts from different sites in 

this study allowed testing and validation of the algorithm on different makes and models of 

CT scanners and CTA protocols.

This study has a few pertinent limitations. First, it is a retrospective study. As such, we did 

not have complete datasets for all patients, particularly with regard to clinical information 

regarding long-term outcomes and clinical scores. A prospective study that includes at least 

one comprehensive stroke center (hub) and several peripheral and regional/community 

hospital (spokes) is required to test whether the tool can be used to streamline intra- and 

inter-institutional workflows. Limitations related to the algorithm itself include the 

processing requirement for thin slice CTA raw data and arterial opacification. Thin-slice 

CTA data is routinely acquired even on older generation multiuslice CT scanners, which 

may still be in use at some centers. The requirement for contrast opacification of the 

intracranial arteries also applies to the human reader. There were 15/969 (1.5%) patients in 

whom arterial opacificiation on CTA was deemed either absent or too poor to allow accurate 

interpretation by an experienced human reader. 8 of these cases were from cohort 5, a 

regional hospital. The proportion of technically inadequate studies may be higher at smaller 

community hospitals where the volume of CTAs performed is smaller and technologist staff 

are therefore less experienced. All cases where the arterial opacification was deemed to be 

sufficient to allow human interpretation were successfully processed by the algorithm.

It is noted that the algorithm does not directly detect the clot but rather the resultant loss of 

vessel opacification, therefore false positives result from chronic occlusions. The purpose of 

this software is to serve as a triage tool that alerts radiologists to a patient with a potential 

LVO, and in turn trigger evaluation of the patient’s multimodal CT by the human reader who 

can then use all available information (not just the CTA) to make a judgement call. Precise 

localization of the occlusion site and differentiation of chronic occlusions by the algorithm is 

therefore not critical and was hence not evaluated in this study.

In summary, intracranial LVOs within the anterior circulation – inclusive of proximal M2-

MCA occlusions – can be detected effectively and efficiently by an automated computerized 

screening tool. Future prospective studies may be warranted to determine whether this tool 

can be used to improve workflow and expedite treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. Pictorial Description of Automatic LVO Detection Algorithm.
After (1) importing raw, thin-slice CTA DICOM images, (2) only slices above C1 are used 

for further processing and the CT head holder is removed. A (3) CT head template is then 

co-registered to the patient’s CTA and subsequently the CTA analysis regions (which were 

previously defined on the CT template) are spatially transformed onto the patient’s CTA 

scan. Next, all bone is removed (4). Tubular filters are applied (5) to extract vessels. Then, 

(6) the density (in Hounsfield units) sum of all voxels constituting the large vessels and the 

density sum of all voxels constituting distal vessels are computed and (7) hemispheric 

comparisons are made. (8) Areas where the vessel density sum drops below prespecified 

threshold are highlight as color overlays on maximum intensity projections.
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Figure 2 –. Example results for automatic LVO detection.
A) 65-yo male with distal ICA occlusion (open arrows) and occlusion of A1-ACA segment 

(curved arrow) with partial reconstitution of through collaterals (arrow). The area of severe 

vascular density reduction as determined by the algorithm is shown in red. B) 72-yo female 

with a left proximal M1-MCA occlusion (open arrows). The area of abnormal density found 

by the software is highlighted in red. C) 84-yo male with a distal M1 occlusion on the left 

(open arrows) and the area of abnormal vessel density in red. D) 55-yo male with occlusion 

of the proximal left superior M2 division (open arrows) and corresponding region picked by 

the software. The degree of vessel density reduction was less than in the other three patients.
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Figure 3 –. ROC Analysis.
ROC curves for detection of all intracranial LVOs (A) and all intracranial LVOs and 

proximal M2-MCA segment occlusions (B). Dots on the ROC curve indicate individual 

threshold levels; the one with the lowest sensitivity and highest specifity is the <45% 

threshold whereas the highest sensitivity and lowest specificity were at the <80%–75% 

threshold. The open circle indicates the maximum Youden index. The asterisks indicate the 

threshold at with the ≥95% sensitivity target was reached with the highest specificity. The 

significance level in the legend indicates the p-value of the z-statistic derived from the 

DeLong algorithm.
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