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Abstract
Conventional analyses of observational data may be biased due to confounding, sampling and measurement, and may 
yield interval estimates that are much too narrow because they do not take into account uncertainty about unknown bias 
parameters, such as misclassifi cation probabilities. We used a simple, multiple bias adjustment method to estimate the 
causal effect of social anxiety disorder (SAD) on subsequent depression. A Monte Carlo sensitivity analysis was applied 
to data from the Early Developmental Stages of Psychiatry (EDSP) study, and bias due to confounding, sampling and 
measurement was modelled. With conventional logistic regression analysis, the risk for depression was elevated in the 
presence of SAD only in the older cohort (age 17–24 years at baseline assessment); odds ratio (OR) = 3.06, 95% confi -
dence interval (CI) 1.64–5.70, adjusted for sex and age. The bias-adjusted estimate was 2.01 with interval limits of 0.61 
and 9.71. Thus, given the data and the bias model used, there was considerably more uncertainty about the real effect, 
but the probability that SAD increases the risk for subsequent depression (OR > 1) was 88.6% anyway. Multiple bias 
modelling, if properly used, reveals the necessity for a better understanding of bias, suggesting a need to conduct larger 
and more adequate validation studies on instruments that are used to diagnose mental disorders. Copyright © 2007 John 
Wiley & Sons, Ltd.
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Introduction
A causal effect of a factor in an individual can be 
simply defi ned as the presence of a difference in a sub-
sequent outcome between the two factor levels. In the 
present study we attempted to address bias when esti-
mating the effect of social anxiety disorder (SAD) on 
the probability of subsequently developing depression. 
Imagine a person with SAD who subsequently develops 
depression that would not have occurred if the person 
did not previously have SAD. For this person SAD 
caused depression. Having not had SAD instead of 
having had SAD is referred to as a ‘counterfactual 
condition’, and the associated outcome (no depression) 
is be referred to as a ‘counterfactual’ or ‘potential’ 
outcome (see Höfl er, 2005a and references therein). 
When referring to counterfactual causality it is crucial 
to consider

• whether all individuals with SAD could have had 
no SAD, and

• whether all individuals who did not have SAD 
could have had SAD.

The fi rst condition can be assumed because SAD 
could have been prevented with cognitive behavioural 
methods. The second condition is uncertain because 
there could be a genetic vulnerability, that is necessary 
to develop SAD, which may be lacking in some indi-
viduals. Therefore, the analysis reported in the present 
study refers mainly to a population of persons with 
SAD. Individuals who do not have SAD are considered 
to be ‘substitutes’ for individuals with SAD but not 
necessarily vice versa. To obtain stable estimates, one 
must include many individuals under both conditions. 
Therefore, because an individual can only be observed 
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under one condition, only population average effects 
can be estimated. Even if there is no average effect, 
there might be individual effects that cancel out. This 
concept of counterfactual causality has become stand-
ard in epidemiology (Höfl er, 2005a and references 
therein). It refl ects the viewpoint intervention on cau-
sality upon which public health decisions depend. For 
instance: should one intervene in cases of SAD to 
prevent depression? That is, would intervention in 
SAD decrease the incidence of subsequent depression? 
It is important to note that the effects of intervention 
depend heavily on the mode of intervention in a mul-
tivariate framework (Greenland, 2005a). For example, 
intervention in SAD may be more effective if it occurs 
at a younger age and even more effective if the inci-
dence of SAD is fully prevented.

Bias
Estimates of causal effects are often biased, for example 
due to measurement error. For instance, a disorder may 
not be measured although it is present (Höfl er, 2005b). 
Randomized clinical trials tend to yield lower bias than 
observational studies but they are often costly and dif-
fi cult to conduct. A common strategy is to screen for 
associations between factors and a particular disorder 
or disease in cross-sectional or case-control studies, 
which are the easiest and least costly studies, and to 
further investigate any identifi ed associations with a 
prospective study. Finally, if the associations are con-
fi rmed, a randomized study may be conducted.

Unfortunately, bias and random error can mask 
effects at any of those stages, so the strategy might fail 
if bias is not suffi ciently considered or understood. An 
intricate, although invaluable, approach is to simulta-
neously conduct a randomized trial and an observa-
tional study on the same population. This was done in 
the Women’s Health Initiative (Prentice et al., 2005). 
If bias in the randomized trial is low, it provides a valid 
basis with which to estimate bias in the observational 
data. Unbiased estimates of causal effects are only guar-
anteed if various assumptions are true, including:

• randomized exposure, which guarantees that indi-
viduals are exchangeable across conditions despite 
random error;

• random selection of individuals from the target 
population, upon which inference is to be made;

• random occurrence of missing information within 
levels of controlled covariates; and

• absence of any measurement error in exposure, 
confounder, and outcome variables (for example, 
Rosenbaum and Rubin, 1983; Holland, 1986; Little 
and Rubin, 2000; Maclure and Schneeweiß, 2001; 
Maldonado and Greenland, 2002; Höfl er, 2005a). 
In observational studies, participants are not ran-
domly assigned to exposure levels.

Thus, results may be confounded by factors that 
affect both exposure and outcome (for example, 
Rothman and Greenland, 1998). The exposure and the 
outcome variable may be measured with error, whereas 
in randomized studies with perfect compliance there is 
no measurement error for exposure. In experimental 
and observational studies, individuals are often not 
randomly selected from the target population and, if 
they are, there are frequently systematic non-responses 
or dropouts that may introduce bias (Höfl er et al., 2005). 
Confounding, selection, and measurement often con-
stitute the major sources of bias in observational studies 
and, in the present study, bias adjustment is restricted 
to those three types of bias. Some authors have serious 
concerns about any attempts to estimate causal effects 
from observational data. However, many of the con-
cerns appear to be of a semantic nature. We do not 
claim that we are able to remove bias or establish causa-
tion by adjusting for supposed bias. However, we can 
develop multiple bias models that refl ect available 
knowledge about bias and we can make defendable 
assumptions about bias parameter distributions and use 
them to compute the distribution of the unknown effect 
given the data and the bias model used. We can also 
apply several bias models that refl ect a realistic sample 
of all possible scenarios of bias to determine how sensi-
tive the results of one particular bias model are. These 
issues were summarized by Greenland (2005b):

I regard any causal analysis of observational data 
(or randomized trial with major compliance prob-
lems) as just a piece of sensitivity analysis; it is 
the piece in which results are obtained under the 
particular assumptions of that analysis. Because 
we never know that the assumptions are correct 
(and in fact would wisely doubt them), we had 
better try more than one analysis.

In the current study, a method that is relatively easy 
to implement was applied to address bias when estimat-
ing the causal effect of SAD on subsequent depression 
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(major depression or dysthymia), using data from the 
Early Developmental Stages of Psychiatry (EDSP) study. 
Our aim was to demonstrate if and how the results of 
the study changed based on meaningful assumptions 
made about bias due to confounding, selection, and 
measurement.

Conventional analyses and methods to 
address bias
Using conventional statistical methods, data are ana-
lysed as if they were generated in a randomized experi-
ment with perfect compliance. That is, subjects are 
selected randomly from a target population, there is no 
measurement error, and so forth. Such conventional 
analyses include well-known methods such as the chi-
squared test for independence, analysis of variance and 
logistic regression. Usually, the only corrections made 
in epidemiological studies of mental disorders are 
adjustments for potential confounders like age and sex 
in regression models and the use of sampling weights 
to reduce bias due to selection (Höfl er et al., 2005). 
These adjustments, however, do not address confound-
ing and sampling bias due to unconsidered factors or 
measurement error. In defence of conventional analysis 
methods, results can be interpreted, although not caus-
ally, by expressing them in statements like ‘Individuals 
that meet the criteria for disorder X subsequently meet 
the criteria for disorder Y more frequently than would 
be expected by chance.’ It is not clear what ‘expected 
by chance’ means if individuals were not randomly 
selected or randomly assigned to groups (Greenland, 
1990). Moreover, researchers are hardly interested in 
crude associations; they are interested in whether and 
to what extend X causes Y (Soldani et al., 2005). Con-
ventional estimates of causal effects can be false in two 
ways. First, point estimates may be biased for the reasons 
mentioned above. Second, interval estimates are often 
much too narrow because they do not take any uncer-
tainties about unknown bias parameter values into 
account (for example, misclassifi cation probabilities). 
The more uncertain the bias parameter values the more 
uncertain a causal estimate should turn out to be 
(Greenland, 2003, 2005c). Bias that is not accounted 
for may yield false positive conclusions or push an esti-
mate toward the null value of no effect. Bias parameters 
can, at best, be estimated. For instance misclassifi cation 
probabilities can be estimated from validation studies.

The degree to which bias parameter values are 
uncertain depends on the depends on the size of the 

sample from which they are assessed or, if they have to 
be guessed at, the degree of subjective variance. Impor-
tantly, the relative impact of uncertainty on bias 
parameter values increases as the sample size increases, 
because random error decreases while uncertainty 
remains constant (Greenland, 2005c). For instance, 
suppose that the sample size for the causal analysis 
increases but the sample size from which misclassifi ca-
tion probabilities are estimated remains the same. In 
such a case, random variation decreases but uncer-
tainty about misclassifi cation probabilities (systematic 
variation) remains unchanged. In the vast majority of 
papers, discussions about bias are based on intuition 
only. If bias is evaluated numerically, however, such 
discussions frequently turn out to be inappropriate 
(Greenland, 2004, 2005c).

Methods to correct for bias and take into account 
uncertainty about bias parameter values include Baye-
sian bias models and Monte Carlo sensitivity analysis 
(MCSA). Bayesian methods directly compute the prob-
ability distribution of an unknown causal effect given 
the data and a bias model. Bias models include the 
types of bias that are supposed to exist, assumptions 
about how those biases act together, and uncertainties 
about bias parameter values. These uncertainties are 
summarized in ‘prior distributions’.

Monte Carlo sensitivity analysis (Greenland, 2001, 
2004) is easier to implement than Bayesian models, and 
its results approach those of Bayesian models if the 
estimator of a causal effect is effi cient, the data provide 
no information about the bias parameters, and the 
MCSA is modifi ed as described below (Greenland, 
2005c). Importantly, these methods account for under-
stood biases only, and results may still be biased by 
misunderstood or unknown sources of bias (Greenland, 
2003, 2005c). Note that conventional analyses, if 
regarded from the Bayesian point of view, are based on 
wrong point prior distributions at zero on the parame-
ters that produce bias. That is, they assume that all bias 
parameter values (for example, misclassifi cation proba-
bilities) equal 0 with 100% certainty (Greenland, 
2005c).

Data
We used data from the EDSP study to estimate the 
causal effect of SAD on depression. The EDSP is a 
prospective study of the general population that exam-
ined the early developmental stages of mental and sub-
stance-use disorders including risk and vulnerability 
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factors (Wittchen et al., 1998a,b; Lieb et al., 2000). 
Individuals were randomly sampled from the greater 
Munich area, Germany. Diagnoses of mental disorders 
were based on DSM-IV (American Psychiatric Associa-
tion, 1994) criteria assessed with the Munich version 
of the Composite International Diagnostic Interview 
(M-CIDI; Wittchen and Pfi ster, 1997).

At baseline investigation (T0) study participants were 
between the ages of 14 and 24 years. The fi rst follow-up 
assessment (T1) took place 19.7 ± 2.3 (SD) months after 
T0, and was completed only by those participants who 
were 14–17 years of age at T0. The second follow-up 
assessment (T2) which was 41.7 ± 3.0 (SD) months 
after T0 and was to be completed by all probands. T1 
and T2 assessments together encompass the entire 
T0–T2 follow-up period. Figure 1 summarizes the sam-
pling procedure and non-response and conditional drop-
out rates and indicates where bias is likely to occur.

At T0, 441 of the 3021 participants met the criteria 
for lifetime major depression, dysthymia, hypomanic 
episodes, or manic episodes and were excluded from 
analyses. At T2 397 individuals dropped out and were 
also omitted from analyses. Thus, data from 2183 par-
ticipants were available for analysis. At T0, SAD also 
included individuals who did not fulfi l the DSM-IV 
impairment criterion. Depression at follow-up (T1 or 
T2) was defi ned as meeting criteria for major depression 
or dysthymia. Most of the interviewers who performed 
the T0 SAD assessment were different from those who 
performed the T1 and T2 depression assessments. Fur-
thermore, the T1 and T2 interviewers were blind to 
participant T0 SAD status. The M-CIDI ensures high 
objectivity because the interviewers have no control 
over the course of an interview. The sequence of ques-
tions is fully determined by previous answers, and diag-
noses are calculated according to fi xed algorithms.

Bias due to confounding

1994/1995 Sampling Sampled and eligible for the study (14-24 years): n = 4,263

)%9.07( 1203 = n enilesaB5991
investigation

14-17 years: n = 1,395 18-24 years: n = 1,626
)%1.86()%3.47(

No depression: n = 2,580 

No depression: n = 1,252 No depression: n = 1,328 

1996/1997 First follow-Up 1 n = 1,140 Bias due to selection
(88.4%)

2
1998/1999 Second follow-up

031,1 = n 350,1 = n
)%1.58()9.49(

n = 2,183 (81.5%)

Bias due to measurement

1: n = 67 respondents aged 14-17 years at baseline participated only at baseline and the second follow-up investigation.

2: n = 986 Probanden participated at all three investigations.

Figure 1. EDSP study design and potential biases.
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Bias model
According to the comprehensive sequential model of 
bias by Maclure and Schneeweiß (2001), containing 11 
sources of bias, bias due to confounding is the fi rst to 
occur (among the three kinds of bias considered here) 
followed by bias due to selection and bias due to meas-
urement. This suggests that bias should be accounted 
for in the inverse order i.e. bias due to measurement, 
selection and, fi nally, bias due to confounding 
(Greenland, 2005c). Basically, we assume that different 
sources of bias act independently of each other. This 
means, for instance, that if we know that misclassifi ca-
tion probabilities are high, we would not assume par-
ticularly high or low probabilities of participation and 
vice versa. Our aim is to adjust for supposed bias when 
estimating the odds ratio (OR) of SAD with the sub-
sequent onset of depression. We use the OR because 
we want to show how the results from a conventional 
analysis change when bias is taken into consideration. 
Limitations of the OR are numerical (Kraemer et al., 
1999; Kraemer, 2003) and related to causal interpreta-
tions (Greenland, 1987, 1993). To address these limita-
tions we present the crude cross tabulations of SAD 
and depression. Together with the bias-adjusted OR, 
this allows the reader to calculate any desired index of 
association from the cross tabulation that one would 
expect after adjusting for bias. For example, one could 
replace the frequency of individuals with tabulations of 
SAD and depression with the frequency corresponding 
to the adjusted OR while leaving the other cell fre-
quencies fi xed, and then multiply each cell size by a 
constant to match the original sample size. From the 
posterior OR distribution, based on the data and the 
bias model, one can compute the probability that SAD 
increases the risk of depression, which is not possible 
with conventional frequentist analysis. We attempted 
to map the observed counts in the 2 × 2 cross-table of 
reported SAD and depression into the 2 × 2 table that 
one would expect if our bias model was true, and recal-
culate the OR. We used a fl at prior distribution for the 
unknown causal effect as Greenland (2005c).

Bias due to measurement
We excluded individuals who had depression at T0 
from the analysis, so bias due to measurement might 
have occurred prior to bias due to selection. This 
appears to contradict our sequential approach. 
However, additional analyses demonstrated that socio-
demographic variables and diagnoses at T0 did not 

predict dropout to any considerable extent (Lieb et al., 
2000; Höfl er et al., 2005). Thus, we assume that bias 
due to selection had already occurred at T0. Misclassi-
fi cation can be modelled by multiplying a misclassifi ca-
tion matrix by the matrix that contains the observed 
counts (Greenland, 2005c, and references therein). For 
the observed counts of depression and SAD, a misclas-
sifi cation matrix would aim to map the observed depres-
sion and SAD counts onto a matrix of the true 
depression and SAD counts. The 16 unknown elements 
of this misclassifi cation matrix can be factored into 
probabilities for (a) true depression given true SAD, 
observed depression, and observed SAD; and (b) true 
SAD given observed depression and observed SAD (see 
Greenland, 2005c, for the general case). These 16 
misclassifi cation probabilities contain 12 degrees of 
freedom. That is, the remaining four probabilities can 
be calculated from the joint frequencies of depression 
and SAD, which can be estimated from the data. The 
corresponding 12 unknown parameters contain:

• Four positive predictive values (PPVs) for observed 
depression. That is, the probability that there is true 
depression given that depression is observed and 
given the observed and true values of SAD.

• Four negative predictive values (NPVs) for depres-
sion. That is, the probability that there is no true 
depression given that no depression is observed and 
the observed and true values of SAD.

• Two PPVs for SAD. That is, the probability that 
there is true SAD given that SAD has been observed 
and the observed value of depression.

• Two NPVs for SAD. That is, the probability that 
there is no true SAD given that no SAD has been 
observed and the observed value of depression.

The OR can be recomputed from the resulting 
depression-SAD cross tabulation that would be expected 
given the data and the model of misclassifi cation. We 
assume that PPVs and NPVs are independent of other 
variables if we take true and observed SAD (or observed 
depression, resp.) into account.

Bias due to selection
As mentioned in the introduction, inference was made 
primarily on the population from which a subset of 112 
individuals with SAD at T0 was drawn. This sample is 
too small for stable assessments and, in prior analyses, 
there were no considerable differences in dropout rates 
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between individuals with and without SAD at T0 (Lieb 
et al., 2000; Höfl er et al., 2005). Therefore, assessment 
of bias due to selection is based on the difference in 
dropout rates between the 2,183 participants in the 
analysis and those individuals who did not participate 
at T1 or T2 and had no depression at T0. The OR that 
is adjusted for bias due to measurement can be further 
adjusted for bias due to selection by dividing by the 
following expression (Greenland, 2005c):

R(depression, SAD) R(nodepression, no SAD)
R(depression, no SAD)

⋅
⋅⋅ R(nodepression, SAD)

.

Where R(·) is the probability of completing the study 
given the true status of depression and SAD.

Bias due to confounding
To correct for confounding, we assume there is a latent 
binary factor, U, which affects both SAD and depres-
sion. U can be illustrated by imagining a hidden vari-
able that represents two latent classes, individuals with 
low (U = 0) and high (U = 1) vulnerability for SAD 
and depression. The OR that is already adjusted for bias 
due to measurement and selection can be further 
adjusted for bias due to confounding bias by dividing 
by the following expression (Greenland, 2005c):

(OR OR 1)( 1)
(OR 1)(OR 1)

U,SAD U

U,SAD U,depression

⋅ ⋅ + +
⋅ + ⋅ +

λ λ
λ λ

.

Where ORU,SAD and ORU,depression are the causal ORs 
between U and true SAD and depression. And λ is the 
odds (probability/(1-probability)) that U = 1 if there is 
no true SAD and no true depression. To compute the 
OR between true SAD (depression, resp.) and U, we 
only need the probabilities that there is true SAD 
(depression, resp.) given U = 0 and U = 1.

Estimation procedure
The MCSA procedure to simulate the distribution of 
the bias-adjusted OR, ORbc, is as follows (Greenland, 
2005c):

1. Compute the depression – SAD cross tabulations or 
the expected cross tabulations based on the adjust-
ments already made in conventional analysis.

2. Draw a random number from the prior distribution 
of each of the 12 + 4 + 5 = 21 bias parameters.

3. Compute the bias-adjusted OR, ORbc, as described 
in the sequential procedure above. Calculate the 

standard error of ln-ORbc, denoted as SEbc, under 
the assumption that the random numbers from Step 
2 were the true bias parameter values.

4. Add a normal (0, SEbc) disturbance to ln-ORbc, and 
continue with Step 2 until the ORbc distribution 
remains virtually unchanged. We used 250 000 rep-
lications as Greenland (2005c).

Step 4 constitutes the modifi cation of the MCSA pro-
cedure that improves the Bayesian interpretability of 
MCSA methods (Greenland, 2005c).

Prior distributions of bias parameters
We translated the prior distributions of the 21 unknown 
probabilities into meaningful data equivalents. 
That is, each prior distribution was expressed as a point 
estimate and a sample size assumed to be equivalent 
to the estimate’s precision, with a larger sample size 
indicating greater precision (Greenland, 2006). 
The uncertainties of the probabilities were modelled 
with beta distributions. Let p be the prior point 
estimate of an unknown probability and N the associ-
ated sample size. Our uncertainty about an unknown 
probability is summarized as a beta(a,b) distribution 
with a = p ∗ (N − 2) and b = (N − 2) ∗ (1 − p). Table 1 
shows the p and N values we chose for the 21 
probabilities.

Priors for misclassifi cation probabilities are diffi cult 
to determine. Self-reports can be faulty for various 
reasons, including memorization, cognition, social 
desirability, lying and instrument-related factors, such 
as wording of questions (Ritter et al., 1998; Kessler 
et al., 2000; Schwarz and Oyserman, 2001; Hardt and 
Rutter, 2004). The priors for the unknown misclassifi -
cation probabilities are based on data from Reed et al. 
(1997) because this is the only study in which the valid-
ity of the CIDI was assessed with DSM-IV criteria. In 
that study, single and recurrent depressive episodes 
were assessed rather than major depression. According 
to cumulative lifetime incidence estimates from the 
EDSP until T2, the results from individuals with 
depressive episodes were weighted fi ve times more than 
those of individuals with dysthymia in the present 
analysis.

In Reed et al. (1997) PPVs and NPVs were not 
studied in strata according to comorbid diagnoses so we 
had to make assumptions about how the probabilities 
differed according to diagnoses of SAD or depression. 
For depression, we assumed higher PPVs when the true 



Estimating causal effects from observational data with a model for multiple bias 83

Int. J. Methods Psychiatr. Res. 16(2): 77–87 (2007)
Copyright © 2007 John Wiley & Sons, Ltd DOI: 10.1002/mpr

Table 1. Prior distributions of bias parameters

  Point estimate
  of probability

1. Misclassifi cation  % N
 positive predictive values for DEP P(DEP = 1 | DEP* = 1, SAD = 0, SAD* = 0) 90 12
 P(DEP = 1 | DEP* = 1, SAD = 0, SAD* = 1) 85 12
 P(DEP = 1 | DEP* = 1, SAD = 1, SAD* = 0) 80 12
 P(DEP = 1 | DEP* = 1, SAD = 1, SAD* = 1) 90 12
 negative predictive values for DEP P(DEP = 0 | DEP* = 0, SAD = 0, SAD* = 0) 98 39
 P(DEP = 0 | DEP* = 0, SAD = 0, SAD* = 1) 90 39
 P(DEP = 0 | DEP* = 0, SAD = 1, SAD* = 0) 95 39
 P(DEP = 0 | DEP* = 0, SAD = 1, SAD* = 1) 98 39
 positive predictive values for SAD P(SAD = 1 | SAD* = 1, DEP* = 0) 70 7
 P(SAD = 1 | SAD* = 1, DEP* = 1) 70 7
 negative predictive values for SAD P(SAD = 0 | SAD* = 0, DEP* = 0) 98 27
 P(SAD = 0 | SAD* = 0, DEP* = 1) 98 27
2. Participation probabilities
 P(participation | SAD = 0, DEP = 0) 60 1265
 P(participation | SAD = 0, DEP = 1) 57 146
 P(participation | SAD = 1, DEP = 0) 60 74
 P(participation | SAD = 1, DEP = 1) 63 27
3. Confounding
 Prevalence of a latent binary confounder U 10 300
 P(SAD = 1 | U = 0)  7 50
 P(SAD = 1 | U = 1) 15 25
 P(DEP = 1 | U = 0) 15 50
 P(DEP = 1 | U = 1) 30 25

and observed SAD status agreed (90% versus 85% and 
80%). This assumption was justifi ed by supposing that 
there were shared factors (for example, personality 
traits) that decreased both the probability of reporting 
true SAD and true depression. If SAD was not diag-
nosed although truly present, we assumed that the 
NPV was higher (85%) than if SAD was diagnosed and 
truly present (80%). Similar assumptions were made 
about NPVs for depression (see Table 1). The PPVs and 
NPVs for SAD were assumed to be equal in individuals 
with and without depression because depression was 
assessed after assessing SAD. The Ns for the priors were 
chosen as the number of individuals in the Reed et al. 
(1997) study from which the PPVs or NPVs, respec-
tively, could be estimated, divided by the number of 
subgroups required for bias modelling (two subgroups 
for SAD and four for depression). Differences in par-
ticipation rates between the four groups defi ned by the 
joint SAD and depression status were estimated with 
the dropout rates from the EDSP at T0 to T2, according 
to observed SAD and depression, and were weighted as 

described below. The overall participation rate was esti-
mated as 60%, the EDSP response rate up to T2. The 
Ns were chosen as the unweighted Ns from the EDSP 
in the four observed cells, and they were divided by four 
to account for uncertainty about whether dropout rates 
could be used to estimate rates for completion of T0 to 
T2. We assumed a 10% prevalence of vulnerability for 
SAD and depression among individuals with neither 
SAD nor depression and twofold probabilities for SAD 
and depression in the presence of vulnerability. The 
overall rates of SAD and depression that were necessary 
to compute ORs were estimated with cumulative life-
time incidences in the EDSP up to T2. Our assump-
tions about the risks for having either of the disorders 
were supposed to be as precise as a sample size of 25 if 
vulnerability was present and 50 if vulnerability was 
not present.

Results
The cross tabulations of SAD at T0 and the incidence 
of depression at T1 and T2 are presented separately for 
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each age cohort (18–24 versus 14–17 years at T0) in 
Tables 2A and 2B.

The results differ apparently between the two age 
cohorts. In the older cohort, the risk of depression in 
the sample was considerably elevated in the presence 
of SAD (22.7 versus 8.3%). In the younger cohort the 
risk was considerably smaller (2.6 versus 10.7%). There-
fore, we analysed the cohorts separately. The same bias 
model was applied to both cohorts, although misclas-
sifi cation error might be lower in the younger cohort 
because two follow-up assessments were conducted for 
that cohort. On the other hand one could argue that 
self-reports of younger probands might be less accurate 
than those of older probands. The conventional OR for 
SAD at T0 and subsequent depression was adjusted for 
bias due to confounding according to sex and age by 
including these variables in the logistic regression 
equation. We corrected for bias due to selection by 
weighting the data according to intended differences in 
sampling probabilities at T0 (younger individuals were 
over sampled) and differences in participation rates at 
T0 according to age, sex, and geographical location 
(Höfl er et al., 2005). The Huber-White sandwich esti-
mator was used for robust inference on weighted data 
(Royall, 1986). The analyses were carried out with 

Table 2A. Unadjusted cross tabulation of the incidence of 
SAD and depression in the younger cohort (age 14–17 at 
baseline assessment)

 No depression Depression

 N % N %

No SAD 906 89.3 109 10.7
SAD  37 97.4   1  2.6

Table 2B. Unadjusted cross tabulation of the incidence 
of SAD and depression in the older cohort (age 18–24 at 
baseline assessment)

 No depression Depression

 N % N %

No SAD 968 91.8 87  8.3
SAD  58 77.3 17 22.7

Table 3. Conventional and bias-adjusted results

 Aged 14–17 years at T0 Aged 18–24 years at T0

 OR 95% CI OR 95% CI

Conventional estimate 0.18 0.02 1.35 3.06 1.64 5.70
(adjusted for observed confounders sex and age and
observed selection bias –  According to sex, age, and
geographical location at T0).

 Posterior OR distribution* Posterior OR distribution*

  Percentiles  Percentiles

 Median 0.025 0.975 Median 0.025 0.975

Adjusted for bias due to misclassifi cation only 0.86 0.07 3.94 2.56 1.01 9.89
Adjusted for bias due to selection only 0.18 0.02 1.36 2.65 1.37 8.07
Adjusted for confounding only 0.16 0.01 1.38 2.61 1.32 5.26
Adjusted for bias due to misclassifi cation, selection 0.72 0.07 3.94 2.01 0.61 9.71
 and confounding

* Based on 250 000 replications in the MCSE procedure.
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Stata (Stata Corp, 2005) and MCSA was self-
implemented as an ado-fi le. For bias adjustment, the 
cross tabulation of observed SAD and depression were 
re-calculated based on:

• the adjusted ORs in the cohorts mentioned above; 
and

• the observed weighted frequencies of individuals 
who had neither SAD or depression.

We then proceeded with the estimation procedure out-
lined above to estimate the OR for each cohort given 
the data and our bias model. In additional analyses, 
each of the three types of bias was adjusted for while 
ignoring the other biases to assess which bias had the 
greatest impact on the results.

Table 3 shows that in the younger cohort the con-
ventional estimate of for SAD and depression was 0.18 
with a 95% confi dence interval (CI) of 0.02–1.35. Thus, 
SAD could be associated with a heavily decreased and 
a moderately elevated odds of subsequent depression. 
Bias adjustment pushed the point estimate strongly 
toward the null value with the OR estimated to be 0.73, 
but the interval boundaries of 0.07 and 3.89 indicated 
that, given the data and the bias model, we have little 
information about the causal effect of SAD on depres-
sion here. The change in the point estimate was mainly 
due to misclassifi cation adjustment. The adjusted 
results, however, should be interpreted very cautiously 
because there was only one individual with SAD and 
depression, and this has probably caused a fl oor effect 
in the adjustment.

In the older cohort, the conventional results were 
compatible with a moderate to strong increase in the 
odds of depression following SAD (1.64–5.70). After 
bias adjustment, the point estimate decreased from 3.06 
to 2.01. The associated interval estimate of 0.61–9.71 
was compatible with moderately decreased to strongly 
increased odds. The simulated distribution indicated 
that the probability that SAD increases the risk of 
subsequent depression (i.e., OR > 1), given the data and 
the bias model, is estimated at 88.6%.

Discussion
In the present study, we proposed a simple method to 
account for bias due to confounding, selection, and 
measurement when estimating the causal effect of SAD 
on depression. The results showed that both point esti-
mates and interval estimates can change considerably 
after adjusting for biases with a bias model. The 

interval estimates in particular were much broader after 
taking uncertainty about bias parameter values into 
account.

There is typically insuffi cient information about 
biases to estimate causal effects from observational 
data. Therefore, we made assumptions about biases 
based on other data sets and thoughtful guesses, not 
knowing if they truly apply to our data or not. Although 
uncertainties about bias parameter values are addressed 
by the variances of their priors, there is unaddressed 
uncertainty in applying the entire bias model. If more 
conservative multiple bias models were used, the inter-
vals would have been even broader. The uncertainties 
in our multiple bias model are:

• Bias might actually operate in a much more com-
plicated way. For instance, misclassifi cation proba-
bilities could be correlated or vary individually 
according to variables that might also affect partici-
pation and produce confounding. As far as we know, 
such issues have not yet been assessed.

• The priors on bias parameters could be inaccurate. 
For instance, we took priors on misclassifi cation 
probabilities from a CIDI clinical validation study 
(Reed et al., 1997), but the PPVs and NPVs might 
be different in the general population (Wittchen, 
1994). Besides, unlike Reed et al. (1997), our sample 
contained only adolescents and young adults who 
did not have depression at T0, and the Reed et al. 
(1997) study was cross-sectional rather than pro-
spective. Moreover, clinical diagnoses were the 
standard against which CIDI was evaluated, and it 
might well be that clinical diagnoses are less accu-
rate than CIDI diagnoses.

• Our priors on confounding parameters are based on 
subjective, rather than objective evidence.

• We do not know if dropout results can be applied 
to participation in the entire study.

We found very different results in the two age 
cohorts, and the differences disappeared only partially 
after bias adjustment. This difference could be due to 
methodology (i.e., younger participants were assessed 
twice during the follow-up period) or due to bias operat-
ing differently in both cohorts. One peak period for 
onset of depression in the younger cohort was yet in 
the age range 13–18 years, which was not the case in 
for the older cohort. We also found that, in the younger 
cohort, approximately half of those who had ever 
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fulfi lled the criteria for SAD fulfi lled it only after T0. 
Most of them, however, reported an age of onset that 
was lower than their age at the T0 assessment. Both 
points contribute to an explanation of why we did not 
fi nd an association between SAD and subsequent 
depression here. We shall examine the age- and age-of-
onset-dependent associations between SAD and depres-
sion in more detail in another paper.

The general conclusion about bias modelling is that 
the less information about biases and the higher the 
uncertainty about applying results from the literature 
or assumptions on bias parameters, the more uncer-
tainty emerges in the resulting model-based causal esti-
mate. This property validates properly used multiple 
bias adjustment methods. Unlike in conventional 
methods, uncertainty about biases in bias correction 
methods carries over to the interval estimates. In the 
extreme case, this means that if one knows nothing 
about biases or has a poor understanding of how data 
was generated, one will never be able to demonstrate a 
causal effect, and an accurate interval estimate will 
always include the null value of no effect.

As long as the bias model and the priors used are 
not fundamentally wrong, the results from multiple bias 
adjustment methods can be expected to outperform 
conventional analyses. This is because the conven-
tional analyses are based on the absurd assumption that 
there is no bias at all in the data.

Acknowledgements
This work is part of the Early Developmental Stages of Psy-
chopathology (EDSP) Study and is funded by the German 
Federal Ministry of Education and Research (BMBF) project 
no. 01EB9405/6, 01EB 9901/6, EB01016200, 01EB0140, and 
01EB0440. Part of the fi eld work and analysis was also sup-
ported by grants from the Deutsche Forschungsgemeinschaft 
(DFG) LA1148/1-1, WI2246/1-1, WI709/7-1 and WI 709/8-1. 
Principal investigators are Dr Hans-Ulrich Wittchen and Dr 
Roselind Lieb. Core staff members of the EDSP group are Dr 
Kirsten von Sydow, Dr Gabriele Lachner, Dr Axel Perkonigg, 
Dr Peter Schuster, Dipl.-Stat., Michael Höfl er, Dipl.-Psych., 
Holger Sonntag, Dipl.-Psych., Tanja Brückl, Dipl.-Psych., 
Elzbieta Garczynski, Dr Barbara Isensee, Dipl.-Psych., Agnes 
Nocon, Dr Chris Nelson, Dipl.-Inf., Hildegard Pfi ster, Dr 
Victoria Reed, Dipl.-Soz. Barbara Spiegel, Dr Andrea 
Schreier, Dr Ursula Wunderlich, Dr Petra Zimmermann, Dr 
Katja Beesdo and Antje Bittner, Dipl.-Psych. Scientifi c advi-
sors are Dr Jules Angst (Zurich), Dr Jürgen Margraf (Basel), 
Dr Günther Esser (Potsdam), Dr Kathleen Merikangas 
(NIMH, Bethesda), Dr Ron Kessler (Harvard, Boston) and 
Dr Jim van Os (Maastricht).

References
American Psychiatric Association. Diagnostic and Statistical 

Manual of Mental Disorders. 4 edn. Washington DC: 
APA, 1994.

Greenland S. Interpretation and choice of effect measures in 
epidemiological analyses. Am J Epidem 1987; 5: 761–8.

Greenland S. Randomization, statistics, and causal infer-
ence. Epidemiology 1990; 1: 421–9.

Greenland S. Basic problems in interaction assessment. Envi-
ronl Health Perspect Suppl 1993; 101 Suppl 4: 59–66.

Greenland S. Sensitivity analysis, Monte Carlo risk analysis, 
and Bayesian uncertainty assessment. Risk Anal 2001; 4: 
579–83.

Greenland S. The impact of prior distributions for uncon-
trolled confounding and response bias: a case study of the 
relation of wire codes and magnetic fi elds to childhood 
leukemia. J Am Stat Assoc 2003; 98: 47–54.

Greenland S. Interval estimation by simulation as an alterna-
tive to and extension of confi dence intervals. Int J Epide-
miol 2004; 33:1–9.

Greenland S, Epidemiological measures and policy formula-
tion: lessons from potential outcomes (with discussion). 
Emerging Themes in Epidemiology 2005a; 2: 1–4.

Greenland S. Discussion on ‘Statistical issues arising in the 
Women’s Health Initiative’. Biometrics 2005b; 61: 
920–1.

Greenland S. Multiple bias modelling for analysis of obser-
vational data. With discussion. J Roy Stat Soc A 2005c; 
168: 267–306.

Greenland S. Bayesian perspectives for epidemiological 
research: I. Foundation and basic methods. Int J Epide-
miol 2006; 35: 765–75.

Hardt J, Rutter M. Validity of adult retrospective reports of 
adverse childhood experiences: review of the evidence. 
J Child Psychopathol 2004; 2: 260–73.

Höfl er M. Causal inference based on counterfactuals. BMC 
Med Res Methodol 2005a; 5: 28.

Höfl er M. The effect of misclassifi cation on the estimation 
of association: a review. Int J Meth Psychiatr Res 2005b; 
14: 92–101.

Höfl er M, Pfi ster H, Lieb R, Wittchen HU. The use of weights 
to account for non-response and dropout. Soc Psychiatr 
Psychiatr Epidemiol 2005; 40: 291–9.

Holland PW. Statistics and causal inference. J Am Stat 
Assoc 1986; 945–60.

Kessler RC, Wittchen HU, Abelson J, Zhao S. Methodologi-
cal issues in assessing psychiatric disorders with self-
reports. In: Stone AA, Turkan JS, Bachrach CA, Jobe JB, 
Kurtzman HS, Cain VS: The Science of Self-report: 
Implications for Research and Practice. New Jersey: 
Lawrence Erlbaum Associates, 2000.

Kraemer HC, Kazdin AE, Offord DR, Kessler RC, Jensen PS, 
Kupfer DJ. Measuring the potency of a risk factor for 
clinicial or policy signifi cance. Psychol Meth 1999; 4: 
257–71.



Estimating causal effects from observational data with a model for multiple bias 87

Int. J. Methods Psychiatr. Res. 16(2): 77–87 (2007)
Copyright © 2007 John Wiley & Sons, Ltd DOI: 10.1002/mpr

Kraemer HC. Reconsidering the odds ratio as a measure of 
association of 2x2 association in a population. Stat Med 
2003; 23: 257–70.

Lieb R, Isensee B, Sydow von K, Wittchen HU (2000) The 
Early Developmental Stages of the Psychopathology 
Study (EDSP): A methodological update. Eur Add Res 6: 
170–82.

Little RJ, Rubin DB. Causal effects in clinical and epidemio-
logical studies via potential outcomes. Annu Rev Publ 
Health 2000; 21: 121–45.

Maclure M, Schneeweiß S. Causation of bias: the episcope. 
Epidemiology 2001; 12: 114–22.

Prentice RL, Pettinger M, Anderson GL. Statistical issues 
arising in the Women’s Health Initiative. Biometrics 
2005; 61: 899–941.

Reed V, Gander F, Pfi ster H, Steiger A, Sonntag H, Trenk-
walder C, Hundt W, Wittchen HU. To what degree does 
the Composite International Diagnostic Interview (CIDI) 
correctly identify DSM-IV disorders? Testing validity 
issues in a clinical sample. Int J Meth Psychiatr Res 7: 
142–55.

Rosenbaum PR, Rubin DB. The central role of the propensity 
score in observational studies for causal inference. 
Biometrika 1983; 70: 41–55.

Rothman KJ, Greenland S. Modern Epidemiology. 2 edn. 
Lippincott Williams & Wilkins, Philadelphia, 1998.

Royall RM. Model robust confi dence intervals using 
maximum likelihood estimators. Int Stat Rev 1986; 54: 
221–6.

Rutter M, Maughan B, Pickles A, Simonoff E. Retrospective 
recall recalled. In: Cairns, Bergman LR, Kagan J (eds.): 
Methods for Studying the Individual. London: Sage, 
1998.

Schwarz N, Oyserman D. Asking questions about behavior: 
cognition, communication, and questionnaire construc-
tion. Am J Eval 2001; 22: 127–60.

Soldani F, Ghaemi N, Baldessarini R. Acta Psychiatrica 
Scandinavica 2005; 112: 1–3.

StataCorp. Stata Statistical Software: Release 9.0. College 
Station, TX: Stata Corporation, 2005.

Wittchen HU. Reliability and validity studies of the 
WHO Composite International Diagnostic Interview 
(CIDI) – a critical review. J Psychiatr Res 1994; 28: 
57–84.

Wittchen HU, Perkonigg A, Lachner G, Nelson CB. Early 
Developmental Stages of Psychopathology Study (EDSP): 
objectives and design. Eur Addiction Res 1998; 4: 
18–27.

Wittchen HU, Pfi ster H (eds) DIA-X-Interviews. Manual 
für Screening-Verfahren und Interview; Interviewheft 
Längsschnittsuntersuchung (DIA-X Lifetime); 
Ergänzungsheft (DIA-X Lifetime); Interviewheft 
Querschnittsuntersuchung (DIA-X 12 Monate); Ergän-
zungsheft (DIA-X 12 Monate); PC-Programm zur Durch-
führung der Interviews (Längs- und Querschnitt-
suntersuchung); Auswertungsprogramm. Frankfurt: Swets 
& Zeitlinger, 1997.

Correspondence: Michael Höfl er, Institute of Clinical 
Psychology and Psychotherapy, Technische Universität 
Dresden, Chemnitzer Str. 46a, 01187 Dresden.
Email: hoefl er@psychologie.tu-dresden.de
Telephone (+49) 351-46336921
Fax (+49) 351-46336984


