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Abstract

Background: Plant defense against herbivores begins with perception. The earlier plant detects the harm, the
greater plant will benefit in its arm race with the herbivore. Before feeding, the larvae of the rice pest
Cnaphalocrocis medinalis, initially spin silk and fold up a leaf. Rice can detect and protect itself against C. medinalis
feeding. However, whether rice could perceive C. medinalis leaf rolling behavior is currently unknown. Here, we
evaluated the role of leaf rolling by C. medinalis and artificial leaf rolling in rice plant defense and its indirect effect
on two important C. medinalis parasitoids (/toplectis naranyae and Apanteles sp.) through a combination of volatile
profiling, gene-transcriptional and phytohormonal profiling.

Results: Natural leaf rolling by C. medinalis resulted in an increased attraction of . naranyae when compared to the
undamaged plant after 12 h. Volatile analysis revealed that six out of a total 22 components significantly increased
in the headspace of C. medinalis rolled plant when compared to undamaged plant. Principal component analysis of
these components revealed similarities in the headspace of undamaged plant and artificially rolled plant while the

medinalis.

headspace volatiles of C. medinalis rolled plant deferred significantly. Leaf rolling and feeding by C. medinalis up-
regulated the plant transcriptome and a series of jasmonic acid (JA) and salicylic acid (SA) related genes. While
feeding significantly increased JA level after 12 to 36 h, rolling significantly increased SA level after 2 to 12 h.
Compared to artificial rolling, natural rolling significantly increased JA level after 36 h and SA level after 2 and 12 h.

Conclusions: Our findings suggest that natural leaf rolling by C. medinalis can be perceived by rice plant. The
detection of this behavior may serve as an early warning signal in favor of the rice plant defenses against C.
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Background
Throughout their life cycle, plants experience biotic and
abiotic stresses, which can severely affect their growth
and yield [1-3]. Globally, herbivore insects are among
the most serious biotic problems and have close rela-
tionships with plants [4]. While insects have evolved
ways to find hosts, plants are under selection pressure to
evade detection or defend themselves when attacked [4—6].
To fend off insect herbivores, plants have evolved in-
tricate and dynamic defense systems. Phytohormones
play an important role in regulating plant defenses [7-9].
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The phytohormones, jasmonic acid (JA) and salicylic
acid (SA), and their derivatives play predominant roles
in signal transduction of plant defenses against patho-
gens and herbivorous insects [10, 11]. Plant hormones
can mediate downstream regulation of plant defenses,
including direct defense mechanisms such as the
production of defensive proteins and enzymes, and
indirect defense mechanisms involving the production
of volatile blends [12—-14].

Plant volatiles are released naturally, and their emis-
sion can change in response to different stress factors
[15, 16]. With plant—insect co-evolution, herbivore-
induced plant volatiles (HIPVs) have become cost-saving
weapons for plant defenses, and are useful in attracting
natural enemies of herbivores [17—-19]. Host recognition
by natural enemies is specific, as they identify volatile
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blends from various plant species. However, natural en-
emies differ in their ability to distinguish HIPVs source
depending on the distance of the natural enemy to the
cues [20-22].

Conflicts in interactions of plants with herbivores
begin with perception. Interestingly, plants can identify
attacks from different insect species and mount several
defenses [23, 24]. Plants perceive insect herbivores’ activ-
ities like oviposition, feeding, walking on the leaf surface,
as well as chemical cues from insect oral secretion and
frass [25—27]. Spinning is an important activity of silk-
producing insects. The ability to produce silk has
evolved in many groups of insects, and is used to accom-
plish a wide array of activities that enhance survival [28—
30]. Several insects’ silk has been reported to attract
parasitic wasps. For instance, Apanteles melanoscelus
(Ratzeburg) (Hymenoptera: Braconidae) has a positive
response to gypsy moth silk, and silk extracts of Plodia
interpunctella (Hibner) (Lepidoptera: Pyralidae) larvae
also attract parasitic wasps [31, 32]. However, no re-
search has shown whether rolling behaviors following
spinning can mediate plant defenses.

In Asia, the rice leaf folder, Cnaphalocrocis medinalis
Guenée (Lepidoptera: Pyralidae), is one of the most im-
portant insect pest of paddy rice [33]. Severe feeding by
this pest often affects the growth of rice plant leading to
yield loss [34, 35]. Various wasp parasitoids of C. medi-
nalis commonly exist in rice fields, such as Itoplectis
naranyae (Ashmead) (Hymenoptera: Ichneumonidae)
and Apanteles sp. (Hymenoptera: Braconidae) [36, 37].
The characteristic behavior of C. medinalis larvae is to
roll a leaf longitudinally, by spinning silk before feeding
[38, 39]. There are reports indicating that the feeding be-
havior of C. medinalis can induce rice defenses, but
there is no evidence to indicate whether leaf rolling
alone prior to feeding by the pest, can be perceived by
the plant [40, 41].

Early detection of herbivores is beneficial for plants to
develop effective and sustainable defenses. It is therefore
important to determine whether rice plant can detect
the early threat of C. medinalis leaf rolling, by initiating
defenses against the pest [42]. In this study, we investi-
gated the dynamics of rice plant responses to C. medina-
lis leaf rolling, C. medinalis leaf rolling and feeding and
artificial leaf rolling, and compared with undamaged
plant. To achieve this goal, we integrated results from
wasps’ behavioral assays, plant volatile profiles, plant
transcriptional and phytohormonal profiles.

Results

Behavior of natural enemies

We hypothesized that leaf rolling behavior of C. medinalis
larvae can trigger rice plant defenses. Therefore, we tested
the preferences of two parasitic wasps (I naranyae and
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Apanteles sp.) associated with C. medinalis larva. Itoplectis
naranyae significantly preferred natural rolling treatment,
when compared to undamaged plant after 12h (x°=
6.3684, df=1, P=0.0116) (Fig. 1a). However, both wasp
species showed no significant preferences for naturally
rolled plant after 24 h induction, when compared to un-
damaged plant (Fig. 1b). To explore whether sole rolling
of plant leaf could be detected by natural enemies, we also
tested the behavior choices of wasps between undamaged
plant and artificially rolled plant. However, no differences
in preferences for both wasp species between undamaged
plant and artificially rolled plant were observed after 12
and 24 h (Fig. 1c and d).

Analysis of rice plant volatiles

To explore the reason for natural enemy behavior, we
analyzed plant volatiles in undamaged plant, artificially
rolled plant, and naturally rolled plant. In total, 22 vola-
tile components were identified, including several ter-
penes, aldehydes, ketones, and esters (Table 1).
Generally, these components occurred at lower amounts
in the headspace of undamaged plant and artificially
rolled plant, and at higher amounts in the headspace of
naturally rolled plant. Of the 22 components identified,
six were significantly higher after 12 and 24'h in the
headspace of naturally rolled plant (P < 0.05). Principal
Component Analysis also showed that the headspace
volatiles of undamaged plant and artificially rolled plant
were similar, but the headspace volatiles of naturally
rolled plant differed significantly from both undamaged
plant and artificially rolled plant (P< 0.05), especially
after 12 h of damage (Fig. 2a and b).

Global transcriptome changes in rice leaves in response
to Cnaphalocrocis medinalis infestation

We used high-throughput sequencing to elucidate global
transcript abundance in rice, and then compared the ex-
pression profiles of artificial rolling, natural rolling and
rolling and feeding plant against undamaged plant.
Compared to the undamaged plant, rolling and feeding
treatment induced a drastic change in rice plant tran-
scriptional levels while artificial rolling induced slight
changes (Fig. 3). Compared to undamaged plant, 1073
genes were up-regulated and 870 genes were down-
regulated in natural rolling plant while 2899 and 1807
genes were up-regulated and down-regulated in rolling
and feeding plant, respectively (Table 2). The KEGG en-
richment analyses showed that many defense- or stress-
related pathways were activated, including plant hor-
mone pathways (see Additional file 1: Figure S1). More-
over, the transcriptional responses of rice plant’s JA and
SA pathways associated with the different treatments
used in this study were identified using the GO tool
(Fig. 4). Among these, genes such as lipoxygenase (LOX),
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hydroperoxide dehydratase (AOS), allene oxide cyclase
(AOC), 12-oxophytodienoic acid reductase (OPR) and
their homologs associated with the JA pathways were
up-regulated, especially following the rolling and feeding
treatment (Fig. 4a). For the SA pathway, TGA transcrip-
tion factors (TGA), pathogenesis-related (PR) protein
and regulatory protein NPR1 (NPRI) genes were up-
regulated in natural rolling treatment while phenylalan-
ine ammonia-lyase (PAL), TGA and NPRI genes were
up-regulated in rolling and feeding treatment when
compared to the undamaged treatment (Fig. 4b).

Jasmonic acid and salicylic acid analyses

Based on transcript profile changes associated with
hormone signaling, we measured JA and SA levels in
natural rolling, rolling and feeding and artificial roll-
ing treatments and compared to the undamaged
plant by using LC/MS. Generally, similar and in-
creasing trends in JA and SA biosynthesis levels
were observed in both artificial rolling treatment and
natural rolling treatment at all tested time points
(Fig. 5). The accumulation of JA was greater in roll-
ing and feeding treatment than other treatments
from 12h. Jasmonic acid level in natural rolling
treatment showed no significant difference from Oh
to 24 h but was significantly higher when compared
to its level in artificially rolled plant (P< 0.01, Fig.
5a). Salicylic acid level was significantly higher in
natural rolling treatment after 2h and 12h than in
other treatments (P< 0.01). However, rolling and
feeding produced significantly higher levels of SA
after 24h and 36 h when compared to other treat-
ments (P< 0.01, Fig. 5b).

Discussion

The relationship between plants and insects has received
much attention in recent years, with most studies focus-
ing on plant resistance to herbivorous insects [43, 44].
Plant—insect co-evolution is essential for species diver-
sity and survival [5]. For plants to develop effective and
sustainable defenses against aggressors, early detection
of the aggressors is essential [45]. In our study, rice leaf
rolling by C. medinalis resulted in increased plant JA
and SA levels, and in the release of plant volatile blends
which helped the plant to attract natural enemies of the
herbivore (Fig. 6).

Parasitoids often use different cues to locate their host
[22]. In our study, we observed that I naranyae signifi-
cantly preferred naturally rolled plant over undamaged
plant after 12 h of pest infestation. However, both wasp
species showed no significant preferences for naturally
rolled plant after 24 h induction when compared to un-
damaged plant. Similarly, both wasp species neither pre-
ferred undamaged nor artificially rolled plant after 12
and 24'h. There are no reports about the host cues
employed by these two wasps in locating their target
host. Thus, further studies should be carried out to un-
ravel the cues involved in the wasps’ host location
strategies.

Plant respond to stress in a series of steps after the
stress is perceived [46, 47]. In general, wounding can in-
duce direct and indirect plant defenses, such as changes
in plant volatiles and attracting natural enemies of the
attacker [48, 49]. Our results showed that natural rolling
of rice leaf by C. medinalis significantly increased six
volatile components while artificial rolling significantly
increased only one volatile component after 12 h of in-
duction. Principal component analysis showed that the
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Table 1 The amounts of volatile compounds (mean % of internal standard + SEM) emitted from undamaged plant, artificial rolling
and natural rolling plant treatments

Compound Undamaged Artificial rolling Natural rolling

(a) after 12 h attack
Hexanol, 2-ethyl- 339+0.19 b 442+1.19b 1289+133 a
B-Linalool 6.64+22 4.6+0.73 769+2
Nonanal 498+02b 507£099 b 13.71+133 a
Camphor 0.58 £0.06 233£1.01 1.12£0.17
Decanal 578+0.69 b 564+123b 2118+ 165 a
Ethylacetophenone 059+004 b 1.29+024 a 1.39+£008 a
Methyl! salicylate 042 +0.03 1.08 £0.54 0.54+0.18
D-Limonene 1.2+£0.12 1.88+ 058 2.25+042
Decane, 3-methyl- 083+025b 159+03 b 408+1.13 a
Methyldecahydronaphthalene 035+0.1 066+0.16 1.62+058
Undecane, 2-methyl- 286+ 061 342+095 6+1.72
Undecane, 3-methyl- 591+046 b 523+077Db 1252+184 a
Dodecane 262047 4.75+201 507 %1
Tetradecane 9.12+064 12554297 1273 +£067
a-Cedrene 431+03 566+ 1.75 59+02
Pentadecane 869+ 061 18.01 +5.86 13.81+0.89
Pentadecane, 2-methyl- 146+0.13 242 +069 23+025
Hexadecane 875+06 1234+4.14 1266+ 091
Pentadecane, 2,6,10-trimethyl- 3.69+0.23 431+156 552+0.59
Heptadecane 591+05 564+ 166 835+0.51
Pentadecane, 2,6,10,14-tetramethyl- 3.58+0.31 3.76+09 461+04
Tridecane, 3-methyl- 0.73 £0.06 1.63+£062 141+£0.2

(b) after 24 h attack
Hexanol, 2-ethyl- 339+£0.19b 358+£059b 10.02+085 a
B-Linalool 6.64 £ 2.2 23.04+16.27 18.02+5.77
Nonanal 498+02b 384+072b 1061+067 a
Camphor 0.58+0.06 b 04+0.12b 1.03+0.08 a
Decanal 578+069 b 45+091 b 12.77+201 a
Ethylacetophenone 059+0.04 b 089+0.13 b 1444016 a
Methy! salicylate 042+0.03 0.27 £0.09 0.54+0.11
D-Limonene 12+012 334£1.38 424+1.03
Decane, 3-methyl- 083+0.25 1.22+033 2741141
Methyldecahydronaphthalene 035+0.1 0.27 £0.05 051+0.19
Undecane, 2-methyl- 286+ 061 1.1+02 39+151
Undecane, 3-methyl- 591+046 ab 287+074 b 804+177 a
Dodecane 262+047 344 +1.07 468+ 0.65
Tetradecane 9.12+064 9.99 +1.85 1344+ 065
a-Cedrene 431+03 4.28+0.56 6.34+043
Pentadecane 869+ 061 852+ 149 13.09+1.01
Pentadecane, 2-methyl- 146+0.13 1.55+0.39 214+ 003
Hexadecane 875+06 823+ 136 126 +1.09

Pentadecane, 2,6,10-trimethyl- 3.69+0.23 3.98+0.98 5.65+044
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Table 1 The amounts of volatile compounds (mean % of internal standard + SEM) emitted from undamaged plant, artificial rolling
and natural rolling plant treatments (Continued)

Compound Undamaged Artificial rolling Natural rolling
Heptadecane 591405 598+ 121 8.82+0.56
Pentadecane, 2,6,10,14-tetramethyl- 3.58+0.31 3.55+0.85 519+0.36
Tridecane, 3-methyl- 0.73+£0.06 0.77£0.11 1.21£0.24

Note: Means marked with different letter indicates significant differences in compounds across treatments (Tukey’s post hoc test, P < 0.05)

a Bl Undamaged
B Artificial rolling
B Natural rolling

-8 y .
-15 -10 -5 0 5 10

t[1]
R2X[1] = 0.62 R2X[2] = 0.195 Ellipse: Hotelling's T2 (95%)

[l Undamaged
B Artificial rolling
M Natural rolling

-15 -10 -5 0 5 10
1]
R2X[1] = 0.573 R2X[2] = 0.173 Ellipse: Hotelling's T2 (95%)
Fig. 2 Principal Component Analysis comparing volatile blends from undamaged plant, artificial rolling and natural rolling plant treatments. a

after 12 h attack and (b) after 24 h attack. Grouping pattern of samples were with respect to the first two principal components and Hotelling's
ellipse at 95% confidence interval for the observations. Each point represents one sample
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Undamaged vs Natural rolling

\

Undamaged vs Rolling and feeding

Fig. 3 Comparative analysis of changes in the rice leaf transcriptome in response to artificial rolling, natural rolling and rolling and feeding by
Cnaphalocrocis medinalis after 12 h. Genes associated with a g < 0.05 for at least one time point were used to construct the Venn diagram

Undamaged vs Atrtificial rolling

headspace volatiles of natural rolling treated plant sig-
nificantly differed, especially after 12h of damage. We
also found that the strong responses of wasp species to
odors emanating from plants challenged by C. medinalis,
was likely due to HIPVs, which modified their volatile
organic compound (VOC) profiles when compared to
undamaged plants.

Analysis of rice plant phytohormones showed sig-
nificant differences in JA and SA levels in naturally
rolled plant when compared to artificially rolled
plant: for SA after 2h to 24 h, and for JA after 36 h.
It seems that leaf rolling behavior had a superim-
posed effect on plant immunity, when compared to
artificial rolling. Therefore, our results suggest a cor-
relation of plant defenses linked to C. medinalis leaf
rolling behavior. The proteomics of Bombyx mori
Linnaeus  (Lepidoptera: = Bombycidae), a  silk-
producing insect, revealed that many enzymes, prote-
ase inhibitors, and other unknown proteins are in-
volved in plant defenses against its silk production.
Among these, 40 protease inhibitors were identified

as being involved in regulating or protecting the host
plant from infestation [50]. However, the silk com-
ponents from C. medinalis, which might have trig-
gered plant responses, were not determined in the
current study. Future studies should unravel these
specific components and active ingredients involved
in C. medinalis silk production and concomitant
plant defenses. Additionally, treatments involving the
application of silk only and application of silk and
artificial rolling with silk maybe needed to assess
whether similar defense responses of the plant will
be recovered as reported in this study.

Our study also investigated plant defenses against
feeding behaviors in order to explore differences in rice
defense between rolling and feeding behaviors at the
transcriptomic and metabolic level. Plant transcriptomic
analysis showed an up-regulation of JA-related genes in
the rolling and feeding treatment (Fig. 4a). Some SA-
related genes were also up-regulated in the natural roll-
ing and rolling and feeding treatments. Our result indi-
cated that both natural rolling and rolling and feeding

Table 2 Numbers of genes up- or down-regulated, whose transcript levels increased after the indicated treatments (|log, Fold

Change| > 1, P-value< 0.05)

Control Case Up-regulated Down-regulated Total DEGs
Undamaged Artificial rolling 759 548 1307
Undamaged Natural rolling 1073 870 1943
Undamaged Rolling and feeding 2899 1807 4706

Note: DEGs Differentially expressed genes
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Fig. 4 Comparative analysis of gene transcriptomes associated with jasmonic acid and salicylic acid pathways. a gene transcriptional differences
related to jasmonic acid pathway and (b) gene transcriptional differences related to salicylic acid pathway. Note: enoyl-CoA hydratase/3-
hydroxyacyl-CoA dehydrogenase (MFP2); 12-oxophytodienoic acid reductase (OPR); lipoxygenase (LOX); hydroperoxide dehydratase (AOS); acetyl-
CoA acyltransferase 1 (ACAAT); allene oxide cyclase (AOQ); transcription factor MYC2 (MY(2); acyl-CoA oxidase (ACX); TGA transcription factors
(TGA); phenylalanine ammonia-lyase (PAL); pathogenesis-related (PR) protein; regulatory protein NPR1 (NPR1)

treatments could be perceived by rice plant, but the attack and wounding. Clearly, feeding greatly increase
plant defense mechanisms differed in hormone levels. the amount of JA when compared to JA levels in other
Jasmonic acid is famous for plant defense against insects’ treatments. Salicylic acid also plays an important role in
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Fig. 5 Plant phytohormones produced after natural rolling and rolling and feeding by Cnaphalocrocis medinalis, and artificial rolling of rice leaf at
different time points. a jasmonic acid biosynthesis and (b) salicylic acid biosynthesis. Mean + SEM. Means followed by different letter indicates
significant differences between the treatments at specific time points (P < 0.01)

early defense against herbivore insects. For instance,
both Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae)
and Pieris rapae (Linnaeus) (Lepidoptera: Pieridae) infest-
ation raised SA level in cotton and arabidopsis, respect-
ively [14, 51]. We recommend further studies to
determine whether JA—SA synergism could occur at the
level of gene expression in C. medinalis-challenged
MHB63 rice plant. Further studies are also needed to de-
termine the mechanisms, the elicitors, and the coupled
gas chromatography/electroantennogram detection ac-
tive components involved in this tritrophic system.

Conclusions

Our study showed that similar to other tritrophic sys-
tems, HIPVs and the phytohormones JA and SA medi-
ated rice-C. medinalis-1. naranyae tritrophic interactions
[22, 52]. We provide the first evidence that rolling of rice
leaves by C. medinalis induces JA and SA signaling path-
ways and HIPVs emission as plant defenses. In addition,
our study showed differences in rice defenses among
artificial rolling, natural rolling and rolling and feeding
treatments. This could be due to the presence of differ-
ent elicitors in rice’s ability to detect and defend itself

esters) and recruit the natural enemy of the pest

Fig. 6 Rice plant can perceive the leaf rolling behavior of Cnaphalocrocis medinalis, release blends of volatiles (terpenes, aldehydes, ketones,

terpenes, aldehydes,

Kketones, esters
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against its aggressors. Our findings also provide a new
beginning in exploring the effects of leaf rolling for silk-
producing insect on associated plants and natural
enemies.

Methods

Plants and insects

In this study, we used the rice (Oryza sativa L.) indica
variety Minghui 63 (MH63), a restorer line with genetic
stability. Single pre-germinated seeds of MH63 were
sown in plastic pots (10 cm diameter x 8 cm in height),
filled with a mixture of 0.5g compound fertilizer (N:P:
K = 14%:16%:15%, respectively) in a greenhouse at Huaz-
hong Agricultural University, China. Plants were grown
under natural light conditions at 28 + 4 °C, 75 + 5% rela-
tive humidity, and photoperiod ratios of 12/12h, light/
dark. The plants were watered daily and used at the til-
lering stage for both rearing and experimenting.

The C. medinalis colony was initiated from naturally
occurring individuals, collected from rice fields at Xiao-
gan (113.91°E; 31.92°N), China. The insects were main-
tained in the laboratory on rice at 26+2°C, 75+5%
relative humidity, and photoperiod ratios of 16/8h,
light/dark. The fifth instar stage of the insect pest was
used for all the experiments.

Adults of I naranyae and Apanteles sp. were collected
from paddy rice fields in Xiaogan, China and used in the
Y-tube olfactomer experiment. Prior to the experiments,
adults of each parasitoid species were fed on 10% honey
solution until mating. After mating, parasitoids were
transferred to the behavioral laboratory, at least 30 min
prior to bioassay, to allow them to acclimatize to the ex-
perimental conditions.

Plant treatments

Flag leaf of rice plant was subjected to the following
treatments: (i) undamaged (healthy rice plant); (ii) artifi-
cial rolling; (iii) natural rolling (leaf rolling without feed-
ing by C. medinalis); and (iv) rolling and feeding (C.
medinalis rolled and fed leaf). For artificial rolling treat-
ment, we used a white thin thread made of inorganic
materials to tie around the rice leaf to mimic C. medina-
lis silk spinning and leaf rolling behavior. For natural
rolling treatment, insects were carefully observed and re-
moved from the leaf immediately after rolling was com-
pleted, to prevent feeding on the leaves. Individual
plants were induced by artificial rolling and natural roll-
ing for 12 or 24 h before olfactometer assays and volatile
analysis. Plants were induced by artificial rolling, natural
rolling and rolling and feeding for 12 h before transcrip-
tomic analysis and induced by artificial rolling, natural
rolling and rolling and feeding for 2, 12, 24, or 36 h be-
fore phytohormonal analysis. Healthy undamaged plants
acted as the control.
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Behavioral response of parasitoid species to
Cnaphalocrocis medinalis induced host plant volatiles
Responses of I naranyae and Apanteles sp. females to
different plant odor sources, in the absence of any visual
cues, were tested using a Y-tube olfactometer (arm
length: 18 cm and internal diameter: 1.5 cm). One arm
of the tube was connected to the odor source and the
other arm to the control treatment. A 60 W incandes-
cent lamp bulb provided illumination. Charcoal-filtered
clean air was passed through Teflon tubes into each arm
of the olfactometer at a flow rate of 200 mL min~', and
pulled out of the main arm of the olfactometer at the
same rate, by a battery-powered portable vacuum pump
(Sensen, Zhejiang, China).

Individual female parasitoid species were released one
at a time in the main arm of the Y-tube. The pump sys-
tem was turned on to test preferences for either the test
or control odor, and each female was given 5min to
make a choice. The position of the test and the control
arms of the Y-tube were changed after every three tested
parasitoids to avoid positional bias. The connecting Tef-
lon tubes and plant treatments were routinely replaced
after six trials. A minimum number of 15 individual fe-
male parasitoid species acting as replicates were used for
each pair of tests and control odor sources. The same
environmental conditions, as described above, were
maintained in the bioassay room.

Collection and analysis of plant volatiles

We used a closed-loop dynamic headspace volatile col-
lection system to collect volatiles for 8 h, as described by
Sun et al. [53]. Purified air was pushed into a glass jar
containing each plant treatment at 500 mL min~ ' and
drawn from the jar through vacuum containing traps,
packed with Super Q adsorbent (200 mg each; Alltech
Associates Inc. Deerfield, IL, USA). The air purification
system consisted of (1) charcoal (activated carbon, 6 to
14 mesh, Fisher Scientific), (2) 5A molecular sieves
(beads, 8 to 12 mesh, Sigma-Fluka), and (3) silica gel
Rubin (drying agent free of metal salts, silica gel, Sigma-
Fluka). The collection was replicated four times for each
odor source.

After 8 h of volatile trapping using Super Q, each filter
was eluted with 1 mL of N-hexane acetate, spiked with
10 uL. of internal standard (0.1 mg/mL nonyl acetate,
Sigma), and stored at —40°C until chemical analysis.
Volatile extracts were analyzed by coupled gas chroma-
tography/mass spectrometry (GC/MS) (QP-2010, Shi-
madzu, Shiga, Japan), equipped with an HP-5 MS fused-
silica column (30 m x 0.25 mm x 0.25 um) (Agilent Tech-
nologies, USA). Helium (1 mL min~ Y was used as the
carrier gas, and an initial oven temperature of 40 °C was
maintained for 1 min, ramped at 8°Cmin~ ' to 300 °C,
and held for 5min. Compounds were identified using
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the quasi-molecular ions. In addition, structural assign-
ments of several compounds were confirmed using au-
thentic standards on the GC/MS under the same
conditions employed for crude volatile analysis. Quanti-
fication was based on calibration curves (peak areas)
generated from authentic standards of identified com-
pounds. The peak area of each component was com-
pared to the percent relative amount of internal
standard peak area.

RNA isolation, library construction and sequencing

Total RNA extractions of plant leaves were performed
using Trizol Reagent (Invitrogen Life Technologies).
RNA purity and quantity were determined using a
Nanodrop ND 1000 instrument (Nanodrop Technolo-
gies, Wilmington, DE, USA). Sequencing libraries were
generated using the TruSeq RNA Sample Preparation
Kit (Illumina, San Diego, CA, USA). Each treatment in-
cluded three biological replicates.

Bioinformatics analysis

Gene expression patterns were clustered using Cutadapt
(v1.15) software to filter the sequencing data and to gen-
erate high quality sequences (clean data) for further ana-
lysis. Genes were mapped to ‘terms’ in the Gene
Ontology (GO) database and the number of differentially
enriched genes were calculated for each term. DESeq
(1.30.0) was used to analyze differential gene expression
with screening conditions as follows: expression differ-
ence multiple |log,FoldChange| >1 and significance of
P <0.05. Then, terms with significant enrichment of dif-
ferentially enriched genes were calculated by hypergeo-
metric distribution. GO enrichment analysis was used to
obtain GO functional terms with significant enrichment
of differentially expressed genes and revealed the pos-
sible functions. Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway enrichment analysis was used
to conduct the enrichment analysis of differentially
expressed genes. We counted the number of differen-
tially expressed genes at different levels of KEGG path-
way, and determined the metabolic pathways and
signaling pathways that the differentially expressed genes
mainly participated in. For each treatment, three bio-
logical replicates were used from individual plants.

Analysis of jasmonic acid and salicylic acid

Rice leaves (approximately 50 mg fresh weight) were col-
lected, immediately frozen in liquid nitrogen, and stored
at — 80 °C until analysis. Analysis was performed as de-
scribed previously [55]. After grinding in liquid nitrogen,
the 50 mg of each sample was extracted in 500 pL ex-
traction solvent (2-propanol/H;O/concentrated HCI, v/
v/v) in a 2:1:0.002 ratio and spiked with 10 uL internal
standards (5 pg/mL Dihydrojasmonic acid and 5 pg/mL
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D4-Salicylic acid; Sigma). Samples were homogenized in
a thermostatic mixer (MTC-100, Guangzhou, China) for
30 min at 100rpm and at 4°C. Then, 1 mL dichloro-
methane was added to the samples and homogenized
under the same conditions. Samples were centrifuged at
13,000 g and at 4 °C for 5min, and the bottom aqueous
phase collected into clean 2 mL Agilent bottles. Samples
were then dried completely under a hooded chamber
using nitrogen evaporator and dissolved by adding
100 ul of methanol. A 0.22 pm organic filtration mem-
brane was used to purify the samples and stored at -
20 °C until analysis.

Samples were analyzed using a liquid chromatography/
mass spectrometry (LC/MS) system (Xevo G2-XS Qtof)
and maintained in a thermostat-controlled chamber at
4.°C. Jasmonic acid and SA levels were calculated from
the ratio of the endogenous hormone peak and the
known internal standard. The peak area of each compo-
nent was compared to the percent relative amount of in-
ternal standard peak area. For each treatment, four to
six replicates were sampled.

Data analyses

Chi-squared tests were used to show differences in para-
sitoid species for the different categories of host plant
odors. One-way ANOVA was used to show differences
in phytohormone (JA and SA) levels and volatile compo-
nents for the different treatment categories. Principal
component analysis of plant volatiles was conducted and
plotted using SIMCA software. High-throughput se-
quencing was used to elucidate global transcript abun-
dance in rice plant, and compared the expression
profiles of undamaged, artificial rolling, natural rolling
and rolling and feeding plant treatments. All tests were
performed at P < 0.05 statistical significance level and all
data were analyzed in SPSS version 19.0 software.
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