Skip to main content
. 2019 Nov 19;10:1141. doi: 10.3389/fgene.2019.01141

Table 1.

Publications describing the application of machine learning approaches to neoepitope prediction.

Publication Indication Sample type and number number of HLAs used Estimated ratio of predicted neoepitopes from mutations Estimated ratio of experimentally confirmed neoantigens Number of features Algorithms
(Segal et al., 2008) BRCA/CRC 11 patients 1 0.17 N/A 1 NetMHC, SYFPEITHI, BIMAS, RANKPEP
(Castle et al., 2012) MEL 1 murine cell line N/S 0.05 0.32T 2 NetMHC
(Khalili et al., 2012) various 312 genes (COSMIC) 57 1.40 N/A 2 NetMHC 3.2
(Robbins et al., 2013) MEL 3 patients 2 0.18 0.03 T 3 NetMHCpan 2.4
(van Rooij et al., 2013) MEL 1 patient 4 0.42 <0.01 T 3 NetChop, NetMHC 3.2
(Boegel et al., 2014) various 167 cancer cell lines 6 0.44 N/A 1 IEDB 2.9
(Duan et al., 2014) SARC 2 murine tumors 3 0.75 0.56 T 2 NetMHC 3.0
(Snyder et al., 2014) MEL 64 patients 6 0.42 <0.01 T 3 NetMHC 3.4, RANKPEP, IEDB immunogenicity, CTLPred
(Yadav et al., 2014) CRC/PRAD 2 murine cell lines 2 0.03 0.02 T 3 NetMHC 3.4
(Angelova et al., 2015) CRC 552 TCGA patients 6 0.41 N/A 2 NetMHCpan
(Carreno et al., 2015) MEL 7 samples/3 patients 1 0.04 0.43 B 3 NetMHC 3.4
(Cohen et al., 2015) MEL 8 patients 2 0.02 0.02 T 2 IEDB
(Rizvi et al., 2015) NSCLC 34 patients 6 0.62 <0.01 T 2 NetMHC 3.4
(Rooney et al., 2015) various 4250 TCGA patients 6 0.14 N/A 2 NetMHCpan 2.4
(Tran et al., 2015) GIC 10 patients 12 0.03 0.21 T 2 NetMHCpan 2.8, NetMHCIIpan 3.0
(Van Allen et al., 2015) MEL 110 patients 6 1.56 N/A 2 NetMHCpan 2.4
(van Gool et al., 2015) UCEC 245 TCGA patients 1 0.06 N/A 3 NetMHCpan 2.8
(Bassani-Sternberg and Gfeller, 2016a) MEL 1 patient 6 1.43 <0.01 B 1 NetMHCpan 2.8
(Goh et al., 2016) MCC 49 patients 4 0.09 N/A 1 NetMHC 3.4
(Gros et al., 2016) MEL 3 patients 6 0.03 0.55 T 2 IEDB
(Hugo et al., 2016) MEL 38 patients 12 0.06 N/A 3 NetMHCpan 2.8, NetMHCIIpan 3.0
(Kalaora et al., 2016) MEL 1 patient 6 5.30 <0.01 B 1 NetMHCpan 2.8
(Karasaki et al., 2016) NSCLC 15 patients 6 0.62 N/A 1 NetMHCpan 2.8
(Löffler et al., 2016) CHOL 1 patient 6 3.68 0 B 2 NetMHC 3.4, NetMHCpan 2.8, SYFPEITHI
(Strønen et al., 2016) MEL 3 patients 1 0.05 0.19 T 4 NetChop, NetMHC 3.2, NetMHCpan 2.0
(Anagnostou et al., 2017) NSCLC 10 patients 6 0.76 <0.01 T 4 SYFPEITHI, NetMHCpan, NetCTLpan
(Chang et al., 2017) PED 540 patients 6 0.42 N/A 2 NetMHCcons 1.1
(Karasaki et al., 2017) NSCLC 4 patients 6 0.20 N/A 2 NetMHCpan 2.8
(Kato et al., 2017) BRCA 5 patients 6 0.47 N/A 2 NetMHC 3.4, NetMHCpan 2.8
(Miller et al., 2017) MM 664 patients 6 0.16 N/A 3 NetMHC 4.0
(Ott et al., 2017) MEL 6 patients 6 0.01 0.60 T 3 NetMHCpan 2.4
(Sahin et al., 2017) MEL 13 patients 10 0.02 0.60 T 2 IEDB 2.5 (MHC class I & II)
(Zhang et al., 2017) BRCA 3 patients 6 0.01 0.16 T 3 NetMHC 3.2
(Kalaora et al., 2018) MEL 15 patients/cell lines 6 9.57 0.15 T 2 NetMHCpan 3.0
(Kinkead et al., 2018) PAAD 1 murine cell line 2 0.27 0.16 T 2 NetMHC 3.2/3.4, NetMHCpan 2.8
(Martin et al., 2018) OV 1 patient 6 1.57 0,09 T 2 NetMHCpan 2.4
(O’Donnell et al., 2018a) OV 92 patients 6 0.02 N/A 2 NetMHCpan 2.8
(Sonntag et al., 2018) PDAC 1 patient 10 2.00 0.75 T 3 NetMHC, NetMHCIIpan 3.1, SYFPEITHI
(Thorsson et al., 2018) various 8546 TCGA patients 6 0.74 N/A 2 NetMHCpan 3.0, pVAC-Seq 4.0.8
(Vrecko et al., 2018) HCC 1 patient 3 0.05 0.15 T 2 SYFPEITHI, IEDB (MHC class II)
(Wu et al., 2018) various 7748 TCGA samples 100 1.18 N/A 1 NetMHCpan 4.0
(Bulik-Sullivan et al., 2019) NSCLC 7 patients 6 0.10 0.08 T >4 EDGE
(Hilf et al., 2019) GBM 10 patients 1 0.03 0.85 T 3 IEDB 2.5
(Keskin et al., 2019) GBM 8 patients 6 0.20 0.07 T 3 NetMHCpan 2.4
(Koster and Plasterk, 2019) various 10186 TCGA patients 1 0.02 N/A 2 NetMHC 4.0
(Liu et al., 2019) OV 20 patients 12 0.15 0.24 T 3 NetMHCpan 3.0, NetMHCIIpan 3.1
(Löffler et al., 2019) HCC 16 patients 6 1.79 0 B 2 NetMHC 4.0, NetMHCpan 3.0, SYFPEITHI
(Rosenthal et al., 2019) NSCLC 164 samples/64 patients 6 0.86 N/A 2 NetMHC 4.0, NetMHCpan 2.8
(Schischlik et al., 2019) PNMN 113 patients 6 2.53 0.66 B 2 NetMHCpan

N/S means not specified. Cancer type abbreviations: adenocarcinoma (AC), breast cancer (BRCA), cholangiocarcinoma (CHOL), colorectal cancer (CRC), glioblastoma (GBM), gastrointestinal cancer (GIC), hepatocellular carcinoma (HCC), merkel cell carcinoma (MCC), melanoma (MEL), multiple myeloma (MM), non-small cell lung cancer (NSCLC), ovarian cancer (OV), pancreatic ductal adenocarcinoma (PDAC), pediatric cancers (PED), Ph-negative myeloproliferative neoplasms (PNMN), prostate adenocarcinoma (PRAD), sarcoma (SARC) and uterine corpus endometrial cancer (UCEC). T indicates experimentally confirmed T cell responses (e.g., IFNγ ELISPOT), B indicates experimentally confirmed major histocompatibility complex (MHC) binding (e.g., mass spectrometric [MS] of eluted peptides), and N/A indicates that no experimental validation was done. Features are mutated peptide binding prediction, wild-type peptide binding prediction, gene expression, sequence-based features like sequence similarity scores, and immunogenicity predictions. If available, version information of algorithms is included.