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Abstract

The incentive salience sensitization (ISS) theory of addiction holds that addictive behavior stems 

from the ability of drugs to progressively sensitize the brain circuitry that mediates attribution of 

incentive salience (IS) to reward-predictive cues and its behavioral manifestations. In this article, 

we establish the plausibility of ISS as an etiological pathway to alcohol use disorder (AUD). We 

provide a comprehensive and critical review of evidence for: (1) the ability of alcohol to sensitize 

the brain circuitry of IS attribution and expression; and (2) attribution of IS to alcohol-predictive 

cues and its sensitization in humans and non-human animals. We point out gaps in the literature 

and how these might be addressed. We also highlight how individuals with different alcohol 

subjective response phenotypes may differ in susceptibility to ISS as a pathway to AUD. Finally, 

we discuss important implications of this neuropsychological mechanism in AUD for 

psychological and pharmacological interventions attempting to attenuate alcohol craving and cue 

reactivity.
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1. Introduction

Of all substances of abuse, alcohol use is the most common and, arguably, the substance 

with the greatest combined cost to individuals and society (Nutt et al., 2010, 2007). 

Although many individuals are able to use alcohol without developing an alcohol use 

disorder (AUD), results from the 2012–2013 National Epidemiologic Survey on Alcohol and 

Related Conditions III (NESARC-III) suggest that approximately 73% of all non-

institutionalized adults in the USA (≥18 years of age) used alcohol at least once in the past 

year and that 15% those who used alcohol in the past year met diagnostic criteria for AUD 
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(Grant et al., 2017). This means that, in the USA alone, the number of adult alcohol users 

with active AUD in any given year is larger than the estimated total number of living adults 

residing in any one state or territory except California (27,432, 000 or 11% of the 

approximate 254, 000, 000 adults estimated to be living in the USA in 2018; Census Bureau, 

Population Division). Heavy alcohol use put individuals at greater risk for cancers and 

cardiovascular disease (Connor, 2017; Wood et al., 2018). The myriad negative medico-legal 

consequences of excessive alcohol use, such as assault, automobile accidents, gun accidents, 

rape, suicides, and unwanted pregnancies, create serious costs to society (Bouchery et al., 

2011; Hingson et al., 2009; Naimi et al., 2003; Smith et al., 1999; Walsh and Macleod, 1982; 

Wechsler et al., 2002; Whiteford et al., 2013; Wintemute, 2015). Consequently, there is a 

great need to understand the biomedical and psychosocial factors that determine excessive 

alcohol use, including the development of AUD.

An unfortunate reality that hinders this scientific mission is heterogeneity in the clinical 

presentation and course of AUD (Babor et al., 1992; Cloninger, 1987; Jellinek, 1960). This 

heterogeneity has been met with numerous attempts to match different “subtypes” of AUD 

with different treatment approaches, but largely with disappointing results (Allen et al., 

1998, 1997). Current approaches to understanding AUD heterogeneity and its consequences 

for both theory and intervention are informed by broader frameworks for understanding all 

manner of psychiatric conditions. In particular, the National Institute of Mental Health 

(NIHM) research domain criteria (RDoC) framework (Insel et al., 2010; Insel and Cuthbert, 

2015) has provided an architecture with which multiple causal factors stemming from 

diverse, biologically grounded systems can be organized for understanding the development 

and progression of AUD. The RDoC framework emphasizes studying the putative 

underlying causes (e.g., dysregulated neural circuits) of disorders and aims to generate 

biologically-meaningful, comprehensive descriptions that might form the basis for new 

classification schemes, which may be dimensional rather than categorical. The application of 

the RDoC framework to understanding heterogeneity in AUD has been termed the Alcohol 

Addiction RDoC (AARDoC) (Litten et al., 2015). The AARDoC organizes research across 

units of analysis (viz., from genes to brain to behavior, including self-report) relevant to 

AUD liability and promotive processes, and may lead to useful insights about etiology and 

treatment of AUD.

One of the research domains proposed for the AARDoC is the extent to which alcohol-

associated cues acquire “incentive salience.” 1 Incentive salience is a construct that refers to 

the motivational significance attributed to exteroceptive and interoceptive stimuli that 

reliably predict rewards, via Pavlovian conditioning (Bevins and Besheer, 2014; Paulus et 

al., 2009; Robinson et al., 2014; Robinson and Berridge, 1993; Saunders and Robinson, 

2013). Among the exteroceptive stimuli that can come to predict ethanol ingestion and/or 

intoxication are the sight, smell, and taste of a preferred alcoholic beverage, the implements 

used to contain, prepare, and/or consume the beverage, and the sounds of accessing and/or 

transferring a container’s contents. Given that experiencing the diverse interoceptive stimuli 

involved in or produced by beverage ingestion, including the pharmacological effects of 

1The incentive salience of alcohol cues has also been proposed as one of the core domains of neurobiologically-informed clinical 
assessment for AUD (Kwako et al., 2016).
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ethanol, is contingent upon the individual’s interaction with or manipulation of the alcoholic 

beverage, its container, and other implements, these cues are especially likely to acquire 

incentive salience (Tomie, 1996; Tomie and Sharma, 2013). Nevertheless, context matters—

the ability of these alcohol-associated cues to promote alcohol use in daily life is likely 

greatest when they are encountered at the “right” place and time, around the “right” people, 

and in the “right” emotional state (Marlatt, 1996; Niaura et al., 1988).

One neurobiological theory of addiction that directly addresses how drug-associated cues 

come to affect individuals’ behavior is the incentive salience sensitization theory of 

addiction (ISST) (Berridge et al., 2009; Berridge and Robinson, 2016, 2003; Robinson and 

Berridge, 2001, 2000, 1993). The ISST holds that different brain circuits are responsible for 

attributing hedonic versus incentive value to cues and rewards. The ISST posits that 

addictive behavior stems from the ability of drugs to progressively sensitize the brain 

circuitry responsible for attributing IS, such that the individual becomes hyper-reactive to the 

motivational properties of learned drug-predictive stimuli.2 Critically, the drug-induced 

sensitization of IS attribution to drug-predictive cues is theorized to progress independently 

of changes in the hedonic value attributed to either the drug or its cues. The dissociation of 

hedonic and incentive value can help explain why some people may verbalize explicit goals 

and reasons for abstaining from or moderating alcohol use, and yet: (1) find themselves 

drawn toward alcoholic beverages or people and places associated with alcohol use (e.g., 

bars, neighborhood pub, old drinking buddies); or (2) find it difficult to stop drinking after 

their first drink; or (3) find it nearly impossible to stop thinking about alcohol under certain 

circumstances (e.g., after stressful events, certain times of day or the week). Through 

alcohol-induced incentive salience sensitization (ISS), alcohol-associated cues may be 

increasingly imbued with the power to instigate alcohol seeking and consumption despite a 

person’s conscious beliefs, goals, and intentions. For this reason, ISS may not only be a 

mechanism of AUD development but also maintenance and relapse.

In this article, we argue for ISS as a mechanism relevant to AUD in humans. In order to do 

so, we first provide a summary review of the neural circuitry theorized to mediate attribution 

of incentive salience (IS) to reward-predictive cues and the behavioral and psychological 

manifestations of this process. Readers interested in more in-depth coverage of the 

neurobiology are referred to (Flagel and Robinson, 2017). We then review evidence from 

work with preclinical non-human animal models for the ability of ethanol, the addictive 

agent in alcoholic beverages, to induce neuroadaptations that may mediate ISS. Finally, we 

review evidence for IS attribution to alcohol-associated cues and its sensitization (ISS) in 

humans and non-human animals.

1.1 Scope and limitations

The current narrative review is not intended as a comprehensive or exhaustive review of all 

possible scientific evidence that speaks to the potential existence of a unique etiological 

2In terms of the RDoC matrix, the ISST is a framework for understanding how two of the primary constructs, Approach Motivation 
and Reward Learning, in one research domain, the Positive Valence System, might promote addictive behavior. Of the 39 constructs in 
the RDoC matrix, 7 were identified as being of utmost importance for understanding addictive behavior by a recent Delphi consensus 
study (Yücel et al., 2019), and of those 7 constructs, 1 was Reward Learning, and 3 were 3 of the 4 sub-constructs that constitute 
Approach Motivation.

Cofresí et al. Page 3

Neurosci Biobehav Rev. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathway to AUD captured by the neuropsychological mechanism delineated in the ISST. 

Rather, we intend to provide an initial and illustrative survey of that body of evidence. The 

relevance of ISS as a neuropsychological mechanism in AUD could be inferred from its 

inclusion as an addiction-promotive process in the binge/intoxication and preoccupation 

stages of the Three Stages of Addiction Cycle model (Koob and Volkow, 2010). However, to 

our knowledge, there have been no prior reviews of ISS as a mechanism in AUD; although, 

the idea is not new (Heinz, 2002). All previous reviews and theoretical papers on ISST have 

focused on food or other drug rewards, or when focused on alcohol, cover only pre-clinical 

data (Valyear et al., 2017). Many commonalities are observed across appetitive stimuli such 

as food, drugs of abuse, and sex; nevertheless, there are important differences in how these 

different classes of appetitive stimuli are processed by the brain (Berridge and Kringelbach, 

2015; Sescousse et al., 2013). Furthermore, the unique pharmacology of different drugs of 

abuse means that they are not interchangeable “addictive” stimuli (Badiani et al., 2011; 

Ozburn et al., 2015); it is thus important to establish a case for the plausibility of the ISST 

with respect to the specific drug of abuse.

The evidence we review here spans multiple units of analysis in humans and non-human 

animal models. The reader should not infer from our omission of any particular, relevant 

study in this review that said study is inadmissible as evidence supporting or disconfirming 

predictions derived from ISST. That being said, much of the primary scientific literature 

reviewed here was discovered using a two-step procedure. In the first step, we entered search 

terms as Boolean strings in Internet search databases (EBSCOhost Academic Search 

Complete: MEDLINE, PsycARTICLES, PsycINFO; Google Scholar; PubMed). These 

Boolean strings were always composed of [(“alcohol” OR “alcoholic” OR “ethanol” OR 

“ethyl alcohol”)] plus other search terms that varied by the level of analysis and concept 

(e.g., “adaptation”, “approach”, “attention”, “incentive”, “reactivity”) as well as whether we 

were interested in discovering studies involving human participants or non-human animal 

models. In the second step, we mined the bibliographies of any relevant discovered articles 

for additional hits. Only studies published in peer-reviewed scientific journals by August 

2019 were included.

Readers familiar with ISST (Berridge and Robinson, 2016, 2003; Robinson and Berridge, 

2001, 2000, 1993) will note the absence of studies on alcohol-related psychomotor 

sensitization in the present review. This omission was deliberate. An excellent review on this 

specific body of work recently was conducted by others (Nona et al., 2018).

2. The incentive salience (IS) circuitry

2.1 Attribution of IS

Attribution of IS to reward-predictive cues is mediated by the mesocorticolimbic dopamine 

system (Saunders et al., 2018), which is comprised of the ventral tegmental area (VTA) 

complex and its efferent projections. The VTA complex is a midbrain structure that includes 

neurons in the lateral and posterior aspects of the ventral tegmental area as well as in the 

medial aspects of the substantia nigra pars compacta (Yetnikoff et al., 2014). Dopamine 

release from the VTA complex projections into those structures modulates on-going activity 

as well as short- and long-term plasticity at the synaptic and cellular levels (Calabresi et al., 
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2007; Greengard et al., 1999; Lisman et al., 2011; Missale et al., 1998; O’Donnell, 2003; 

Shen et al., 2008; West and Grace, 2002). Conservation of the VTA complex circuitry across 

vertebrates establishes the relevance of behavioral neuroscience work on IS attribution and 

ISS in non-human animals to humans (Boyson et al., 1986; Gaspar et al., 1989; Kubikova et 

al., 2010; Lavoie et al., 1989; Perez-Fernandez et al., 2014; Smeets et al., 1986).

2.2 Manifestation (expression) of IS

Detection of a reward-predictive cue may automatically activate implicit associations (path 

a->b in Figure 1) involving attitudes (i.e., evaluations) (Bargh et al., 1992), outcome 

expectancies, and goals (i.e., motivational tendencies) (Bargh et al., 2001). The attribution of 

IS to a cue (path c->d->e in Figure 1) may not only reinforce its ability automatically 

activate implicit associations in long-term memory (path g in Figure 1), but also may 

amplify the behavioral consequences of implicit associations (path f in Figure 1) including 

nonconscious attentional biases (Kappenman et al., 2013; Mogg et al., 1997) and 

nonconscious approach tendencies (Chen and Bargh, 1999). For example, attribution of IS to 

a cue may amplify its ability to impel approach and action, which may manifest as enhanced 

evaluative and response planning at the level of neural processing, covertly as a facilitation 

or priming of response channels leading to pre-potent responses or faster response times, 

and/or overtly as movement of the individual toward the cue/reward object and/or 

engagement with it. These skeletomotor manifestations of IS attribution (path f->f.1 in 

Figure 1) are mediated by an evolutionarily conserved expression circuitry anchored at the 

nucleus accumbens, a component of the subcortical structure known as the ventral striatum 

in the rostral forebrain that is situated to integrate diverse functional input from the 

amygdalar nuclei, cortices, hippocampus, hypothalamus, and thalamus with the IS signal 

from the VTA complex and to engage the appropriate response systems via the basal ganglia 

(Cho et al., 2013; Groenewegen et al., 1999; Haber, 2003; Haber et al., 2000; Hasue and 

Shammah-Lagnado, 2002; Parent and Hazrati, 1995; Reynolds and Zahm, 2005; Zahm et al., 

1999).

Similarly, attribution of IS to a cue may amplify its ability to capture attention, and this may 

manifest as enhanced attention at the level of neural processing, an overt orienting response 

that turns the individual toward the cue/reward object and/or increases visual gaze shifts or 

fixation on it, and/or a covert orienting response that involves coordinated changes in 

autonomic physiology. These attentional manifestations of IS attribution (path f->f.2 in 

Figure 1) are mediated by an evolutionarily conserved expression circuitry anchored at the 

central nucleus of the amygdala, a subcortical structure in the temporal lobe that is situated 

to integrate diverse functional input from the cortices, hypothalamus, other amygdalar 

nuclei, thalamus, and brainstem with the IS signal from the VTA complex, and to engage the 

appropriate systems in the hypothalamus and brainstem (El-Amamy and Holland, 2007, 

2006; Hasue and Shammah-Lagnado, 2002; Lee et al., 2011; Veening et al., 1984; Zahm et 

al., 1999).

The constellation of endocrine, skeletomotor, and visceromotor IS manifestations may 

constitute a subconscious biobehavioral appetitive-motivational state of “wanting” (path h in 

Figure 1). In non-human animals, the cue-triggered “wanting” state is theorized be 
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responsible for the ability of reward-related cues to invigorate actions that are instrumental 

to seeking or consuming the reward as well as to sustain reward seeking actions in spite of 

reward omission, punishment, increases in the effort required, or changes to the form the 

action must take. Given that both IS attribution and expression systems are highly conserved 

across species, we and others believe that cue-triggered “wanting” is also likely to be 

conserved across species. Thus, cue-triggered “wanting” may make a person more inclined 

to act toward the implicitly activated goal, which is to obtain the reward predicted by the 

cue, and more able to adjust their goal-directed actions according to situational demands.

Some readers may be satisfied to stop here given that much of behavior in humans and non-

human animals alike is likely governed by bottom-up, implicit cognitive processes that 

operate below conscious awareness (Bargh, 2016, 2008; Bargh and Ferguson, 2000; Bargh 

and Morsella, 2008; Custers and Aarts, 2010; Lewicki et al., 1992). Nevertheless, the 

subjective experience of desire and craving (at the level of consciousness) is an important 

phenomenon in humans, and especially relevant to addiction and the ISST. In keeping, 

human neuroimaging studies of alcohol cue reactivity (reviewed later in Section 4.2.2) tend 

to find a significant, positive relationship between the level of activation induced by alcohol 

cues in a person’s IS system and that person’s self-report of the intensity of desire or craving 

for alcohol induced by those cues ( (Filbey et al., 2008; Fryer et al., 2013; Myrick et al., 

2004; Oberlin et al., 2016; Schacht et al., 2013; Tapert et al., 2004; Wiers et al., 2015c); but 

see: (Ames et al., 2014b; Grüsser et al., 2004; Kim et al., 2014)). Thus, we next propose two 

ways by which alcohol-associated cue activation of the IS system may drive the emergence 

of the subjective experience of alcohol-related desire and thought in humans.

According to the Dynamical Model of Desire (Hofmann and Van Dillen, 2018, 2012), which 

expands on the Elaborated Intrusion Theory of Desire (Kavanagh et al., 2005), subjective 

experience of a desire for the reward predicted by some cue emerges in a person’s 

consciousness (enters working memory) when neural representations of the cue or the 

reward or their association capture (neural) attentional resources in excess of some 

threshold. Below that threshold, a cue can only affect the person’s behavioral output via 

bottom-up, implicit mechanisms (e.g., “wanting”). Thus, it is possible that cue-triggered 

“wanting” becomes conscious craving when the nonconscious, implicitly-activated 

behavioral tendencies entailed in “wanting” are interrupted (path h->i in Figure 1) because 

behavioral conflict quickly captures attentional resources (see: Braver, 2012; Saunders et al., 

2017; Yeung et al., 2004). In the case of alcohol, this “indirect” pathway to conscious 

craving may be at work when something impedes successful completion of cue-triggered 

alcohol seeking (e.g., driving or walking by liquor store, but not going in to make a 

purchase; reaching for a glass, but finding that it has been taken away or that it is empty). It 

is in these moments that a person may not only become aware of the nonconscious alcohol 

seeking behaviors that were interrupted, but also of the altered physiological state in which 

they find themselves, and conclude that they are (or were) experiencing an urge to drink 

alcohol (Tiffany and Conklin, 2000).

A “direct” pathway from cue detection and IS attribution to the subjective experience of 

desire or craving may also exist (path j in Figure 1). Detection of a reward-predictive cue 

may activate, in parallel to implicit associations, explicit associations in long-term memory, 
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which immediately enter working memory, and thereby bringing into consciousness cue- or 

reward-related attitudes, expectancies, goals, and other thoughts. Attribution of IS to the 

representation of the cue in working memory may increase the likelihood that cue-elicited 

thoughts capture the focus of attention in consciousness. When the reward in question is 

alcohol, the “direct” pathway may be at work when a person begins to think about alcoholic 

beverages, alcohol use, or positive alcohol use outcomes after briefly encountering an 

alcohol-associated exteroceptive cue in the course of daily life.

3 Evidence for ethanol-induced adaptation of the IS circuitry

According to Robinson & Berridge (1993, 2001), the core criteria for establishing that a 

drug is able to induce ISS are simple: first, the drug must engage the IS system, and second, 

its repeated administration should induce sensitization, a non-associative learning process, in 

the IS system (at the neurobiological level) in a gradual or incremental manner. Inquiry into 

the neurobiological substrates of sensitization in general, and substance-induced 

sensitization of the IS system in specific, is an active area of research in neuroscience (e.g., 

(Areal et al., 2019; Hersman et al., 2019; Stevenson et al., 2019; Weber et al., 2019)). 

However, some details are clear. The adaptations that mediate ISS are persistent changes at 

the cellular (e.g., changes in dendritic morphology) or inter-cellular level (e.g., changes in 

pre- and post-synaptic molecular elements such as voltage-gated ion channels, ionotropic 

neurotransmitter receptor proteins, neurotransmitter synthesis enzymes and transporter 

proteins, metabotropic neurotransmitter receptor proteins) that necessarily require changes 

in gene expression.3 Persistent functional cellular adaptations (e.g., increased intrinsic 

excitability, increased neurotransmitter release) entail persistent circuit-level adaptations 

(e.g., increased excitatory tone, decreased inhibitory tone), which in turn, entail persistent 

system-level adaptations.4 Despite all of this, the consequences of a sensitized IS system 

may only be expressed or manifest in behavior in specific contexts (Leyton, 2007; Vezina 

and Leyton, 2009). Under certain circumstances, cue- or context-conditioned compensatory 

(opponent) processes that mediate behavioral tolerance to the effects drugs (e.g., (Weise-

Kelly and Siegel, 2001)) may mask the expression of sensitized in cue-conditioned 

appetitive responses (e.g., (Dalia et al., 1998)).

Consequently, an important issue in establishing ISS as a potential mechanism in AUD is the 

ability of ethanol exposure to induce persistent adaptations in the IS circuitry, especially 

adaptations that might underlie non-associative sensitization of the IS system, particularly its 

functional response to alcohol-associated cues. In this section, we review evidence for 

adaptations in the IS circuitry of preclinical non-human animal models with ethanol 

experience that may mediate alcohol cue ISS (Figure 2) in both humans and other animals.

In considering this evidence, it is necessary to keep in mind the intensity, frequency, and 

duration of ethanol exposure. In models involving chronic high-intensity exposure, it is 

3A comprehensive survey of all the genes and molecules that preclinical research on non-human animal models has demonstrated can 
change as a function of drug exposure, as a function of associative and non-associative learning, and/or as a function of their 
interaction, is beyond the scope of this review. Suffice it to say that the list of genes is long and ever-growing.
4An appreciation for the coordinated nature of functional adaptation across levels of biological organization (e.g., how changes in 
different molecules can produce changes synaptic plasticity processes) may be garnered from innovative simulation studies such as 
(Blackwell et al., 2018).
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necessary to consider when biological or physiological measurements are made relative to 

the last exposure, because these exposure paradigms are able to induce dependence, as 

evidenced by signs of acute withdrawal during the first few days after cessation (e.g., 

lowered seizure threshold, anxiety-like phenotypes) (Macey et al., 1996; Majchrowicz, 

1975). Ideally, measurements would be made at various intervals post-cessation. However, 

the vast majority of studies make measurements only during acute withdrawal. Although 

studies describing the brain state in acute withdrawal are important (e.g., this state may be 

conducive to deeper encoding of cue-alcohol associations via increased homeostatic value of 

alcohol or negative reinforcement), ISST assumes that the sensitized response to cues is not 

constrained to instances of acute withdrawal. In fact, there may be an exposure threshold for 

ethanol-induced adaptation in different brain and body systems found to be altered in people 

with AUD. Assuming that this threshold is met, adaptations should begin to arise in the IS 

circuitry early in the exposure history. Later in the exposure history, the adaptations that 

mediate ISS should persist after instances of acute withdrawal. For this reason, we review 

preclinical non-human animal model studies making measurements any time after limited 

(low-intensity) exposure and at two different time-points after extensive (high-intensity) 

exposure: during acute withdrawal and at least a week after it has resolved. Finally, we 

comment on the role of intermittency in ethanol exposure.

3.1 Precursor for alcohol cue incentive salience sensitization (ISS)

The earliest ethanol-induced adaptation in the IS circuit is the development of phasic5 

dopamine release to ethanol-predictive cues (henceforth: the IS signal), which is necessary 

for initiation of progressive alcohol cue ISS. We know that outside a self-administration 

context, i.e., as a purely pharmacological stimulus divorced of its usual motivational 

significance, ethanol can induce dopamine release in both the prefrontal cortex and nucleus 

accumbens of people (Boileau et al., 2003; Setiawan et al., 2014; Urban et al., 2010; Yoder 

et al., 2016, 2007) and rodents alike (Di Chiara and Imperato, 1988; Howard et al., 2008; 

Imperato and Di Chiara, 1986; Schier et al., 2013; Yim and Gonzales, 2000; Zapata et al., 

2006). This occurs putatively as a function of ethanol’s acute pharmacological effects on 

cells in the VTA complex (Brodie et al., 1999, 1990; Brodie and Appel, 1998; di Volo et al., 

2018; Gessa et al., 1985; Mereu et al., 1984; Xiao et al., 2009).

However, over the course of repeated voluntary oral self-administration by ethanol-

experienced non-human animals, explicitly or incidentally-conditioned cues, such as a light 

or a lever or the flavor of alcohol, acquire the ability to trigger dopamine release in the 

medial prefrontal cortex and the nucleus accumbens before brain ethanol concentrations 

reach pharmacologically active levels (Bassareo et al., 2017; Carrillo and Gonzales, 2011; 

Doherty et al., 2016; Doyon et al., 2005, 2003; Fiorenza et al., 2018; Howard et al., 2009; 

Shnitko and Robinson, 2015). In the same studies, dopamine levels remain either slightly 

elevated or return to baseline as brain ethanol concentrations continue to rise. This pattern 

5Phasic refers to event-locked dopamine release on a sub-second timescale due to synchronized bursts of high-frequency action 
potentials (AP) at axon-terminal boutons, and is contrasted with tonic release due to asynchronous low-frequency AP at the same. 
Tonic release creates the “basal tone” (steady-state extracellular concentration) that regulates clearance mechanisms (e.g., 
autoreceptors, transporters, degradative enzymes) in the terminal field. Readers desiring more in-depth coverage of the dopamine 
neurotransmission system are referred to: (Grace, 2000; Marinelli and McCutcheon, 2014; Rice et al., 2011; Vallone et al., 2000).
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suggests that one of the early adaptations to chronic ethanol experience in its typical 

motivational context is a decrease in or loss of VTA complex dopamine neuron sensitivity to 

the pharmacological effects of ethanol (putatively the rewarding stimulus) and acquisition of 

VTA complex dopamine neuron sensitivity to ethanol-predictive stimuli (the reward-

predictive cues). Interestingly, the same pattern of changes in the IS attributor has been 

documented as arising in 1/3rd of rodents (so-called “sign-trackers”) when they are trained to 

predict natural reward (food) on the basis of a cue (Flagel et al., 2010). If we accept that the 

function of the IS attributor is to broadcast whether specific stimuli are “want worthy,” then 

the development of any CS-elicited activity in the IS attributor (i.e., rapid release of 

dopamine from axon terminal buttons; with or without loss of the US-elicited activity) 

represents the first step in the process of alcohol cue ISS (formation of type ‘a’ path in 

Figure 2).

3.2 ISS-mediating adaptations arising early in the alcohol use history

Limited (low-intensity) exposure to ethanol is also able to induce adaptations in the IS 

circuitry that have the functional consequence of increasing the neurobiological (and 

psychological) relevance of the IS signal. A week of voluntary oral self-administration of 

moderate ethanol dose (ethanol concentration ≈50 mg/dL whole blood 30 min into the 

drinking episode) appears to be sufficient to decrease basal extracellular dopamine tone in 

the prefrontal cortex (Doherty et al., 2016) of rats from a genetically heterogeneous 

population, whereas longer (e.g., 2 months) voluntary oral self-administration histories may 

be necessary for similar adaptations to arise in the nucleus accumbens (Doyon et al., 2003; 

Ericson et al., 2019; Howard et al., 2009). These longer histories can also alter the balance 

of excitatory and inhibitory drive into the dorsal striatum, the nucleus accumbens, and the 

orbitofrontal cortex depending on the intensity of alcohol consumption (Adermark et al., 

2013; Lagström et al., 2019). The functional consequence of lower basal dopamine tone in 

either the prefrontal cortex or the nucleus accumbens may be an elevated signal-to-noise 

ratio in cortical and striatal neurons (Kroener et al., 2009; O’Donnell, 2003; West and Grace, 

2002) due to lower tonic dopamine auto-receptor activation (Dreyer et al., 2010). An 

elevated signal-to-noise ratio would have consequences for the neuromodulatory impact of 

phasic dopamine release on synaptic activity and plasticity as well as excitatory and 

inhibitory drive onto those synapses in the IS expressors (changes in the type ‘b’ paths or 

their targets in Figure 2).

A short history of voluntary oral alcohol self-administration in rats from genetically 

homogenous populations selected for high alcohol preference is also able to increase the 

number of spontaneously active dopamine neurons in the VTA complex (Morzorati et al., 

2010). This suggests that in at least some individuals limited exposure to alcohol can cause a 

persistent increase in the intrinsic excitability of the IS attributor (which may make it easier 

for activity in type ‘a’ paths to drive the IS attributor, i.e., to activate type ‘b’ paths in Figure 

2). Interestingly, alcohol-naive rats from these more genetically homogeneous populations 

selected for high alcohol preference and drinking also tend to have lower basal dopamine 

tone in both the prefrontal cortex and the nucleus accumbens (Engleman et al., 2006; 

Gongwer et al., 1989; Katner and Weiss, 2006; McBride et al., 1993; Murphy et al., 1982; 

Quintanilla et al., 2007; Strother et al., 2005), suggesting that selection for high alcohol 
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preference/drinking also selects for neurobiological endophenotypes that may increase 

vulnerability to alcohol cue ISS.

3.3 ISS-mediating adaptations arising later in the alcohol use history

3.3.1 Adaptations active in acute withdrawal—Depending on alcohol use level and 

history, abstinence from alcohol can produce an acute withdrawal syndrome, the physical 

symptoms (e.g., seizures, tremors) of which can begin hours after the last drink yet abate 

within a few days and the psychological symptoms (e.g., anxiety, depression, trouble 

sleeping) of which can persist for at least two weeks (Brown et al., 1995; Brown and 

Schuckit, 1988; Liappas et al., 2002; Schuckit et al., 2015, 1995). During acute withdrawal, 

cognitive functioning may be especially impaired ((Beatty et al., 2000; Czapla et al., 2015; 

Loeber et al., 2010; Pitel et al., 2009; Romero-Martínez et al., 2018); for review see: (Bates 

et al., 2002)) yet alcohol use-directed motivation may be heightened since non-cued craving 

is at its peak ((Flannery et al., 2003; Martinotti et al., 2008; Schneekloth et al., 2012; 

Witkiewitz, 2013); but see: (Li et al., 2015)). In non-human animal models, acute 

withdrawal after extensive (high-intensity) exposure to ethanol is associated with lower basal 

dopamine tone and greater basal glutamate tone in the nucleus accumbens (Griffin et al., 

2015; Hirth et al., 2016; Karkhanis et al., 2015; Uys et al., 2016; Weiss et al., 1996), altered 

synaptic plasticity in the nucleus accumbens (Jeanes et al., 2011; Renteria et al., 2017b; 

Spiga et al., 2014), greater excitability in the medial and orbital prefrontal cortices 

((Nimitvilai et al., 2016; Pleil et al., 2015), but see: (Renteria et al., 2018) ), and altered 

excitatory drive and synaptic excitability as well as altered phasic and tonic inhibition in the 

central and basolateral nuclei of the amygdala (Herman and Roberto, 2016; Läck et al., 

2007, 2005; Lindemeyer et al., 2014; Papadeas et al., 2001; Pleil et al., 2015; Roberto et al., 

2004a, 2004b; Varodayan et al., 2016). In the amygdala, hippocampus, and nucleus 

accumbens, the number of brain cells activated during the experience of acute withdrawal 

grows as a function of the number of previous withdrawal episodes (Borlikova et al., 2006), 

suggesting that repeated cycles of high intensity exposure and acute withdrawal alter the 

balance of excitation and inhibition in these structures and induce persistent functional 

alterations. Finally, although the neurobiology of acute withdrawal from alcohol is primarily 

informed by post-mortem studies in the mouse and rat brain, a similar neurobiological state, 

at least in the nucleus accumbens and prefrontal cortices, can be inferred from post-mortem 

studies of brains in the non-human primate allowed to voluntarily orally self-administer 

alcohol to intoxication every day for 6 or more months (Acosta et al., 2010; Alexander et al., 

2012; Floyd et al., 2004; Hemby et al., 2006; Siciliano et al., 2016a, 2016b, 2015). The 

functional consequence of these adaptations may be elevated reactivity to alcohol-associated 

cues in cortical neurons, dysregulated reactivity in amygdalar neurons, and an elevated 

signal-to-noise ratio in striatal neurons (Kroener et al., 2009; O’Donnell, 2003; West and 

Grace, 2002) due to lower tonic dopamine auto-receptor activation (Dreyer et al., 2010) that 

enhances the neuromodulatory impact of event-related dopamine release on synaptic activity 

and plasticity as well as the thresholds for excitatory and inhibitory drive onto said synapses 

in the IS expressors (changes in the type ‘b’ paths or their targets in Figure 2). Thus, the 

brain state in acute withdrawal after chronic high intensity exposure appears to be one that 

may support sensitized responses to alcohol cues (i.e., amplifies or facilitates the impact of 
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alcohol-associated cues on behavioral output) as well as deeper conditioning of those cues if 

reinforced with alcohol ingestion and/or intoxication.

3.3.2 Adaptations that persist into protracted abstinence/withdrawal—
Although physical symptoms of withdrawal from alcohol may abate within days, the 

psychological symptoms such as anxiety and depression can persist, and may be present in 

some people up to a year after the last drink (Martinotti et al., 2008). Although cognitive 

functioning may recover over the periods of months to years of protracted abstinence from 

alcohol ((Beatty et al., 2000; Czapla et al., 2015; Loeber et al., 2010; Pitel et al., 2009; 

Romero-Martínez et al., 2018), for review see: (Bates et al., 2002)), alcohol use-directed 

motivation may remain aberrantly elevated, as evidenced by incubation of alcohol cue-

induced conscious craving (Li et al., 2015), even if it is not actively expressed in behavior. 

During protracted abstinence/withdrawal, some, but not all, components of the IS circuitry 

appear to have a lower threshold for activation. Specifically, non-human animals exhibit 

elevated basal glutamate tone (Griffin et al., 2014), increased intrinsic excitability, increased 

excitability at glutamatergic synapses, and altered synaptic plasticity (Marty and Spigelman, 

2012; Renteria et al., 2017a; Zhou et al., 2007), but see: (Adermark et al., 2013)) as well as 

altered astrocytic excitability (Bull et al., 2014) in the nucleus accumbens. Basal dopamine 

tone in the nucleus accumbens is found to be either increased (Hirth et al., 2016) or 

decreased (Kashem et al., 2012; Rothblat et al., 2001) or unchanged (Diana et al., 1992), 

potentially as a function of the exposure paradigm and its ability to induce changes in local 

dopamine receptor gene expression and/or its regulation (Eravci et al., 1997; Jonsson et al., 

2014). In the medial and orbital prefrontal cortices, synaptic excitability, synaptic plasticity, 

and its biochemical mediators are perturbed (Henniger et al., 2003; Kroener et al., 2012; 

Renteria et al., 2018). In the central nucleus of the amygdala, altered tonic inhibition persists 

due changes in the local expression or regulation of inhibitory neurotransmitter clearance 

mechanisms (Augier et al., 2018). Finally, dopamine neurons in the VTA complex do not 

appear to exhibit increased baseline spontaneous firing rates (Diana et al., 1992), but do bear 

biochemical and electrophysiological signatures of enhanced responsivity to excitatory 

neurotransmission at synapses along their dendrites (Ortiz et al., 1995; Stuber et al., 2008). 

Overall, even in the absence of the lower signal-to-noise ratio in the nucleus accumbens 

observed after acute withdrawal, other nodes of the IS circuitry appear to be more easily 

driven by alcohol-associated cues in protracted abstinence (changes in the type ‘c’ paths in 

Figure 2). Importantly, the available evidence suggests that long-term ethanol exposure 

induces adaptations that persist after acute withdrawal into protracted abstinence. Moreover, 

these ethanol-induced adaptations may support the ability of alcohol-associated cues to 

affect behavioral output despite non-reinforcement of said cues in protracted abstinence.

3.3.3 On the role of intermittency in the effects of chronic ethanol exposure
—Many of the neuroadaptations evident in the acute and protracted withdrawal states after 

extensive (high-intensity) ethanol exposure that were reported above may hinge upon the 

intermittency built into many ethanol access/exposure paradigms (e.g., multiple cycles of a 

4-day 16-hr/day passive ethanol vapor exposure, every other day 24-hr access or daily 2-hr 

access schedules). In rodents, these chronic intermittent access/exposure paradigms can 

induce alcohol addiction-like behavioral phenotypes including: increased alcohol seeking 
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(Augier et al., 2018; Ciccocioppo et al., 2003; Gass et al., 2014; Hauser et al., 2019; 

Meinhardt et al., 2013; Vendruscolo et al., 2012), development of within-episode drinking 

patterns that rapidly produce high blood alcohol concentrations (Gilpin et al., 2009; Wilcox 

et al., 2014), and heavier consumption across episodes (Becker and Lopez, 2004; Bell et al., 

2004; Loi et al., 2010; Morales et al., 2015; Simms et al., 2008; Sommer et al., 2008; Wilcox 

et al., 2014; Wise, 1973) as well as relative insensitivity of alcohol seeking and drinking to 

alcohol devaluation (Augier et al., 2018; Hopf et al., 2010; Loi et al., 2010; Vendruscolo et 

al., 2012). Furthermore, rodents that undergo chronic intermittent ethanol access/exposure 

paradigms exhibit short- and long-term deficits in performance on executive functioning 

tasks (Gass et al., 2014; Kroener et al., 2012) as well as in learning about aversive, but not 

appetitive, outcomes (Ripley et al., 2004, 2003; Stephens et al., 2005, 2001). Thus, repeated 

cycles of intoxication and abstinence may be a critical factor in the progressive loss of 

control over alcohol use.

3.4. Interim summary 1

In this section, we reviewed evidence for the ability of ethanol, the addictive agent in 

alcoholic beverages, to induce neuroadaptations that may mediate the ISS process. The 

evidence, which comes from work in non-human animal models, suggests that several 

different adaptations capable of mediating the ISS process arise as a function of chronic 

ethanol exposure (see Figure 3) in the IS attributor, VTA complex, and the IS expressor 

systems, amygdala and nucleus accumbens, as well as in the medial and orbital prefrontal 

cortices, which are innervated by the IS attributor and inter-connected with the IS expressor 

systems. Given that these prefrontal cortices are believed to mediate cognitive control 

processes (Barbas, 2000; Braver, 2012; Inzlicht et al., 2015; Ridderinkhof, 2004), complex 

higher-level psychological functions in humans such as emotion regulation and self-control 

(Ochsner et al., 2012; Robinson et al., 2010) may be vulnerable to dysregulation as ISS 

progresses.

4. Evidence for incentive salience (IS) attribution to alcohol cues and its 

sensitization (ISS)

Based on the behavioral indicators of IS attribution described in (Robinson et al., 2014), if 

an alcohol-associated cue has been attributed with IS, then: (1) that cue should be able to 

elicit approach-oriented responses (e.g., attention, approach, conscious craving for alcohol), 

(2) that cue should be able to serve as a conditional or secondary reinforcer,6 and (3) that 

cue should be able to induce or invigorate instrumental alcohol seeking actions (e.g., choice, 

consumption). At the brain-level, the IS-attributed alcohol-associated cue should engage the 

IS circuitry, i.e., activate the IS attributor and/or expressors (Figure 1).

6Conditional or secondary reinforcers are stimuli that support new learning and/or behavioral performance as a function of their 
learned, meaningful relationship to a primary reinforcer such as resources necessary for survival. When learned cues acquire 
conditional reinforcing properties, they can motivate behavior in the absence of primary reinforcement and sometimes even in the face 
of punishment. The most commonly cited “real world” example of a secondary reinforcer is token money. In some societies, token 
money is able to motivate some individuals to learn and perform new actions, often vigorously and repeatedly, for long stretches of 
time. The value of token money to a person in such societies is conditional upon learning about the extent to which and ways in which 
token money can be traded for desired and/or needed goods and services.
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Applying ISST to AUD, all else being equal, if ISS is a mechanism in AUD, then it holds 

that an individual’s degree of reactivity to alcohol-associated cues should covary with 

alcohol use levels. There should be a positive relationship between alcohol consumption or 

exposure and degrees of reactivity. Consequently, with more exposure: (1) the IS-imbued 

alcohol-predictive cue should be able to elicit greater levels of alcohol seeking reactions 

(e.g., attention, approach, conscious craving for alcohol), (2) the cue should have higher 
conditional rewarding value, and (3) the cue should more easily induce or invigorate 

instrumental alcohol seeking actions (e.g., choice, consumption). Finally, (4) a similar 

pattern of sensitization should be evident in brain-level responses to the cue. However, all 

else may not be equal, and it rarely is. It is important to keep in mind that the reliability of 

the predicted positive association between alcohol use and cue reactivity level in humans is 

likely to be low because alcohol use level is subject to the influence of many different trait 

and state factors at the psychological, social, and cultural levels.

4.1 In non-human animal models

In this section, we review evidence for attribution of IS to alcohol-predictive cues and its 

sensitization in non-human animal models.

4.1.1 Alcohol cue-related behavioral responses

4.1.1.1 Attentional responses: In discrete alcohol cue conditioning paradigms involving 

voluntary oral alcohol self-administration by rats, the alcohol-predictive cue can come to 

elicit an attentional orienting response (Cofresí et al., 2019a, 2019b). However, it remains to 

be seen whether individual differences in pre-conditioning voluntary alcohol consumption 

predict conditioned attentional response levels or whether the latter relate to alcohol self-

administration in the conditioning task.

4.1.1.2 Approach responses: In the same type of paradigm where alcohol-related 

attentional responses can be seen in rats, the alcohol-associated discrete cue can also come 

to elicit an approach response (Cofresí et al., 2019a, 2019b, 2018; Krank, 2003; Krank et al., 

2008; Sparks et al., 2014; Srey et al., 2015; Villaruel and Chaudhri, 2016). In keeping with 

what we might expect from applying ISST to AUD phenotypes, individual differences in 

pre-conditioning task voluntary alcohol consumption can predict later alcohol cue-

conditioned approach levels (Cofresí et al., 2019a). Furthermore, rats with greater magnitude 

alcohol cue-conditioned approach response also self-administer more alcohol in the cue 

conditioning paradigm (Cofresí et al., 2019b, 2018). Similarly, alcohol-associated contextual 
cues, such as distinct places paired with experimenter-administered alcohol, can come to 

elicit place preference, an approach-like response, in mice (Cunningham et al., 2002a, 

2002b; Gremel and Cunningham, 2008) and rats (Bozarth, 1990; Nentwig et al., 2017; 

Torres et al., 2014). Furthermore, there is a positive association between levels of this 

approach-like response and levels of voluntary alcohol consumption in rodents (Green and 

Grahame, 2008).

4.1.1.3 Cue as conditional reinforcer effects: Alcohol-associated cues alone can 

reinforce learning of new instrumental actions in rats (Milton et al., 2012; Schramm et al., 

2016; Srey et al., 2015). Alcohol-associated cues and contexts are also able to cause the 
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return of extinguished instrumental actions that previously produced alcohol and maintain 

that instrumental responding for some time in the absence of alcohol (Bertholomey et al., 

2016; Bienkowski et al., 2004; Burattini et al., 2006; Chaudhri and Sahuque, 2008; 

Ciccocioppo et al., 2002, 2001; Dayas et al., 2007; Hauser et al., 2019, 2016; Jupp et al., 

2011; Katner et al., 1999; Katner and Weiss, 1999; Knight et al., 2016; Martin-Fardon and 

Weiss, 2017; O’Brien et al., 2011; Radwanska et al., 2008; Randall et al., 2017; Rodd-

Henricks et al., 2003, 2002; Zironi et al., 2006).

Evidence for sensitization of conditioned reinforcement comes from studies in rats 

demonstrating changes in the magnitude of conditioned reinforcement-related effects 

following termination of access or exposure to alcohol. In the hours to days following 

termination of access/exposure, alcohol dependent rats will: (1) work harder for alcohol 

(Gilpin et al., 2009; Gilpin and Koob, 2010; Kissler and Walker, 2015; Roberts et al., 1996; 

Vendruscolo et al., 2012; Walker and Koob, 2007), (2) self-administer more (Weiss et al., 

1996), even if it has been adulterated with bitterant (Vendruscolo et al., 2012), and (3) 

exhibit larger alcohol-associated cue- and context-induced instrumental response 

reinstatement effects (Ciccocioppo et al., 2003; Liu and Weiss, 2002a; Weiss et al., 1996). 

As time post-termination of access/exposure increases from days to weeks or months, 

alcohol-associated cue- and context-induced instrumental response reinstatement effects can 

be observed to grow in magnitude ((Bienkowski et al., 2004; Hauser et al., 2019, 2016; 

Radwanska et al., 2008; Rodd-Henricks et al., 2003, 2002), but see: (Jupp et al., 2011; 

O’Brien et al., 2011)). This incubation effect is in agreement with known time-dependent 

increase in the magnitude of spontaneous recovery of extinguished reactivity to alcohol-

associated cues (LeCocq et al., 2018; Remedios et al., 2014). From a Pavlovian perspective, 

these effects demonstrate acute withdrawal and protracted abstinence state-dependent 

increases in IS attribution to alcohol-associated cues.

4.1.1.4 Pavlovian to instrumental transfer effects: The Pavlovian to instrumental 

transfer (PIT) construct developed in animal models addresses the ability of incidental 

exposure to Pavlovian cues to initiate or invigorate an instrumental action. The formal test 

for PIT involves separately training cue reactivity and instrumental action and then 

observing behavior during a probe test in which the cue is intermittently presented to the 

animal while the opportunity for instrumental action is concurrently available. Typically, 

primary reinforcement is withheld during the test to prevent confounding the effect of cues 

with the effect of primary reinforcement. In rats, alcohol-associated cues can produce PIT 

test effects that are specific to alcohol reward as well as PIT test effects that generalize to 

other rewards ((Alarcón and Delamater, 2018; Corbit et al., 2016; Corbit and Janak, 2016, 

2007; Glasner et al., 2005; Krank, 2003; Krank et al., 2008; Lamb et al., 2016); but see: 

(Lamb et al., 2019, 2016)). Interestingly, alcohol-associated cues do not appear to exert any 

stronger PIT test effect in rats with a history of physical ethanol dependence than rats 

without such a history (Glasner et al., 2005). However, in rats without any history of 

physical dependence, alcohol cues exert a stronger PIT test effect after extensive as opposed 

to limited voluntary oral self-administration histories ((Corbit and Janak, 2016), but see: 

(Lamb et al., 2019)).
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If we accept that drinking alcohol is itself an action instrumental for the experience of 

alcohol’s primary reinforcing properties, then we can admit as evidence of PIT in non-

human animal models those situations in which conditioned alcohol cue reactivity facilitates 

alcohol drinking behavior (e.g., initiation of a sip, faster sipping, larger sips). Such PIT-like 

effects have been observed in rats (Cofresí et al., 2019b, 2018). Here, there is a positive 

relationship between the degree of Pavlovian alcohol cue reactivity and the speed and 

intensity of alcohol drinking behavior (Cofresí et al., 2019b, 2018).

4.1.2 Alcohol cue-related brain responses

4.1.2.1 Immediate early gene expression: When neurons and astrocytes are activated, the 

transcription and translation of immediate early genes (e.g., arc, c-fos, erk) occurs, and this 

allows researchers to use the relative density of transcripts or translated protein product as an 

index of regional brain activity (typically, post-mortem) (Herdegen and Leah, 1998; Morgan 

and Curran, 1989; Sheng and Greenberg, 1990). Using these indices, alcohol cues 

conditioned by voluntary oral alcohol self-administration have been shown to activate cells 

in various IS circuit nodes in the rat brain, including the medial and orbital prefrontal 

cortices, insular cortex, basolateral nucleus of the amygdala, nucleus accumbens, and central 

nucleus of the amygdala (Barak et al., 2013; Cofresí et al., 2019a; Dayas et al., 2007; Jupp et 

al., 2011; Radwanska et al., 2008).

These alcohol cues appear gain incentive salience as a function of time since acute 

withdrawal from alcohol. Specifically, after 6 months since cessation of alcohol access 

compared to after only 1 month, alcohol cues were able to induce activation of more cells in 

IS circuit nodes including the medial and orbital prefrontal cortices and central nucleus of 

the amygdala (Jupp et al., 2011). Other IS circuit nodes (e.g., nucleus accumbens, 

basolateral nucleus of the amygdala) also exhibited cue-induced activation, but the number 

of activated cells did not scale with time post-cessation of alcohol access. To our knowledge, 

no studies have looked at whether alcohol cues activate more cells in these brain regions as a 

function of alcohol exposure levels per se.

4.1.2.2 Dopamine neurotransmission: Changes in phasic and tonic dopamine release, 

which differentially affect signaling via different post-synaptic dopamine receptors (Dreyer 

et al., 2010; Venton et al., 2003), can be measured using fast-scan cyclic voltammetry 

(Rodeberg et al., 2017) and microdialysis (Zapata et al., 2009), respectively, in awake, 

freely-behaving non-human animals. Using these two neurochemical monitoring techniques, 

alcohol-associated cues have been demonstrated to elicit increases in both phasic and tonic 

dopamine release at IS circuit nodes such as the prefrontal cortices and nucleus accumbens 

in the rat using (Bassareo et al., 2017; Carrillo and Gonzales, 2011; Doherty et al., 2016; 

Doyon et al., 2005, 2003; Fiorenza et al., 2018; Gonzales and Weiss, 1998; Howard et al., 

2009; Katner and Weiss, 1999; Melendez et al., 2002; Robinson et al., 2009; Shnitko and 

Robinson, 2015; Weiss et al., 1993).

We were unable to find any published studies that have set out to investigate whether alcohol 

cues elicit greater dopamine release as a function of alcohol exposure levels. Only one study 

has looked at whether alcohol-associated cues elicit greater dopamine release as a function 
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of time since acute withdrawal due to termination of alcohol access/exposure. In this single 

study using microdialysis in rats (Weiss et al., 1996), when alcohol-dependent rats were 

allowed to orally self-administer alcohol a few hours into acute withdrawal, within 10 

minutes, extracellular dopamine levels in the nucleus accumbens reached 200% of the 

baseline extracellular level observed during acute withdrawal. However, in the same study, 

the baseline extracellular dopamine level in the nucleus accumbens was found to be lower 

during those first few hours of acute withdrawal than before the induction of physical 

dependence. Another study from the same group provides indirect evidence for increased 

cue-elicited dopamine release in the nucleus accumbens during withdrawal. In this study, the 

potency and efficacy of systemically-administered dopamine receptor antagonists to inhibit 

the ability of alcohol-associated cue/contexts to reinstate extinguished instrumental response 

rates were found to be greater after a history of physical dependence (Liu and Weiss, 

2002b). Together, these findings are in keeping with the idea (discussed earlier) that ethanol 

exposure induces adaptations that enhance the neuromodulatory impact of dopamine in the 

nucleus accumbens.

4.1.2.3 In vivo neuronal firing: Transient changes in the firing rate of neurons also can be 

measured in awake, freely-behaving animals by implanting electrodes into the brain regions 

of interest (Woodward et al., 1999). Alcohol-associated cues have been demonstrated to 

elicit changes in the firing rate of neurons in the nucleus accumbens of rats from genetically 

heterogeneous populations (Janak et al., 1999; Robinson and Carelli, 2008; Woodward et al., 

1998). In rats from a genetically homogenous population selected for high alcohol 

preference, alcohol-associated cues may also elicit changes in the firing rate of neurons in 

the prefrontal cortex (Linsenbardt and Lapish, 2015). To our knowledge, no studies have 

looked at whether alcohol access-related cues induce greater changes in neuronal firing as a 

function of alcohol use or exposure levels or as a function of time since acute withdrawal 

due to termination of alcohol access or exposure.

4.2 In humans

In this section, we review evidence for attribution of IS to alcohol-predictive cues and its 

sensitization in people.

4.2.1 Alcohol cue-related behavioral responses

4.2.1.1 Attentional responses: In this section, we review the evidence for attentional 

capture by alcohol-predictive cues, an index of IS attribution. Readers interested in the topic 

of the attentional capture by cues associated with drugs of abuse (including alcohol) in 

general, including alternative theoretical and methodological explanations for any measured 

bias in visual attention, its relationship to drug craving, and its clinical relevance are referred 

to comprehensive review articles conducted by others (Christiansen et al., 2015b; Field et 

al., 2016, 2014; Field and Cox, 2008).

The best evidence for or against the ability of alcohol cues to elicit oculomotor behavior 

(viz., capture visual attention) in humans comes from studies measuring eye movement 

initiation, latency, and duration. In one such study (Monem and Fillmore, 2016), the duration 

of gazes toward non-alcoholic beverages decreased across two sessions in a simulated in 
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vivo “recreational” setting whereas the duration of gazes toward alcoholic beverages in the 

same setting did not such that in session 2, an attentional bias toward the alcoholic beverages 

was visible at the sample-level. Monem and Fillmore (2016) also found that within-person 

differences in gaze duration between alcoholic and non-alcoholic beverages in both sessions 

were positively related to typical alcohol use levels. Similarly, inside complex visual scenes 

presented on a computer screen, alcoholic beverages can elicit a greater number of cue-

directed eye movements and the extent to which they do appears to be relate to alcohol use 

levels (Roy-Charland et al., 2017). More eye movements tend to be directed toward alcohol 

use scenes when they are presented alongside other scenes and gaze duration tends to be 

longer (Vincke and Vyncke, 2017). Similarly, the duration of gazes toward alcoholic 

beverage pictures and words tend to be longer than the duration of gazes toward 

concurrently presented non-alcohol pictures and words and this bias tends to be positively 

related to typical alcohol use ((Ceballos et al., 2015; Christiansen et al., 2015a; Fernie et al., 

2012; Field et al., 2011b; Friese et al., 2010; Laude and Fillmore, 2015; Lee et al., 2014; 

Melaugh McAteer et al., 2015; Miller and Fillmore, 2011, 2010; Rose et al., 2013; Weafer 

and Fillmore, 2013, 2012), but see: (Schoenmakers et al., 2008)).

Additional evidence for or against the ability of alcohol cues to elicit oculomotor behavior 

(viz., capture visual attention) in humans comes from tasks where visual attentional capture 

by alcohol cues can be inferred based on changes in the accuracy and/or latency of other 

(non-ocular) responses to visual stimuli. For example, the ability and latency to detect 

alcoholic beverage-related changes within complex visual scenes as well as simple multi-

item display grids in the flicker-induced visual change blindness paradigm in the laboratory 

(Hobson et al., 2013; Jones et al., 2002, 2006, 2003; Schoenmakers et al., 2007) and in the 

natural environment (Schoenmakers and Wiers, 2010). The ability and latency to detect 

alcohol-related changes in the flicker-induced change paradigm tend to be, respectively, 

positively and negatively related to typical alcohol use levels (Hobson et al., 2013; Jones et 

al., 2002, 2006, 2003; Schoenmakers and Wiers, 2010). Similarly, in the attentional blink 

paradigm, which measures the efficiency of early visual attention as a decrease in an 

experimentally-induced stimulus mis-identification rate, greater early visual attention 

efficiency has been found for both alcoholic beverage pictures and alcohol-related words 

relative to non-alcohol pictures and words as a positive function of typical alcohol use levels 

(DePalma et al., 2017; Tibboel et al., 2010). In the modified visual dot probe detection task, 

an alcoholic beverage picture and non-alcohol beverage picture are presented simultaneously 

on the left or right-side of a computer screen and a response-target probe is presented shortly 

after picture offset in the same location as one of the two pictures on the screen. In this task, 

the latency to respond to the probe tends to be shorter (i.e., people are faster to detect it) 

when the probe is presented in the same location as the alcoholic beverage picture and this 

tends to be positively related to typical alcohol use levels ((Christiansen et al., 2015a; 

Clerkin et al., 2016; Duka and Townshend, 2004; Field et al., 2013, 2007, 2004; Field and 

Eastwood, 2005; Field and Quigley, 2009; Garland et al., 2012a, 2012c; Manchery et al., 

2017; Miller and Fillmore, 2010; Ramirez et al., 2015b, 2015a; Roberts and Fillmore, 2015; 

Schoenmakers et al., 2007; Shin et al., 2010; Vollstädt-Klein et al., 2012), but see: (Fernie et 

al., 2012; Field et al., 2005; Jones et al., 2018; Miller and Fillmore, 2011; Schoenmakers et 

al., 2008; Townshend and Duka, 2007; Wiers et al., 2017)). Additionally, in AUD patients, 
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this measure of attentional capture by alcohol cues appears to “incubate” (i.e., detection of 

targets in alcohol cued locations becomes increasingly faster) across abstinence (Rinck et al., 

2018; Schoenmakers et al., 2010). In the modified color-naming Stroop interference task 

with words (Stroop, 1935), participants tend to be less accurate and/or slower to identify the 

color when alcohol-related words are used and this tends to be positively related to typical 

alcohol use ((Bauer and Cox, 1998; Cox et al., 2003, 2000, 1999; Duka et al., 2002; Fadardi 

and Cox, 2009, 2006; Field et al., 2013; Grant et al., 2007; Johnsen et al., 1994; Lusher et 

al., 2004; Modi et al., 2019; Murphy and Garavan, 2011; Ryan, 2002; Sharma et al., 2001; 

Snelleman et al., 2015; Stautz et al., 2017; Stetter et al., 1995, 1994; Stormark et al., 2000, 

1997), but see: (Albery et al., 2015; Christiansen and Bloor, 2014; Duka and Townshend, 

2004; Fridrici et al., 2013; Spanakis et al., 2019)) and may “incubate” with repeated cycles 

of withdrawal (Duka et al., 2002).

Visual attention capture by alcohol cues, across direct and indirect measures, tends to be 

more consistently related to differences in typical alcohol use than it is related to differences 

in AUD status, duration, and severity. However, direct and indirect measures of attentional 

capture by alcohol cues may be confounded by neurocognitive impairments among 

individuals with AUD (Beatty et al., 2000; Czapla et al., 2015; Loeber et al., 2010; Pitel et 

al., 2009; Romero-Martínez et al., 2018); for review see: (Bates et al., 2002)). Accounting 

for these neurocognitive impairments may be necessary in measuring attentional bias among 

individuals with AUD and when evaluating relationships between attentional bias scores and 

differences in AUD status, duration, and/or severity (Fadardi and Cox, 2006; Loeber et al., 

2009).

4.2.1.2 Approach responses: The best evidence for or against the ability of alcohol cues 

to elicit skeletomotor behavioral manifestations of IS attribution (viz., approach responses) 

in humans might be acquired by measuring beverage-directed approach movement initiation 

and its latency, time spent within proximity, postural changes, or skeletal muscle ‘priming’ 

following presentation of alcoholic beverages at a distance. Currently, the best available 

evidence comes from two computer-based tasks using visual proxies for alcoholic beverages 

and approach v. avoidance responses. The first task is a modified version of the Simon task 

(De Houwer et al., 2001) in which people use arrow keys to move a manikin toward or away 

from alcohol-related and control pictures presented on the computer screen (Field et al., 

2005). On this task, people tend to be faster to respond when instructed to move the manikin 

toward rather than away from alcohol pictures ((Barkby et al., 2012; Christiansen et al., 

2012; Field et al., 2011a, 2008, 2007, 2005; Pieters et al., 2012; Schoenmakers et al., 2008; 

van Hemel-Ruiter et al., 2011), but see: (Snelleman et al., 2015; Spruyt et al., 2013)), an 

alcohol approach bias appears that appears to be positively related to alcohol use level 

((Barkby et al., 2012; Christiansen et al., 2012; Field et al., 2011a, 2008, 2005; Pieters et al., 

2012), but see: (van Hemel-Ruiter et al., 2011)), and not AUD status (Barkby et al., 2012). 

The second task is a modified version of the Approach-Avoidance task (Chen and Bargh, 

1999) in which participants use a joystick to pull (approach) or push (avoid) pictures of 

alcoholic and non-alcoholic beverages among other objects presented on the computer 

screen (Wiers et al., 2009). On this task, people tend to be faster to pull alcoholic beverage 

pictures toward themselves than they are to push them away (Eberl et al., 2013; Ernst et al., 
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2013; Fleming and Bartholow, 2014; Leeman et al., 2018; Loijen et al., 2018; Peeters et al., 

2013, 2012; Sharbanee et al., 2014; Wiers et al., 2011, 2010, 2009, 2015b, 2014), an alcohol 

approach bias appears that appears to be positively related to alcohol use level and/or AUD 

status (Fleming and Bartholow, 2014; Peeters et al., 2013, 2012; Sharbanee et al., 2014; 

Wiers et al., 2017, 2014).

Arguably, there is a third measure of the approach response in humans. Some researchers 

have used the Implicit Association Task (IAT) (Greenwald et al., 1998) to assess how 

strongly the concept of “alcohol” (primed by words or pictures of different brands or types 

of alcoholic beverages) is linked to other concepts such as “active” (primed by words like 

‘energetic’, ‘lively’, ‘cheerful’) or “positive” (primed by words like ‘good’, ‘pleasant’, 

‘nice’) (Wiers et al., 2002) as well as “approach” (activated by words like ‘approach’, 

‘advance’, ‘closer’) (Palfai and Ostafin, 2003). In many cases, IAT scores were found to be 

positively related to alcohol use levels ((Houben and Wiers, 2009; Jajodia and Earleywine, 

2003; Ostafin and Marlatt, 2008; Ostafin and Palfai, 2006; Palfai and Ostafin, 2003; Wiers et 

al., 2017, 2002), but see: (Tibboel et al., 2015)). It is an open question, however, whether the 

IAT truly measures the same construct as the modified Simon Task and modified Approach-

Avoidance Task described above (cf. (Wiers et al., 2017). Conceptually, it seems that the IAT 

might be more likely to reveal the structure of the implicit alcohol-associative memory 

network whereas the modified Simon Task and modified Approach-Avoidance Task might 

be more likely to detect expression (manifestation) of IS in human skeletomotor behavior.

4.2.1.3 Autonomic responses: Autonomic responses can be registered in many different 

physiological units including the activity of the cardiovascular system, hormone-secreting 

glands (e.g., the adrenal glands, the pancreas), smooth muscle (e.g., lining blood vessels or 

the gut), and the neurons that innervate them. For simplicity, we chose to review evidence 

from only a single physiological unit of analysis: heart rate. Heart rate is useful summary 

index of autonomic response because heart rate is sensitive to the interactive effects of many 

physiological processes including circulating hormones, nervous system activity, respiratory 

rate, and smooth muscle activity. Presentation of alcoholic beverages is able to elicit an 

increase in heart rate (measured as more beats per minute) that is sustained as the person 

performs the act of ingesting the presented beverage, but dissipates shortly thereafter 

(Kaplan et al., 1985; Newlin, 1986, 1985; Pomerleau et al., 1983; Staiger and White, 1991; 

Turkkan et al., 1988). The smell, the taste, and the sight of alcoholic beverages can also 

increase heart rate when presented in isolation from each other (e.g., smell only, sight only) 

(McCaul et al., 1989; Payne et al., 1992; Stormark et al., 1995; Turkkan et al., 1989; 

Witteman et al., 2015). Increases in heart rate have also been observed following 

personalized alcohol use-related mental imagery (Seo et al., 2013; Sinha et al., 2009). The 

latter has also been demonstrated to produce greater increases in heart rate among people 

with AUD (Seo et al., 2013; Sinha et al., 2009) whereas in vivo exposure to alcoholic 

beverages can do so sometimes (Kaplan et al., 1985), but not others (Thomas et al., 2005). 

Presentation of alcoholic beverage sights or smells or tastes in isolation can raise heart rate 

to a greater extent in some people with AUD (Ingjaldsson et al., 2003; Stormark et al., 

1995), but not all (McCaul et al., 1989; Turkkan et al., 1989). Presentation of alcohol-related 
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words is able to increase heart rate to the same extent in people with and without AUD 

(Stormark et al., 2000).

4.2.1.4 Conscious craving/subjective experience of desire for alcohol: The construct of 

craving has a long history in the study of alcoholism (Drummond, 2001; Edwards and Gross, 

1976; Jellinek, 1960; Tiffany and Conklin, 2000). The ability of IS-attributed cues to 

provoke an explicit desire for alcohol is important not only because “strong urges, cravings, 

or desires to use alcohol” are now one of the diagnostic criteria for AUD (Diagnostic and 

statistical manual of mental disorders (DSM-5{®}), 2013), but also because the greater a 

person’s retrospective subjective experience of alcohol craving in daily life, the greater the 

number of alcohol-related problems and symptoms of AUD they are likely to be 

experiencing (Chakravorty et al., 2010; Murphy et al., 2014; Ray et al., 2017; Rohn et al., 

2017; Yoon et al., 2006). Consequently, the development of cue-provoked craving for 

alcohol could be considered one of the earliest signs of alcohol cue ISS. In keeping, 

presentation of alcoholic beverages is able to provoke self-reported explicit desire for 

alcohol (viz., conscious craving) measured using single-item visual analog scale or multi-

item questionnaires (Amlung and MacKillop, 2014; Blaine et al., 2018; Cooney et al., 1984; 

Curtin et al., 2005; Field et al., 2005, 2004; Hollett et al., 2017; Kambouropoulos and 

Staiger, 2004; Kaplan et al., 1985; Kareken et al., 2010a; Kiefer et al., 2015; Kreusch et al., 

2017; MacKillop, 2006; MacKillop et al., 2015; MacKillop and Lisman, 2008, 2005; Monti 

et al., 1987; Ostafin et al., 2008; Pomerleau et al., 1983; Ramirez et al., 2015a, 2015b; 

Rohsenow et al., 1994; Staiger and White, 1991; Willner et al., 1998). Isolated presentation 

of alcohol-related smells, tastes, and pictures or videos can also provoke craving ((Bragulat 

et al., 2008; Christiansen et al., 2017; Courtney et al., 2015; Fey et al., 2017; Field et al., 

2007; Field and Eastwood, 2005; Filbey et al., 2008; Lovett et al., 2015; Lukas et al., 2013; 

Manchery et al., 2017; Mccusker and Brown, 1990; Oberlin et al., 2016, 2013; Ostafin et al., 

2008; Payne et al., 1992; Pronk et al., 2015; Schneider et al., 2001; Stauffer et al., 2017; 

Stormark et al., 1995; Veilleux et al., 2018; Vollstädt-Klein et al., 2012; Witteman et al., 

2015; Yoder et al., 2009), but see: (Mucha et al., 2000)) as can personalized alcohol use-

related mental imagery (Blaine et al., 2018; Fox et al., 2007; Seo et al., 2013; Sinha et al., 

2009).

In theory, as ISS progresses the magnitude of cue-provoked craving for alcohol should 

increase. In line with this prediction, presentation of alcoholic beverages can provoke greater 

craving among people with AUD compared to controls ((Pomerleau et al., 1983; Reid et al., 

2006; Thomas et al., 2005) but see: (Kaplan et al., 1985; Monti et al., 1987)). People with 

AUD are also more likely than control participants to report greater increases in craving 

following presentation of the isolated sight or smell or taste of alcoholic beverages (George 

et al., 2001; Ingjaldsson et al., 2003; Myrick et al., 2004; Reid et al., 2006; Schneider et al., 

2001; Wiers et al., 2015c) and following exposure to personalized alcohol use-related mental 

imagery (Reid et al., 2006; Seo et al., 2013; Sinha et al., 2009). Among people without 

AUD, higher levels or more hazardous alcohol use also predict greater craving following 

presentations of actual beverages or picture of them (Blaine et al., 2018; Curtin et al., 2005; 

Hollett et al., 2017; Lovett et al., 2015; Pronk et al., 2015; Stauffer et al., 2017; Veilleux et 

al., 2018). Furthermore, the magnitude of craving produced by alcohol’s interoceptive 
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stimuli is also positively related to both alcohol use and AUD severity (Bujarski et al., 2018, 

2017, 2015; Bujarski and Ray, 2014; Duka et al., 1999; King et al., 2016, 2014, 2011, 2002; 

Morean et al., 2013). Together, these findings suggest sensitization of exteroceptive and 

interoceptive alcohol cue-elicited craving responses. Finally, it also appears that the level of 

craving induced by at least exteroceptive alcohol cues can become elevated after at least 2 

months of abstinence from alcohol, at least among people with AUD (Li et al., 2015; Monti 

et al., 1993a), which is in keeping with theorized state-dependent modulation of IS 

attribution and expression.

4.2.1.5 Cue as conditional reinforcer effects: To our knowledge, currently there are no 

published reports of direct tests for the conditioned rewarding value of alcohol cues in 

humans (i.e., alcohol cue-based reinforcement of a new instrumental response, alcohol cue-

based reinforcement of a new cue), or even indirect tests such as measuring the extent to 

which an alcohol-associated cues can reinstate extinguished instrumental actions that 

previously produced alcohol reward. This precludes any investigation of whether conditional 

reinforcing value increases as a function of alcohol use level or AUD status, severity, and 

duration that would be predicted by ISST.

4.2.1.6 Pavlovian to instrumental transfer effects: In people, the alcohol-specific PIT 

construct developed in non-human animal models of alcohol seeking maps onto situations in 

which exposure to alcohol-predictive Pavlovian cues increases the likelihood of actions 

taken to acquire or consume alcoholic beverages. The increases in action likelihood are 

believed to be at least in part a consequence of cue-triggered Pavlovian alcohol seeking 

reactions. However, it is important to keep in mind that in non-human animal model 

paradigms, the subject is typically already in a place associated with alcohol availability, and 

the instrumental action to obtain or consume alcohol does not require the subject to leave 

that place. That is, the alcohol-specific PIT construct developed from the non-human animal 

models may only naturally apply to specific situations in which people may find themselves. 

Nonetheless, there have been numerous demonstrations of the alcohol-specific PIT construct 

in the human laboratory. Instrumental responding for alcohol, measured as ingested alcohol 

volume or ingestion speed in bogus beverage evaluation tasks or number of alcohol 

beverage-earning responses in computerized tasks, has been shown to increase following 

isolated presentation of alcoholic beverage cues within specific sensory modalities (Field 

and Eastwood, 2005; Field and Jones, 2017; Hodgson et al., 1979; Martinovic et al., 2014; 

Roehrich and Goldman, 1995; Rose et al., 2018; Stein et al., 2000; Van Dyke and Fillmore, 

2015), but see: (Carter and Tiffany, 1999; Field et al., 2007, 2005; Jones and Field, 2013; 

Kersbergen and Field, 2017; Stautz et al., 2017) as well as following presentation of 

alcoholic beverages and/or the interoceptive stimuli produced by ingestion ((Amlung and 

MacKillop, 2014; Bigelow et al., 1977; Blaine et al., 2018; Christiansen et al., 2017; 

Chutuape et al., 1994; Corbin et al., 2008; Farris and Ostafin, 2008; Fernie et al., 2012; 

Fromme and Dunn, 1992; Hodgson et al., 1979; Holdstock and de Wit, 1998; Johnson and 

Fromme, 1994; Larsen et al., 2012; Leeman et al., 2009; Ludwig et al., 1978, 1974; 

MacKillop and Lisman, 2005; Marlatt et al., 1973; Ostafin et al., 2008; Perkins et al., 2003; 

Rose and Duka, 2006; Stockwell et al., 1982; Wetherill and Fromme, 2009; Williams and 

Brown, 1985), but see: (Paredes et al., 1973)). In keeping with ISST, these PIT effects have 
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been found to differ in magnitude based on AUD status ((Higgins and Marlatt, 1973; 

Hodgson et al., 1979; Ludwig et al., 1978; Marlatt et al., 1973; Stockwell et al., 1982), but 

see: (Bujarski et al., 2018)) as well as individual differences in typical alcohol use levels 

((Blaine et al., 2018; Corbin et al., 2008; Leeman et al., 2009; Van Dyke and Fillmore, 

2015), but see: (Kersbergen and Field, 2017; Martinovic et al., 2014)).

4.2.2 Alcohol cue-related brain responses—In most cases, functional brain 

responses to alcohol-related cues in people are measured using simple tasks that involve 

only repeated presentation of alcohol-related stimuli (e.g., pictures). This allows for 

unambiguous interpretation of changes in measured brain activity. In part, the simplicity of 

tasks reflects the technical difficulty of non-invasively measuring activity in the living brain.

4.2.2.1 Brain responses measured using the fMRI-BOLD technique: Behavioral 

responses to alcohol-associated cues, such as attentional bias and approach tendency, are 

theorized to be a downstream consequence of cue-induced activation of IS neurocircuitry 

components. Therefore, it is important to verify the ability of alcohol-associated cues to 

activate the IS attributor and expressors in the living human brain. Functional magnetic 

resonance imaging (fMRI) provides a way to visualize cue-induced neuronal activation or 

de-activation in specific areas of the living human brain using the regional blood oxygen 

level-dependent (BOLD) contrast imaging technique (Logothetis, 2003; Logothetis and 

Pfeuffer, 2004). As a previous meta-analysis showed (Schacht et al., 2013), using the fMRI-

BOLD technique, alcohol cue-induced activation (i.e., more positive BOLD signals) has 

been reported in the IS attributor, VTA complex, and the IS expressor systems, amygdala 

and nucleus accumbens, as well as in the medial and orbital prefrontal cortices, which are 

innervated by the IS attributor and inter-connected with the IS expressor systems. 

Specifically, activation has been reported in response to isolated alcohol cues presented in 

the following sensory modalities: sight (Ames et al., 2014b, 2014a; Braus et al., 2001; 

Brumback et al., 2015; de Sousa Fernandes Perna et al., 2017; Fryer et al., 2013; Grüsser et 

al., 2004; Ihssen et al., 2011; Kim et al., 2014; Lee et al., 2013; Lukas et al., 2013; Nikolaou 

et al., 2013; Schad et al., 2018; Sekutowicz et al., 2019; Tapert et al., 2004; Vollstädt-Klein 

et al., 2010; Wiers et al., 2015c, 2014; Wrase et al., 2002), smell ((Kareken et al., 2004; 

Schneider et al., 2001) but see: (Lukas et al., 2013)), and taste (Claus et al., 2011; Courtney 

et al., 2015; Filbey et al., 2008; Oberlin et al., 2016), as well as their combinations ((George 

et al., 2001; Myrick et al., 2004), but see: (Bragulat et al., 2008)).

In keeping with an alcohol cue ISS mechanism, typical alcohol use levels and AUD status or 

severity tend to be positively related to the magnitude of BOLD signals during exposure to 

isolated alcohol-related sights (Ames et al., 2014a, 2014b; Braus et al., 2001; Brumback et 

al., 2015; Fryer et al., 2013; Grüsser et al., 2004; Heinz et al., 2004; Ihssen et al., 2011; Kim 

et al., 2014; Lee et al., 2013; Tapert et al., 2004; Wiers et al., 2015c, 2014); but see: (de 

Sousa Fernandes Perna et al., 2017; Oberlin et al., 2018; Schad et al., 2018; Vollstädt-Klein 

et al., 2010; Wiers et al., 2015c)), smells (Kareken et al., 2004; Schneider et al., 2001), and 

tastes (Claus et al., 2011; Courtney et al., 2015; Filbey et al., 2008) as well as their 

combinations (George et al., 2001; Myrick et al., 2004). In agreement with a previous meta-

analysis (Schacht et al., 2013), we found that across studies, cue-induced BOLD in either the 
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ventral striatum (i.e., nucleus accumbens) or prefrontal cortices (esp. orbital and lateral) 

were the most frequently associated with clinical or drinking measures.

As mentioned in Section 2.2, many of the studies reviewed here reported a significant 

positive relationship between the level of activation induced by alcohol cues in a person’s IS 

system (esp. amygdala, nucleus accumbens, and prefrontal cortical partners) and that 

person’s self-report of the intensity of desire or craving for alcohol induced by those cues 

((Filbey et al., 2008; Fryer et al., 2013; Myrick et al., 2004; Oberlin et al., 2016; Schacht et 

al., 2013; Tapert et al., 2004; Wiers et al., 2015c); but see: (Ames et al., 2014b; Grüsser et 

al., 2004; Kim et al., 2014)). Other studies reviewed here did not test the relationship, but 

implied it in describing their findings (Bragulat et al., 2008; Brumback et al., 2015; George 

et al., 2001; Heinz et al., 2004; Huang et al., 2018; Kareken et al., 2010b, 2010a, 2004; Lee 

et al., 2013; Lukas et al., 2013; Schneider et al., 2001; Seo et al., 2013; Vollstädt-Klein et al., 

2010). To the extent that it reflects the transformation of “wanting” into a subjective feeling 

of wanting, then this relationship is important for the ability of ISST to explain changes in 

the subjective experience of reactivity to alcohol cues in AUD, and warrants further study.

4.2.2.2 Brain responses measured using the PET technique: Alcohol cue-induced 

activation measured using the fMRI BOLD technique in the brain structures we are referring 

to as the “IS expressors” could reflect something other than IS signal-related processing; for 

example, it could reflect processing of a signal from the motivational system involved in 

avoidance, aversion, and defensive responses. However, since the IS signal is theorized to be 

encoded by dopamine release from projections that originate in the VTA/SNc complex, one 

way to ensure that alcohol cue-induced activation of the IS expressors measured with fMRI 

can reflect IS signal-processing is to measure the IS signal generated upon presentation of 

said cues. In other words, researchers need to measure cue-induce dopamine release in the 

IS expressors in the living human brain. Positron emission tomography (PET) can reveal 

cue-induced neurochemical release in specific areas of the living human brain using 

radioactive ligands (Phelps and Mazziota, 1985). Using radioactive raclopride, a dopamine 

receptor antagonist, PET has been used to show cue-induced dopamine release in the ventral 

striatum as a decrease in raclopride binding potential, which contains the IS expressor 

system labeled “Accumbens” in Figure 1, in response to the taste of alcohol (Oberlin et al., 

2013). However, this does not appear to scale with alcohol use levels or AUD status or 

severity (Oberlin et al., 2013). It remains to be seen whether this null relationship will 

replicate in a larger sample or when more intense cues are presented (i.e., combinations of 

alcohol sight, smell, and taste).

4.2.2.3 Brain responses measured using the EEG-ERP technique: Although both fMRI 

BOLD and PET inform us about which brain systems (at the circuit and biochemical levels) 

are engaged by alcohol-associated cues, they do not directly measure the neuronal response 

to those cues. The fMRI BOLD signal does not reflect neural activation directly but rather 

reflects changes in a complex hemodynamic response that hinges upon neuro-vascular 

coupling via perivascular astrocytes (Shetty et al., 2012). The PET signal can reflect 

neurochemical release, but it is based on changes in binding of the radioactive tracer at both 

specific and non-specific binding sites, which may be present on both neuronal and non-
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neuronal cells (Phelps and Mazziota, 1985). Furthermore, both techniques measure 

biological signal variations that unfold over seconds (by design in fMRI or by signal-to-

noise or tracer kinetics-based limitations in PET) rather than on the millisecond timescale of 

phasic neuronal activity (synaptic transmission) (Zoli et al., 1999). In contrast, the event-

related potential (ERP) technique, derived from the scalp-recorded electroencephalogram 

(EEG), reflects the phasic activity across different neuronal populations following stimulus 

presentation (Luck and Kappenman, 2017). Studies using the ERP technique assure us that 

alcohol cue-related activation and dopamine release in nodes of the IS circuit using fMRI-

BOLD and PET-raclopride, respectively, reflect alcohol cue-related activation of relevant 

neuronal populations in a variety of different stimulus presentation paradigms (Bailey and 

Bartholow, 2016; Bartholow et al., 2018, 2010; Dickter et al., 2014; Fleming and Bartholow, 

2014; Herrmann et al., 2001; Kroczek et al., 2018; Martinovic et al., 2014; Martins et al., 

2019; Petit et al., 2012; Ryerson et al., 2017; Shin et al., 2010).

In keeping with an alcohol cue ISS mechanism, alcohol use levels are positively related to 

the magnitude of various components in the ERP waveform (specifically, the P1, P2, N1, 

N2, P3, LPP, and FSW) elicited by alcohol-related visual stimuli in a variety of stimulus 

presentation paradigms ((Bailey and Bartholow, 2016; Bartholow et al., 2010, 2003; Fleming 

and Bartholow, 2014; Herrmann et al., 2001; Kroczek et al., 2018; Petit et al., 2012; Ryerson 

et al., 2017; Shin et al., 2010); but see: (Martinovic et al., 2014)). Less consistently, AUD 

status appears to be positively related to the magnitude of some of the ERP waveform 

components (e.g., P3) elicited by alcohol-related visual stimuli ((Dickter et al., 2014; 

Matheus-Roth et al., 2016; Namkoong et al., 2004); but see: (Hansenne et al., 2003; Littel et 

al., 2013; Petit et al., 2015)), in keeping with meta-analytic findings across substance use 

disorders (Littel et al., 2012). Together, these findings suggest that alcohol use levels and 

AUD may increase neuronal communication related to attentional (P1, P2, N1) and affective 

or motivational (P3, LPP) processing of alcohol-related visual stimuli as well as the need to 

recruit additional cognitive control resources (N2, FSW) in order regulate behavior 

according to task demands in the presence of task-irrelevant alcohol-related stimuli.

4.2.3 On the origin of alcohol cue-related reactivity—The ISST holds that IS 

attribution transforms “cold” Pavlovian conditioned reward-predictive stimuli to “hot” 

Pavlovian conditioned reward-predictive stimuli that act as motivational “magnets” 

(Berridge et al., 2009; Berridge and Robinson, 2016, 2003; Robinson and Berridge, 2001, 

2000, 1993). Thus, a critical feature of the application of ISST to alcohol is that reactivity to 

alcohol-predictive cues reflects Pavlovian (aka classical) conditioning-like associative 

learning processes. The vast majority of work in preclinical non-human animal models 

confirms that alcohol can serve as an unconditional stimulus for appetitive (and aversive) 

Pavlovian conditioning (e.g., (Cofresí et al., 2019a; Cunningham et al., 2002a, 2002b; 

Krank, 2003; Krank et al., 2008; Srey et al., 2015)). However, it is important to establish, as 

best we can, that this is also true for people.

The idea that the ability of the stimulus features of alcoholic beverages to elicit attention and 

conscious craving for alcohol in people is due to naturally-occurring Pavlovian conditioning 

processes is supported by at least two controlled conditioning studies. In the first study 

(Field and Duka, 2002), the sight and smell of a beverage that contained a low dose of 
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ethanol (0.2 g/kg or ≈ 10 mg/dL at 30 min post-ingestion) during training acquired the 

ability to elicit greater attention (measured as number of stimulus-directed gaze shifts using 

eye-tracking systems) and self-reported alcohol craving at test relative to the sight and smell 

of a beverage that did not contain ethanol during training. In the second study (Mayo and de 

Wit, 2016), pictures of the beverage that contained a moderate dose of ethanol (0.6 g/kg or ≈ 
40 mg/dL at 30 min post-ingestion) during training acquired the ability to elicit greater 

attention (measured as number of stimulus-directed gaze shifts using eye-tracking systems) 

in a modified visual dot-probe task relative to pictures of the beverage that that did not 

contain ethanol during training.

The idea that the ability of the stimulus features of alcoholic beverages can come to elicit 

autonomic state changes in people is due to naturally-occurring Pavlovian conditioning 

processes is supported by at least one controlled conditioning study. In this study (Staiger 

and White, 1988), the sight and smell of a beverage that contained a moderate dose of 

ethanol (0.5 g/kg or ≈ 30 mg/dL at 30 min post-ingestion) during training acquired the 

ability to elicit anticipatory increases in heart rate (an index of autonomics) at test relative to 

the sight and smell of a beverage that did not contain ethanol during training.

Some empirical support for the idea that alcohol-related stimuli elicit changes in regional 

brain activity in people due to naturally-occurring Pavlovian conditioning processes can be 

derived from a study conducted by David Kareken and colleagues (Oberlin et al., 2018). An 

arbitrary neutral visual stimulus (a geometric shape) was repeatedly paired with alcohol (18 

mg/dL per intravenous infusion) across sessions, and consequently, it acquired the ability to 

elicit an expectation of subsequent alcohol infusion. This was revealed by the fact that 

presentation of the newly conditioned stimulus (in the absence of alcohol) produced 

statistically significant activation (positive fMRI BOLD contrast) in the frontoparietal, 

orbitofrontal networks, anterior cingulate, and insular cortices as well as sub-threshold 

activation in the ventral striatum. As discussed by Kareken and colleagues, the study boasts 

a much larger (n=60) and better characterized sample than previous work (Kareken et al., 

2012); thus, the conflicting findings in the latter were likely the result of type 1 error. 

However, two majors caveats apply to the (Oberlin et al., 2018) study: (1) the pattern of 

conditioned alcohol cue-elicited regional brain activity may reflect the particular demands of 

the decoy reaction time task (i.e., goal-directed search for visual stimuli); and (2) the 

conditioned alcohol cue failed to produce detectable biases in attention as measured by 

reaction time (although, as the authors argue, their paradigm was designed to measure cue-

related brain activity, not cue-related attentional biases). Despite these caveats, the (Oberlin 

et al., 2018) study provides the strongest direct evidence to date that ethanol can serve as a 

purely pharmacological unconditional stimulus that supports learning about antecedent 

conditional stimuli in humans.

4.3 Interim summary 2

In this section, we have reviewed evidence for attribution of IS to learned alcohol-predictive 

cues. We found that in humans and non-human animal models alike, alcohol-predictive cues 

are attributed with IS. Specifically, alcohol-predictive cues acquire the ability to: (1) elicit 

alcohol seeking reactions (e.g., affective state change, attention, approach, and conscious 
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craving for alcohol); (2) serve as conditional or secondary reinforcers (at least in non-human 

animal models) that can maintain reactivity in the absence of immediate primary 

reinforcement; (3) induce or invigorate instrumental alcohol seeking actions; and (4) engage 

the IS circuitry. We have also reviewed the evidence that alcohol cues undergo ISS. We 

found that in humans and non-human animal models alike, the amount of IS attributed to 

alcohol-predictive cues appears to increase as a function of alcohol involvement. 

Specifically, greater alcohol involvement makes alcohol-predictive cues able to: (1) elicit 

higher levels of alcohol seeking reactions; (2) better serve as conditional reinforcers (at least 

in non-human animals); (3) more strongly induce or invigorate instrumental alcohol seeking 

actions (at least in non-human animals); and (4) more strongly activate the IS circuitry (at 

least in humans). In humans, the in-the-moment intensity of conscious craving for alcohol 

induced by alcohol cues appears to be positively related to the degree of activation these 

cues induce in the IS circuitry, especially the amygdala, ventral striatum (nucleus 

accumbens), and prefrontal cortices, a relationship requiring further study that is important 

for the ability of ISST to explain changes in the subjective experience of alcohol cue 

reactivity in AUD. Finally, given that the prefrontal cortices are believed to mediate 

cognitive control processes (Barbas, 2000; Braver, 2012; Inzlicht et al., 2015; Ridderinkhof, 

2004), the present findings also suggest that incidental exposure to alcohol cues may impair 

on-going alcohol use-unrelated behavior and goal pursuit by drawing away attentional 

resources available to cognitive control processes or releasing inappropriate behavioral 

responses that create conflict and require the recruitment of additional cognitive control 

resources for successful completion of on-going behavior. These kinds of effects from 

incidental alcohol cues have been reported in human behavioral laboratory tasks (Fryer et 

al., 2013; Nikolaou et al., 2013; Sommer et al., 2017).

5 Discussion

5.1 General

Nona, Hendershot, and Lê (2018) recently reviewed the evidence for sensitized behavioral, 

physiological, and/or subjective responses to alcohol intoxication as a mechanism in AUD. 

In the present review, we set out to examine the evidence for sensitized IS attribution to 

alcohol-predictive cues (viz., sensitized cue-triggered “wanting”) as a neuropsychological 

mechanism in AUD. It is important to note that it remains an open question whether the 

construct of IS attribution developed in non-human animals truly exists in humans, and if so, 

whether it manifests in the same ways, undergoes sensitization, and affects subjective 

experience. The answers to these questions have implications for ability of the ISST to 

explain important behavioral phenomena in alcohol addiction such as the progressive loss of 

control over use, use despite negative consequences, and the subjective experience of desire 

and craving including preoccupation with alcohol-related thoughts. It may turn out to be the 

case that ISST can explain the former, but not the latter. Our review cannot provide definite 

answers to these questions. Nevertheless, it indicates that across different units of analysis 

that may reflect manifestations of the IS attribution in humans and non-human animals, the 

available evidence tends to be consistent with predictions for sensitized alcohol cue-

triggered “wanting” (viz., alcohol cue IS sensitization [ISS]) as a mechanism in AUD.
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Many predictions for alcohol cue ISS as a mechanism in AUD remain underexamined across 

levels of biological organization in humans and non-human animals. Some underexamined 

predictions at the behavioral and neurobiological units of analysis are especially low-

hanging fruit worth pointing out to researchers. First, to the extent that the IS attributor can 

be identified with dopamine cells in the VTA/SNc complex, alcohol-associated cues should 

be able to activate dopamine cells in the VTA/SNc complex of non-human animals, but we 

were unable to find direct evidence bearing on this prediction. Although, to the extent that 

the IS signal can be identified with cue-induced phasic dopamine release from dopamine 

terminals in the IS expressors, it should be noted that there is a growing body of evidence 

indicating that the IS signal can occur in the absence of IS attributor activation (Cachope and 

Cheer, 2014). Second, we do not know whether chronic ethanol exposure is able to shift the 

balance of excitatory and inhibitory drive or tone on those cells or their intrinsic excitability. 

Third, a systematic empirical exploration of chronic ethanol exposure profile parameter-

dependent functional changes within and between IS system components that could mediate 

alcohol cue ISS is lacking. Fourth, IS-attributed alcohol cues are predicted to elicit changes 

in autonomic state that support alcohol seeking reactions and actions at the level of 

physiology. However, little to no attention has been paid to autonomics when modeling 

alcohol cue reactivity in non-human animals, and in humans, little attention has been paid to 

sensitization of cue-induced autonomic changes as a function of alcohol involvement. Fifth, 

IS-attributed alcohol cues are predicted to serve as secondary or conditional reinforcers that 

are able to maintain reactivity and behavior in the absence of immediate primary alcohol 

reinforcement (i.e., post-ingestive psychopharmacology). There is substantial evidence from 

non-human animal models consistent with this prediction, but no systematic examination of 

how the level of ethanol exposure determines the degree to which alcohol cues serve as 

secondary reinforcers for alcohol seeking. This is an important, if underappreciated, 

behavioral function of IS-attributed cues because it is theorized to mediate the persistence of 

alcohol cue reactivity. Despite the relevance of this particular property to AUD treatment and 

relapse, we were unable to find any studies examining the conditioned reinforcing property 

of alcohol-associated cues in humans. Sixth, given the multitude of different behavioral and 

brain measures collected as putative indicators of IS attribution and/or advanced as reflecting 

ISS in humans, factor analytic work is warranted to test which of these measures load onto 

the same latent construct as well as to determine which measures are the most reliable and/or 

valid indicators of that construct (Wardle et al., 2018).

It is important to note that gender/sex differences continue to emerge for the acute effects of 

alcohol and its cues in the human laboratory model literature (Bates et al., 2011; Chaplin et 

al., 2008; Hartwell and Ray, 2013; Kaplan et al., 1985; Rubonis et al., 1994; Udo et al., 

2009). Yet female organisms are often absent in studies from pre-clinical non-human animal 

model literature. Although this omission is being addressed, much work is ahead for pre-

clinical researchers working with non-human animal models. Once the omission has been 

corrected, a thorough examination of potential gender/sex differences in ISST-derived 

predictions for this unique etiological pathway to AUD may be conducted in the vein of 

(Barker and Taylor, 2017).

A major issue worth raising is that the degree to which ‘natural’ alcohol cues (e.g., the sight, 

smell, and taste of the preferred alcoholic beverage) in humans operate like the conditioned 
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alcohol cues studied in human and non-human animal laboratory models remains to be 

established. This is an important issue for the applicability and translation of ISST into a 

unique etiological pathway for AUD (and more broadly, for SUD). ISST addresses a 

psychological property (IS) that may or may not be attributed to learned conditional 

predictive stimuli for unconditional rewarding stimuli including drugs of abuse such as 

alcohol. However, not much attention has been paid to the ability of alcohol to serve as a 

pharmacological unconditional stimulus (US) for conditional stimulus (CS) or ‘cue’ learning 

in humans. Our literature review identified only a handful of controlled alcohol cue 

conditioning studies in humans, each using different administration procedures, different 

conditioning parameters, and different measures of cue reactivity. Consequently, more 

controlled conditioning studies are warranted, especially within-subject studies comparing 

‘artificial’ alcohol cues conditioned in the human laboratory to ‘natural’ alcohol cues that 

were putatively conditioned over the person’s alcohol use history.

A related issue is that if ‘natural’ alcohol cues are truly conditioned over a person’s alcohol 

use history, then these cues are conditioned within specific emotional, physical, social, and 

temporal contexts. The natural context for alcohol use, and thus, the context in which 

‘natural’ cues are conditioned, are difficult to simulate in the human laboratory. Thus, a 

major caveat applies to human laboratory studies, especially those using functional 

neuroimaging techniques, which involve the use of equipment—and supine body posture 

(Harmon-Jones and Peterson, 2009; Price and Harmon-Jones, 2011)–that in many cases 

opposes any degree of natural physical and motivational context. These studies are typically 

done in a context that has never been associated with alcohol use, and often explicitly signal 

the non-availability of alcohol to participants. This experimental setting confounds the 

interpretation of negative results. In order to study reactivity to ‘natural’ alcohol cues in their 

‘natural’ contexts, researchers should consider the combined use of ambulatory assessment 

and mobile human neuroimaging technology.

A final consideration for evaluating the model-derived predicted relationship between IS 

attribution and alcohol involvement in humans is that the latter has multiple causes and 

functions. Additionally, there may be other liability factors that moderate the magnitude of 

association between and within individuals. Some individuals may be more vulnerable than 

others to ISS as a pathway to AUD, and samples that contain more of these individuals may 

show stronger sample-level evidence for alcohol cue ISS.

5.2 Alcohol subjective response (ASR) may moderate AUD risk via alcohol cue ISS 
pathway

One trait-like liability factor that strongly moderates risk for AUD, alcohol subjective 

response (ASR) phenotype, may do so by conferring differential vulnerability to ISS as a 

pathway to AUD. We introduce ASR phenotype and discuss evidence in favor of this idea 

below.

5.2.1 The link between alcohol subjective response (ASR) phenotype and 
risks for AUD—The subjective experience of alcohol’s pharmacological effects primarily 

can be ascribed to two factors. The first, pharmacokinetics, refers to factors that determine 
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the amount of alcohol circulating through the body at any given point in time following 

ingestion. Variation in pharmacokinetic factors can be due to both state (e.g., amount of food 

in the stomach, dehydration, other drugs in circulation, acquired metabolic tolerance) and 

trait factors (e.g., baseline expression level and activity profiles of alcohol-metabolizing 

enzymes) as well as ingestion route and rate (Cederbaum, 2012). The second, 

pharmacodynamics, refers to factors that determine the biochemical and physiological 

effects of alcohol. Variation in pharmacodynamic factors can be due to both state (e.g., 

current level of certain hormones, other drugs in circulation) and trait factors (e.g., baseline 

activity level and dynamics in certain brain circuits) (Brown et al., 2007; Haughey et al., 

2008; Sharko et al., 2016, 2013; Yoder et al., 2005).

In humans, the subjective experience of alcohol’s pharmacological effects, i.e., the construct 

of a subjective response to alcohol as a pharmacological stimulus, can be summarized along 

3–4 dimensions, some of which appear to develop over the course of a person’s drinking 

history, viz., as the person gains experience with alcohol as a pharmacological stimulus 

(Bujarski et al., 2015; Ray et al., 2009). Importantly, even after controlling for inter-

individual variation in pharmacokinetics, there is considerable inter-individual variation in 

self-reported subjective response to the pharmacological effects of alcohol (Bujarski et al., 

2015; Gilman et al., 2012; Ray et al., 2007).

There are at least two broadly defined alcohol subjective response (ASR) phenotypes. 

Specifically, some individuals may have (an initially) low level of subjective response (LLR)

—they recollect having required more drinks to feel any effect, dizziness, or stumbling than 

other individuals in questionnaire-based studies (Schuckit et al., 1997). Similarly, some 

individuals appear to be less sensitive to alcohol’s sedative-like properties yet more sensitive 

to its stimulant-like properties (LSedHStim)—they feel less “down” or “sluggish” or “slow 

thoughts” and more “excited” or “excited” or “up” than other individuals after equivalent 

alcohol doses in controlled laboratory studies (Davidson et al., 2002; Holdstock and de Wit, 

1998; King et al., 2002; Martin et al., 1993; Newlin and Thomson, 1990; Rueger et al., 

2009; Rueger and King, 2013) Given differences in how these groups of individuals (LLR 

versus HLR and LSedHStim versus HSedLStim) were identified, it remains to be seen 

whether they stem from different or overlapping subpopulations. However, we can 

tentatively treat LLR and LSedHStim individuals as belonging to one population—the low 

sensitivity (LS) ASR phenotype population—and HLR and HSedLStim individuals as 

belonging a different population—the high sensitivity (HS) ASR phenotype population.

The LS ASR phenotypes confer risk for AUD that the HS ASR phenotypes do not (Morean 

and Corbin, 2010; Quinn and Fromme, 2011). LS individuals present more AUD symptoms 

than HS individuals (Bartholow et al., 2010; Fleming and Bartholow, 2014; King et al., 

2016, 2014). LS individuals tend to drink more frequently, more heavily, and more 

hazardously than HS individuals (Bartholow et al., 2010; Fleming and Bartholow, 2014; 

Hinckers et al., 2006; King et al., 2011, 2002; Schuckit et al., 2005; Shin et al., 2010). 

Compared to HS individuals, LS individuals are also more likely to experience negative 

legal, social, and occupational consequences of alcohol use (Bartholow et al., 2010; Fleming 

and Bartholow, 2014; Schuckit et al., 2017, 2005; Schuckit and Smith, 2006). LS individuals 

are more likely to experience hangovers than HS individuals, but only because LS 
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individuals drink much more—in fact, they are less likely to experience hangover per unit 

alcohol (Piasecki et al., 2012). Similarly, LS women are more likely to report regretted 

sexual activity than HS individuals, but only because LS women drink much more—in fact, 

they are less likely to report regretted sexual activity per unit alcohol (Hone et al., 2017). 

The unique risk for AUD conferred by LS ASR phenotype may be at least in part explained 

by ISST/alcohol ISS. The rest of the unique risk conferred by LS ASR phenotype might 

relate to other psychological mechanisms such as heavy drinking-induced adaptations in the 

motivations for alcohol use (Cooper et al., 1995) and self-selection into heavy drinking 

environments and social groups (Schuckit, 1998; Schuckit and Smith, 2000).

To the extent that ASR phenotype is inherited, it may be a cause, rather than consequence, of 

heavy alcohol use. Twin studies have estimated that its heritability is 0.60 (Heath et al., 

1999; Heath and Martin, 1991; Viken et al., 2003). ASR phenotype has also been shown to 

be relatively stable within individuals (King et al., 2016, 2014). However, there is also 

evidence for some degree of change in phenotype within individuals (King et al., 2016; 

Morean and Corbin, 2008), perhaps as a function developmental stage-related changes in 

alcohol involvement.

5.2.2 The link between ASR phenotype and the alcohol cue ISS pathway to 
AUD—The biases in attention and approach tendency predicted by ISST applied to alcohol 

and observed in heavy drinking individuals and individuals with AUD may be a function of 

ASR phenotype. In keeping with this idea, compared with HS individuals, LS individuals 

exhibit faster reaction times to alcohol cued locations in the modified dot-probe task 

controlling for past 30 day alcohol use (Shin et al., 2010). Similarly, LS individuals exhibit 

greater implicit alcohol approach tendency as measured by the alcohol AAT as well as faster 

reaction times to alcohol-cued targets in the Cued Go/NoGo Task (CGNT) compared to HS 

individuals (Fleming and Bartholow, 2014). Unlike HS individuals, LS individuals exhibited 

lower accuracy on response inhibition (NoGo) probe trials in the CGNT when the cue was 

an alcoholic beverage image relative to a neutral image, indicating that LS individuals were 

less able to inhibit pre-potent Go responses in the face of an alcohol cues (Fleming and 

Bartholow, 2014).

LS individuals also appear to be more susceptible to increases in conscious alcohol craving 

elicited by real-world drinking-associated contexts (e.g., time of day, weekend, bar/

restaurant location, recent tobacco use) than HS individuals (Trela et al., 2018). This may 

help explain why LS individuals tend to drink more frequently than HS individuals. More 

hazardous alcohol use patterns among LS individuals may be explained by the fact that these 

individuals tend to “drink too much, too fast” in their drinking episodes than HS individuals 

(Trela et al., 2016). It is also likely that “overdrinking,” i.e., drinking more than intended 

(Bishop and Rodriquez Orjuela, 2018), may be more frequent among LS individuals, 

although this remains to be determined.

The exaggerated brain response to alcohol cues predicted by ISST applied to alcohol and 

observed in heavy drinking individuals and individuals with AUD may be a function of ASR 

phenotype. In the modified dot-probe task, LS individuals exhibit larger amplitude P1, 

indicating greater early attentional orienting, and a smaller amplitude IIN (ipsilateral invalid 
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negativity), indicating lower attentional re-orienting (away from alcohol-cued locations), 

than HS individuals (Shin et al., 2010). Unlike HS individuals, LS individuals also exhibit a 

larger amplitude P3 to pictures of alcoholic beverages than to pictures of other beverages 

and/or neutral objects in visual categorization and evaluation tasks (Bartholow et al., 2010; 

Martins et al., 2019), putatively indicating that, at the level of neural processing, alcohol 

cues were evaluated as having greater affective/motivational significance. Additionally, in 

the CGNT, in the few response inhibition probe trials on which LS individuals were able to 

inhibit pre-potent Go response in the face of an alcohol cue, LS individuals exhibited larger 

amplitude N2, indicating increased stimulus-related conflict, and larger amplitude P3, 

indicating that more processing was necessary to successfully inhibit the pre-potent Go 

response in the face of an alcohol cue, relative to HS individuals (Fleming and Bartholow, 

2014).

Work in non-human animals provides additional support for the idea that individual 

differences in sensitivity to alcohol intoxication are linked to individual differences in 

sensitivity to the appetitive conditioning effects of alcohol, and thus, increased susceptibility 

to alcohol cue ISS. Rodents bred for LS-like phenotypes tend to be more sensitive to the 

appetitive conditioning effects of alcohol (Beckstead and Phillips, 2009; Crabbe et al., 1992; 

Fish et al., 2012; Risinger et al., 1994; Shen et al., 1995), but see: (Files et al., 1996; 

Sanchez et al., 1996)). Similarly, rodents bred for greater sensitivity to some of the appetitive 

conditioning effects of alcohol tend to be more sensitive to its other appetitive conditioning 

effects ((Ciccocioppo et al., 2001, 1999; Murphy et al., 1989; Oster et al., 2006; Toalston et 

al., 2008), but see: (Stewart et al., 1996)), and more importantly, tend to exhibit LS-like 

phenotypes (Agabio et al., 2001; Colombo et al., 1998; Murphy et al., 2002; Päivärinta and 

Korpi, 1993; Waller et al., 1986). There is also some support for this covariation in rodent 

populations that were not selected for one trait or the other ((Chappell and Weiner, 2008; 

Spuhler and Deitrich, 1984), but see: (Gauvin et al., 1993; Khanna et al., 1990)). More 

extensive testing of this covariation is warranted in non-human animals, especially using 

paradigms that measure different facets of IS attribution to alcohol cues. Additionally, there 

is uncertainty about the degree to which LS-like phenotypes in non-human animals can 

model human LS phenotypes given that the latter are defined in terms of subjective 

responses to alcohol as opposed to objective responses that can be measured across species 

(Crabbe et al., 2010). Nevertheless, the available evidence from non-human animals is 

consistent with a link between ASR phenotype (at least its inherited/genetic component) and 

susceptibility to alcohol cue ISS.

Together, these pieces of evidence suggest that LS individuals may be more susceptible to 

alcohol cue ISS than HS individuals. However, more work is warranted to test this 

hypothesis. There are at least three ways in which LS ASR phenotype, alcohol ISS, and 

AUD could be interrelated. First, LS ASR phenotype may be the overt manifestation of a 

neurobiological endophenotype that is a trait marker for vulnerability to ISS as a pathway to 

AUD (or addictions, in general). Second, LS ASR phenotypes foster heavy alcohol use, and 

heavy alcohol use can induce alcohol ISS, such that alcohol ISS is a downstream 

consequence of LS ASR phenotype. Third, a combination of the former two. Prospective 

studies are needed to tease apart these possibilities.
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5.3 Treatment implications of alcohol cue ISS as a pathway to AUD

Alcohol cue ISS has implications for certain approaches to treatment and more generally, for 

treatment outcomes, especially relapse. These implications underscore the need for further 

investigation of this unique etiological pathway in both humans and non-human animal 

models.

5.3.1 Post-treatment susceptibility to alcohol cue-related risk for lapses and 
relapse to AUD—It is highly unlikely that alcohol cue ISS accounts for all cases of 

ineffective AUD treatment. However, individuals who undergo alcohol cue ISS may 

comprise a large proportion of the population of people who relapse more quickly or more 

frequently after treatment. There are 2 lines of evidence supporting this idea. First, the 

higher levels of cue reactivity among individuals suffering from AUD (reviewed in the 

paper). Second, the role of cue reactivity in post-AUD treatment lapse/relapse rates.

Post-treatment recovery/relapse rates are strongly determined by alcohol-related cues in at 

least two ways (Marlatt, 1996). First, individuals with AUD may have learned to cope with 

stress related to environmental demands (e.g., accidents, evaluations, financial difficulty, 

interpersonal conflict, social pressure) by using alcohol. The negative feelings induced by 

these stressors may become conditioned as an alcohol-predictive cues in some individuals 

(Hogarth and Hardy, 2018; Litt et al., 1990; Rubonis et al., 1994; Stasiewicz et al., 1997; 

VanderVeen et al., 2016). Second, individuals with AUD may encounter alcohol-predictive 

cues in their everyday environments (e.g., hidden bottles, passing by a bar, alcoholic 

beverage advertising, drinking buddies). Cue-triggered behavioral and physiological 

reactions (e.g., attentional bias, brain circuit activation, heart rate, salivation) measured at 

treatment time predict subsequent lapses to drinking and relapse to AUD (Braus et al., 2001; 

Cox et al., 2002; Garland et al., 2012b; Grüsser et al., 2004; Papachristou et al., 2014; 

Rohsenow et al., 1994), but see (Snelleman et al., 2015). Given the possibility that alcohol 

cue ISS entails exaggerated cue-triggered Pavlovian alcohol seeking reactions, individuals 

that underwent this pathway to AUD may be driving the relationship between alcohol cue 

reactivity and post-treatment lapse/relapse rate.

One way in which treatment may leave individuals vulnerable to the situational re/lapse-risk 

that cue reactivity creates is that many psychosocial treatment options do not directly 

address or attempt to reduce cue reactivity, and those that do have limited efficacy. A second 

way in which this alcohol cue reactivity-based vulnerability may persist is that existing 

pharmacological treatment options alone may or may not be able to reverse the 

neuroadaptations that mediate alcohol ISS.

5.3.2 Response to behavioral treatments for alcohol cue-elicited reactivity—
Broadly speaking, there are two behavioral treatments for AUD that aim to reduce reactivity 

to alcohol cues and thereby reduce relapse rates. The first, older treatment is cue exposure 

therapy (CET). In CET for AUD, individuals are repeatedly presented with the sights, 

smells, sounds, and tastes experienced during alcohol use without subsequent ingestion 

and/or intoxication until these cues cease to elicit behavioral, physiological, and/or 

subjective (craving) reactions (Monti et al., 1993b; Monti and Rohsenow, 2003; Rankin et 
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al., 1983; Vollstädt-Klein et al., 2011). Importantly, decreased drinking and reduced AUD 

relapse rates have been reported following use of CET as either an adjunct to standard 

treatment or as a stand-alone treatment (Drummond and Glautier, 1994; Loeber et al., 2006; 

Monti et al., 2001, 1993b; Rohsenow et al., 2001). The second, more recently developed 

treatment is cognitive bias modification (CBM). This family of interventions uses modified 

versions of behavioral tasks typically used to measure alcohol cue-elicited attentional 

capture and approach tendency—as well as modified versions of tasks used to measure 

implicit or explicit attitudes toward alcohol and its cues, viz., “liking” responses—to train 

the opposite behavioral response to the same cues (Wiers et al., 2013). It works: attentional 

capture and approach tendency are found to be reduced and/or replaced with attentional 

disengagement and avoidance tendency, respectively, at least when immediately after CBM 

(Eberl et al., 2013; Fadardi and Cox, 2009; Field et al., 2007; Field and Eastwood, 2005; 

Rinck et al., 2018; Schoenmakers et al., 2010, 2007; Wiers et al., 2011, 2010). Importantly, 

decreased drinking and reduced AUD relapse rates have been reported following use of 

CBM as an adjunct to standard treatment (Cox et al., 2015; Eberl et al., 2013; Rinck et al., 

2018; Schoenmakers et al., 2010; Wiers et al., 2015a, 2011).

It would thus seem that two exceptionally effective treatments are available against alcohol 

cue reactivity. Unfortunately, this is not the case. The treatments do work, but not as well as 

clinicians, patients, and researchers might like. Recent meta-analyses across existing 

randomized clinical trials have indicated that CET (Mellentin et al., 2017) and CBM (Boffo 

et al., 2019) alike have at best a small effect of unknown reliability on AUD treatment 

outcomes. One explanation for this state of affairs is that even when CET and CBM are 

successful in reducing alcohol cue reactivity measured in the treatment setting, people may 

remain at risk for the return of alcohol cue reactivity in their natural environment due to 

constraints inherent to the learning and memory process on which they both rely.

Although some researchers might see CET and CBM as strikingly different approaches to 

reducing conditioned cue reactivity, their limited clinical effects likely stem from a shared 

reliance on training new (alternative) responses to cues for which associations already exist 

in long-term memory. CBM effects are believed to reflect, at least in part, the training of a 

specific alternative response to a previously conditioned cue: a response in the opposite 

direction than the previously-reinforced response (Wiers et al., 2013). Similarly, despite 

concerns about procedural differences between CET and the non-human animal learning 

paradigms that inspired it (Conklin and Tiffany, 2002), CET effects may reflect, at least in 

part, the training a specific alternative response to a previously conditioned cue: omission of 

the previously-reinforced response (Colwill, 1991; Rescorla, 1997, 1993). Nevertheless, 

studies of non-human animals in which a response is first conditioned to a cue, and then 

“treated” by training the animal to omit or suppress that response have shown unequivocally 

that the original cue reactivity can and does readily reemerge after seemingly successful 

“treatment.” This is evidenced by the post-“treatment” return of reactivity phenomena 

known as spontaneous recovery and cue-induced reinstatement (Bouton and Bolles, 1979a, 

1979b; Rescorla and Heth, 1975; Robbins, 1990). With the exception of context (place cue)-

induced reinstatement (Pitchers et al., 2017; Saunders et al., 2014), these relapse-like effects 

are especially pronounced with IS-attributed cues in non-human animals (Saunders et al., 

2013; Saunders and Robinson, 2011; Yager et al., 2015; Yager and Robinson, 2015, 2013, 
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2010). The rate of reduction of alcohol cue reactivity within- and between-“treatment” 

sessions, and the size of post-“treatment” relapse-like return of reactivity phenomena, are 

likely to be a function of how much ISS has taken place. In part, this may be because more 

ISS means that IS-attributed cues provide greater conditional reinforcing value, a property of 

IS that may make it difficult for some individuals to distinguish reinforcement from non-

reinforcement of the original cue associations—something which has been demonstrated in 

non-human animals (Ahrens et al., 2016)—precluding subsequent reinforcement of 

alternative responses to the cue. Despite these limitations, it is people who progressed to 

AUD via alcohol cue ISS who may derive the most clinical benefit, at least in the long run, 

from CBM and CET since reductions in alcohol cue reactivity may be irrelevant to recovery 

from AUD in people who progressed to AUD via other etiological pathways.

Finally, it is worth mentioning that overcoming these limitations is the focus of an active 

area of research. Work in this area suggests that it may be possible to enhance learning 

within-session therapeutic learning for both CBM and CET using transcranial stimulation of 

the prefrontal cortices (den Uyl et al., 2018, 2017, 2016; Wietschorke et al., 2016) or acute 

pharmacological augmentation of memory consolidation (Kiefer et al., 2015; MacKillop et 

al., 2015). Additionally, it may be possible to harness a period of memory lability induced 

by memory retrieval—the so-called memory reconsolidation window (Nader and Einarsson, 

2010; Nader and Hardt, 2007)—to alter or “erase” alcohol cue reactivity by interfering with 

or disrupting its neurobiological substrates using pharmacological tools (e.g., in non-human 

animal models: (Barak et al., 2013; Milton et al., 2012; Schramm et al., 2016; von der Goltz 

et al., 2009); initial evidence in humans: (Das et al., 2018). It may also be possible to 

“update” alcohol cues to a lower level of IS simply by deploying therapeutic learning during 

the memory reconsolidation window (e.g., in non-human animal models: (Cofresí et al., 

2017); initial evidence in humans: (Das et al., 2015; Hon et al., 2016)).

5.3.3 Response to pharmacological treatments attempting to dampen 
alcohol craving—To the extent that the subjective experience of craving for alcohol (viz., 

a strong explicit desire or urge to drink, perceived difficulty in resisting a drink if it were 

offered) is a core symptom of AUD and/or an important factor in lapse/relapse to AUD, 

medications that attempt to dampen the subjective experience of craving for alcohol among 

individuals with AUD (for review, see: (Haass-Koffler et al., 2014)) can play a critical role in 

harm reduction approaches to management of AUD among non-treatment seeking 

individuals as well as supporting behavior change and psychosocial treatment engagement 

among treatment-seeking individuals. In short, anti-craving medications can improve and/or 

save lives. Among these medications are several pharmaceuticals already approved for AUD 

treatment (e.g., acamprosate, naltrexone), some pharmaceuticals that are used off-label for 

AUD treatment (e.g., fluoxetine, bupropion), and others at earlier stages of the medication 

development pipeline (e.g., aripiprazole).

Given diverse mechanisms of action, different anti-craving medications may differentially 

disrupt subjective experiences of craving arising from the two IS system pathways to craving 

(Figure 1: paths [i] and [j]). Alcohol use-related obsessive or intrusive thoughts or desires 

may reflect hyperactivity in either the indirect path (i) and/or the direct path to craving (j), 

and anti-craving medications may decrease the level of activity in these IS system pathways 
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such that craving is not experienced. In this light, it might be tempting to see anti-craving 

medications as the pharmaceutical equivalent to behavioral treatments like CET and CBM. 

That is, it may be tempting to conceptualize the anti-craving effects of these pharmaceuticals 

as “response prevention” or “response modification.” Indeed, acutely or chronically 

disrupting activity in pathways (i) and (j) may prevent alcohol use that would have otherwise 

occurred as a response to conscious craving for alcohol. However, implicit alcohol 

“wanting” (Figure 1: paths [f], [f.1], [f.2], and [h]) may still impel alcohol seeking and 

drinking behaviors in certain contexts despite the absence of conscious craving for alcohol 

and/or in spite of conscious intentions to abstain from or moderate alcohol use. Moreover, 

the subjective experience of craving may most often arise from brain systems other than the 

IS system, such as those involved in mediating non-automatic appraisal/evaluation processes 

that operate at the level of consciousness. Craving originating in these systems may be 

entirely unamenable to acute or chronic disruption of IS system activity. Moreover, to the 

extent that certain brain systems are in place to gate the direct and indirect IS system 

pathways to craving, then in some individuals alcohol-related obsessive or intrusive thoughts 

may arise not from hyperactivity in these pathways, but rather from hypoactivity at the gates. 

Amplifying activity at the gates may require medications that attempt to boost or restore 

activity in high-level executive function and response control-related brain systems. 

Nevertheless, to the extent that currently available and future anti-craving medications 

facilitate reductions in the intensity and/or frequency of alcohol exposure, they may be able 

to arrest the progression of alcohol cue ISS and begin to reverse its underlying 

neuroadaptations. In doing so, they may help treat a potential substrate for pathological 

craving and preoccupation with alcohol. Thus, the efficacy of anti-craving medications and 

their ultimate clinical benefit may be greater among individuals who have progressed to 

AUD via alcohol cue ISS.

5.4 Conclusion

There is sufficient empirical evidence to support the idea that the mechanism originally 

outlined in the incentive salience sensitization theory of addiction (ISST) (Robinson and 

Berridge, 1993) may be at the core of alcohol use disorder (AUD) etiology for some 

individuals. Throughout this review article we have referred to this etiological pathway as 

“alcohol cue ISS” to emphasize that it is the motivational significance and behavioral impact 

of alcohol-predictive cues that is predicted to undergo sensitization, not the hedonic response 

to alcohol ingestion. In other words, the mechanism of ISS involves sensitization of alcohol 

“wanting,” not “liking.” Susceptibility to this etiological pathway may be moderated by 

individual differences on traits such as differential sensitivity to alcohol ingestion-induced 

feelings stimulation v. sedation. Individuals who have undergone this etiological pathway 

may find themselves especially at risk for cue reactivity-based relapse to AUD after 

treatment. In general, there is need for continued investigation of ISST-predicted 

mechanisms, across units of analysis, in the development of disordered alcohol use.
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Highlights

• Alcohol cues are attributed with incentive salience in humans and non-human 

animals

• Alcohol can render the incentive salience circuitry sensitized to alcohol cues

• Humans and non-human animals can exhibit sensitized reactivity to alcohol 

cues

• Incentive salience sensitization may drive alcohol use disorder (AUD) in 

some people

• More work is needed on the role of this neuropsychological mechanism in 

alcohol use and AUD
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Figure 1. 
The incentive salience (IS) attribution and expression system: a simplified schematic. “S” 

refers to an exteroceptive or interoceptive stimulus. “CS” and “UCS” refer to the Pavlovian 

conditional stimulus (cue) and unconditional stimulus (reward), respectively. Inspired by 

Figure 2 in Robinson & Berridge (1993).
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Figure 2. 
Paths mediating incentive salience (IS) sensitization (ISS). Components: memory systems, 

IS attributor, IS expressors, response effector systems. A-type paths: input from memory 

systems into the IS attributor. B-type paths: IS attributor output to the IS expressors. C-type 

paths: IS expressors output to response effector systems that are responsible for 

manifestations of IS in behavioral output across levels of biological organization. The 

vulnerability of the different paths and IS system components to the adaptations mediating 

alcohol cue ISS is theorized to increase progressively over the alcohol use history as a 

function of the frequency, intensity, and pattern of drinking. A 3-color gradient is used to 

represent an increasing extent or number of adaptations accrued within each component. 

Adaptations may occur in one component without occurring in another and the accrual rate 

may vary by component.
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Figure 3. 
Example of the kinds of persistent adaptations ethanol (EtOH) exposure might induce over 

time (t) to mediate alcohol cue ISS and how these might unfold over exposure relative to one 

another. Conjecture is informed by findings reviewed in the main text. Increased phasic DA 

release (from synchronized high-frequency action potentials at terminal boutons arising from 

the IS attributor) must occur at synapses involved in maintaining memory for the alcohol cue 

or its expression (viz., synapses in memory systems or in the IS expressors). Increased 

excitatory drive may occur at specific synapses across the IS system components including 

at the IS attributor. Decreased tonic DA release (from asynchronous low-frequency action 

potentials at terminal boutons arising from the IS attributor) will naturally affect many more 

synapses than those immediately involved in alcohol cue memory/expression. Increased 

excitatory tone, decreased inhibitory tone, and increased intrinsic excitability will naturally 

affect many cells across the IS system components including at the IS attributor.
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