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ABSTRACT

Background The incorporation of novel biomarkers into therapy selection for patients with metastatic colorectal 
cancer (mcrc) has significantly improved outcomes. Optimal treatment planning now takes into account diverse 
characteristics of patients and their tumours to create personalized therapeutic plans.

Discussion This review is split into two sections. In the first section, we review the prognostic and predictive 
significance of expanded RAS mutation testing, BRAF mutations, ERBB2 (her2) amplification, microsatellite instability 
(msi) and deficient mismatch repair (dmmr) protein, NTRK fusions, PIK3CA mutations, and met amplifications. 
The therapeutic implication of each of those biomarkers for personalizing therapies for each patient with mcrc is 
discussed. In the second section, we touch on testing methods and considerations of relevance to clinicians when they 
interpret companion diagnostics meant to guide therapy selection. The advantages and pitfalls of various methods 
are evaluated, and we also look at the potential of liquid biopsies and circulating tumour dna (ctdna) to change the 
landscape of therapeutic choice and biologic understanding of the disease.

Summary Routine testing for extended RAS, BRAF, dmmr or high msi, and NTRK fusions is necessary to determine 
the best sequencing of chemotherapy and biologic agents for patients with mcrc. Although next-generation sequencing 
and ctdna are increasingly being adopted, other techniques such as immunohistochemistry retain their relevance 
in detection of her2 amplification, NTRK fusions, and dmmr.
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INTRODUCTION

For 20 years, f luoropyrimidine doublet chemotherapy 
combined with either irinotecan (folfiri or capiri) or 
oxaliplatin (folfox or capox) has been the cornerstone 
of treatment for metastatic colorectal cancer (mcrc) in 
the first- and second-line settings1,2. Sequencing of those 
two regimens does not affect overall survival (os), and 
therefore, the choice of first-line therapy often depends 
on physician and patient preference, coupled with patient 
comorbidities (for example, pre-existing neuropathy)3. 
Although doublet chemotherapy is preferred because of 
its association with superior progression-free survival 
(pfs), sequential single-agent therapies have demonstrated 
similar os rates and might be appropriate for some patients 
who are frail or elderly4–6.

Since the introduction of targeted therapies, there has 
been an increased appreciation of the molecular stratifi-
cation required for personalizing treatment. For example, 
antibodies against the epithelial growth factor receptor 
(“anti-egfr”) had limited activity in unselected patients, but 
were shown to have activity in KRAS wild-type cancers7,8. 
In the present review, we discuss clinically important alter-
ations that drive treatment selection, including KRAS and 
NRAS (RAS) mutations, BRAF mutations, ERBB2 (her2) 
amplifications, deficient mismatch repair (dmmr) or high 
microsatellite instability (msi-h), NTRK fusions, PIK3CA 
mutations, and met amplification (Figure 1). In the second 
section, we review some practical and technical consider-
ations to keep in mind when ordering biomarker tests, and 
we explore the relevance of next-generation sequencing 
(ngs) and circulating tumour dna (ctdna) or liquid biopsies.
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MOLECULAR SUBTYPES IN mCRC

Expanded RAS Testing
KRAS codon 12 and 13 mutations were first identified as 
predictive biomarkers in third-line anti-egfr trials7,8. A 
subsequent retrospective analysis of the prime trial iden-
tified expanded mutations in KRAS and NRAS at codons 12, 
13, 59, 61, 117, and 146 as predictive of the ineffectiveness of 
anti-egfr therapy9. International guidelines now mandate, 
as the standard of care, expanded RAS mutation testing 
before use of anti-egfr to identify the 55% of patients with 
mcrc for whom those agents will be ineffective9,10. There is 
even a suggestion of possible harm with the use of anti-egfr 
therapy in patients with RAS mutations11. Expanded RAS 
mutations are also a negative prognostic marker in the 
metastatic setting [median os (mos): 25 months vs. 32.1 
months in wild-type disease; hazard ratio (hr): 1.52; 95% 
ci: 1.26 to 1.84; p < 0.001]12. Compared with KRAS, NRAS 
might be associated with shorter disease-free survival (33 
months vs. 47 months; hr: 2.0; 95% ci: 1.3 to 2.8; p < 0.01) 
in early-stage disease and worse os in mcrc (hr: 1.83; 95% 
ci: 1.40 to 2.39; p < 0.001)13,14.

Effect of Primary Tumour Location (“Sidedness”) on 
Anti-EGFR Efficacy
Attention to the relevance of primary tumour location 
increased after a re-analysis of the Cancer and Leukemia 
Group B (calgb) 80405 trial showed that, in treatment- 
naïve patients with mcrc treated with either folfox or 

foliri (physician’s choice) and randomized to the addi-
tion of cetuximab or bevacizumab, no difference in mos 
was evident between the arms overall. However, survival 
differences were observed between patients with right- and 
left-sided tumours (mos: 19.4 months vs. 33.3 months; hr: 
1.55; 95% ci: 1.32 to 1.82; p < 0.001), and the biologic asso-
ciated with optimal results varied by side. Patients with 
left-sided tumours experienced improved outcomes with 
doublet chemotherapy plus cetuximab (mos: 36.0 vs. 31.4 
months); those with right-sided tumours appeared to do 
better with a first-line doublet plus bevacizumab (mos: 
24.2 months vs. 16.7 months; hr: 1.27; 95% ci: 0.98 to 1.63; 
p = 0.065)15. Those results were subsequently confirmed 
in numerous other first- and third-line trials that included 
anti-egfr therapy. Even when patients with BRAF muta-
tions were excluded and adjustments were made in the 
right-sided tumour group for a higher proportion of female 
patients and patients with msi-h disease, primary tumour 
sidedness remained influential16–19.

Although those results were retrospectively identified, 
the reproducibility of the findings across studies has led to 
sidedness being accepted in many international guidelines 
as a predictive biomarker19,20. Although a doublet plus anti- 
egfr appears to be superior to bevacizumab for left-sided 
tumours, use of that combination in the first-line setting 
should be considered in balance with the added toxicity, 
particularly severe rash (~10%) and refractory hypomag-
nesemia (3%–7%). Those adverse reactions can have a 
significant effect on quality of life, but are potentially indi-
cators for treatment efficacy21. In addition, compared with 
bevacizumab, anti-egfr therapy maintenance strategies 
are less well established22. For right-sided tumours, bev-
acizumab appears superior to anti-egfr when combined 
with doublet chemotherapy in the first-line setting15. In 
the third-line setting, patients with right-sided tumours 
might derive less benefit from anti-egfr therapy. However, 
in this patient population, effective treatment options are 
limited, and therefore, that inferior efficacy has less effect 
on treatment planning23.

Rechallenge with Anti-EGFR Therapy
After progression on an anti-egfr therapy, KRAS, NRAS, 
BRAF, and EGFR ectodomain mutations develop to drive 
signalling through the map kinase pathways despite egfr 
inhibition. The mutations provide a short-term selective 
advantage over other subclones, but are selected against 
with exponential decay after removal of anti-egfr; their 
half-life in ctdna is 4.4 months24. Retrospective studies have 
shown that, after intervening non–anti-egfr therapies, pa-
tients re-challenged with anti-egfr antibodies experience 
an overall response rate (orr) of 23%. In the same cohort, 
a wait of more than 2 half-lives from prior anti-egfr ther-
apy was associated with an increase in the orr to 32%24. 
Similarly, in the prospective cricket trial, patients with evi-
dence of persistent KRAS mutations experienced an inferior 
median pfs (mpfs) of 1.9 months compared with 4 months 
in patients with RAS wild-type disease re-challenged with 
anti-egfr (hr: 0.44; 95% ci: 0.18 to 0.98; p = 0.03)25. Based 
on ctdna, appropriate patients might be considered for 
re-challenge with anti-egfr therapy; however, further 
randomized prospective studies are needed.

FIGURE 1 Current and emerging biomarkers used in personalizing 
treatment for patients with metastatic colorectal cancer (CRC). Preva-
lence of each biomarker in metastatic colorectal cancer is displayed 
with shading in the circle that surrounds the molecular alteration. 
Molecular alterations are not mutually exclusive and can co-occur. 
PLCγ = phospholipase C gamma; dMMR = deficient mismatch repair; 
MSI-H = high microsatellite instability.
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BRAF

BRAF V600E Mutations
The serine–threonine braf kinase is found downstream 
from egfr in the mapk (mitogen-activated protein kinase) 
pathway. Hotspot mutations substituting glutamic acid for 
valine at codon 600 (V600E) result in kinase activity that is 
increased by a factor of 130 to 700 compared with that in 
wild-type BRAF26,27. BRAF V600E occurs in 5%–10% of cases 
of mcrc. It is nearly always mutually exclusive with RAS 
mutations and appears to predict a lack of, or reduced ben-
efit from, anti-egfr therapy9,28,29. BRAF V600E mutations 
are also a strong negative prognostic marker independent 
of tumour sidedness (mos range: 10.5–13.5 months mutated  
vs. 28.3–30.6 months wild-type; hr: 2.01; 95% ci: 1.49 to 
2.71; p < 0.001)9,11,12. Consideration of more aggressive first-
line treatment with folfoxiri (fluorouracil–leucovorin– 
oxaliplatin–irinotecan) and bevacizumab is therefore 
advocated by some authors, given that folfoxiri has been 
associated with the greatest mos for a first-line regimen in 
patients with BRAF V600E mutations in tribe and a small 
Italian phase ii trial (mpfs: 7.5 months and 9.2 months 
respectively; mos: 19.0 months and 24.1 months respective-
ly)30,31. The tribe2 study compared upfront folfoxiri plus 
bevacizumab with a planned sequential switch of folfox 
plus bevacizumab to folfiri plus bevacizumab, confirming 
the superiority of a triplet in BRAF V600E–mutant mcrc 
(preliminary mos: 27.6 months vs. 22.6 months; p = 0.033)32.

In the second-line setting, single-agent BRAF inhib-
itors yielded disappointing results33. Combination ap-
proaches with irinotecan, cetuximab, and vemurafenib 
in the swog S1406 phase ii trial improved the mpfs (2.0 
months vs. 4.3 months; hr: 0.48; 95% ci: 0.31 to 0.75; p = 
0.001), but did not statistically improve os (5.9 months vs. 
9.6 months, p = 0.19) in the context of 48% crossover from 
the control arm34. More recently, the beacon trial showed 
superior efficacy for the combination of encorafenib, 
binimetinib, and cetuximab compared with irinotecan or 
folfiri plus cetuximab (mos: 9.0 months vs. 5.4 months; 
hr: 0.52; 95% ci: 0.39 to 0.70; p < 0.0001) in the second or 
later lines of therapy35. Interestingly, the triplet did not 
appear more active than the combination of encorafenib 
and binimetinib (mos: 9.0 months vs. 8.4 months; hr: 0.79; 
95% ci: 0.59 to 1.06). The magnitude of benefit seen in the 
the beacon trial resembled the estimated os of 9.1 months 
for dabrafenib–trametinib–panitumumab in another 
study36. Together, those trials support vertical inhibition 
of the mapk pathway as a therapeutic option for BRAF 
V600E–mutant mcrc.

Atypical BRAF Mutations
More than 200 non-V600E BRAF mutations or atypical 
BRAF mutations have been discovered, with a combined 
incidence ranging from 1.6% to 5.1%37–39. BRAF V600E 
mutations have been defined as class i mutations (active 
monomer); the atypical mutations are split into classes ii and 
iii. Class ii BRAF mutations are constitutively active dimers 
and have intermediate activity compared with their class i 
counterparts40. Class iii BRAF mutations result in a protein 
with a kinase domain having limited signal transduction 
activity, but it binds to craf and activates erk signalling 

in a ras-dependent manner41,42. Prognosis appears to be 
similar for patients with atypical BRAF mutations and those 
with wild-type BRAF mcrc43. However, the role of braf- and 
egfr-directed therapy is still being evaluated, although 
some studies suggest that those mutations might also show 
a reduced response to anti-egfr therapy44–47.

HER2 Amplification
Amplifications of her2 occur in 2%–6% of mcrc cases, but 
are enriched in KRAS/NRAS/BRAF wild-type mcrc, with 
a prevalence of approximately 13% in some series48–50. 
American Society of Clinical Oncology guidelines and the 
College of American Pathologists define her2 amplifica-
tion as a her2:cep17 ratio of 2 or greater, or a copy number 
variant of 4 or greater51.

Amplifications of her2 appears to be a negative predic-
tive marker for anti-egfr therapy, with mpfs being shorter 
regardless of line of therapy (2.8 months vs. 8.1–9.3 months 
depending on the study; hr: 7.05 to 10.66; p < 0.001)52–54. 
However, her2 amplification did not appear to impair the 
response to other non–anti-egfr therapies50. Dual-targeted 
anti-her2 therapy in heracles (trastuzumab–lapatinib) 
and MyPathway (pertuzumab–trastuzumab) both showed 
an orr of approximately 30%, with the pertuzumab– 
trastuzumab combination being associated with durable 
responses of 5.9 months in the second and subsequent lines 
of therapy when responses are often less than 5%49,55,56. 
Notably, anti-her2 therapies appear to be ineffective in 
patients with RAS mutations49. Those results have led 
to the prospective phase ii swog S1613 study comparing 
pertuzumab–trastuzumab with irinotecan–cetuximab in 
her2-amplified, RAS wild-type mcrc treated in the second 
or later line57. Additionally, investigation of neratinib– 
t rastu zumab in a simi la r sett ing is ongoing (see 
NCT03457896 at https://ClinicalTrials.gov/).

Microsatellite Status

dMMR and MSI-H
Deficient mmr leads to nucleotide base insertion or deletion 
in dna regions with repetitive elements called “microsat-
ellites,” resulting in a msi-h phenotype. The terms dmmr 
and msi-h are often used interchangeably, but dmmr refers 
to the missing proteins (mlh1, msh2, msh6, and pms2) that 
are usually detected by immunohistochemistry (ihc), 
and msi-h refers to the expanded microsatellites detected 
when 2 or more of 5 microsatellite loci are unstable in a 
polymerase chain reaction test58. Concordance of ihc stain-
ing for mmr protein loss with polymerase chain reaction 
measurement of msi-h is greater than 90%59. High msi can 
also arise from somatic hypermethylation of the MLH1 pro-
motor, typically caused by aberrant methylation associated 
with the CpG island methylator phenotype, which might 
be associated with worse prognosis60. More recently, ngs 
panels used for detecting mutations have been modified 
to detect msi with high accuracy and represent an option 
for multiplexing biomarker tests61.

The prevalence of msi-h is 15%–20% in all crcs, but 
only 4% in mcrcs62. In mcrc, msi-h was previously as-
sociated with a worse prognosis, which could be driven 
partly by the fact that 20%–34.6% of msi-h crcs harbour 

https://ClinicalTrials.gov/
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BRAF V600E mutations63,64. Historically, the median os 
for mmr-intact mcrc was 17.9 months (95% ci: 16.2 months 
to 18.8 months) compared with 10.2 months (95% ci: 5.9 
months to 19.8 months) for dmmr mcrc62. Recently, msi-h 
has shown importance in the metastatic setting because of 
its role as a tissue-agnostic biomarker for immunotherapy, 
regardless of germline or somatic origin65. Studies of mono-
therapy with checkpoint inhibitors have reported orrs of 
31%–40%65,66. With combination nivolumab–ipilimumab, 
the orr increased to 55%, with 71% of patients being free 
from progression at 12 months, with only moderate increas-
es in grade 3/4 toxicities (to 32% from 20%)64.

Microsatellite Stable mCRC and Immunotherapy
To date, immunotherapy has shown little activity in  
microsatellite-stable mcrc. Single-agent pembrolizumab 
and the combinations atezolizumab–cobimetinib (IM-
blaze 370) and 5-fluorouracil–atezolizumab–bevacizumab  
(modul) have all lacked activity in microsatellite-stable 
mcrc65,67,68. In contrast, the Canadian Cancer Trials 
Group co.26 trial showed that combination durvalumab– 
tremelimumab in microsatellite-stable mcrc was asso-
ciated with a modest improvement in mos to 6.6 months 
from 4.1 months (unadjusted hr: 0.70; 90% ci: 0.53 to 
0.92; p = 0.03)69.

In patients with non-hypermutated mcrc, PD-L1 has 
not been a useful biomarker to date66,67. In the Canadian 
Cancer Trials Group co.26 trial, retrospective analysis 
suggested that a high tumour mutational burden (≥28 
mutations per megabase) from ctdna analysis might select 
patients (21% of the cohort) most likely to benefit from 
immunotherapy (hr: 0.34; 90% ci: 0.18 to 0.63; p = 0.004, 
with p = 0.07 for an interaction test of tumour mutational 
burden as a predictive biomarker)70. Comparatively, in 
calgb 80405, a tumour mutational burden of 8 or more 
mutations per megabase was a positive prognostic marker  
associated with improved mos (33.8 months vs. 28.1 
months; hr: 0.73; 95% ci: 0.57 to 0.95; p = 0.020) in the first-
line setting for patients receiving doublet chemotherapy 
and a biologic12,71. In several other studies, higher tumour 
mutational burden also appears to select patients with 
msi-h who are most likely to benefit from immunotherapy. 
However, the optimal threshold has yet to be defined, even 
in other cancer types (for example, lung cancer), where 
immunotherapy is more commonly used70,72,73.

NTRK Fusion
The NTRK genes encode 3 receptors—TrkA, TrkB, TrkC—
recently identified as important partners in fusion events 
observed in multiple cancers that now have effective 
targeted therapies74. The prevalence of NTRK fusions is 
estimated to be 0.5%–2.0% in mcrc, but is enriched to 
4% in msi-h mcrc22,74–76. NTRK1, 2, and 3 are normally in-
volved in the development and function of the peripheral 
and central nervous system77–79. Targeted dna and rna 
panels, rna sequencing, florescence in situ hybridization 
(fish), and ihc are all options for detecting the fusions80,81. 
Larotrectinib and entrectinib are both U.S. Food and Drug 
Administration–approved Trk inhibitors with orrs of 75% 
and 57.4% respectively in more than 10 tumour types. Me-
dian duration of response to larotrectinib was not reached 

after 8.3 months of follow-up, with 55% of patients being 
free from progression at 1 year, and median duration of 
response to entrectinib was 10.4 months (95% ci: 7.1 months 
to not reached)82,83. The second-generation NTRK inhibitor 
LOXO-195 yielded an orr of 34% in 11 tumour types after 
patients had progressed on first-line Trk inhibitors and 
could represent a second-line option84.

PIK3CA Mutations
Activation of the epidermal growth factor receptor leads 
to signalling through both the mapk pathway and the 
pi3k pathway involved in cell survival and proliferation8. 
Intuitively, mutations in PIK3CA would result in resistance 
to anti-egfr agents, but mutations in exon 9 (68.4% of all 
PIK3CA mutations) have no effect on anti-egfr efficacy, 
and mutations in exon 20 (20.4% of PIK3CA mutations) have 
been associated with a lesser response to anti-egfr therapy 
only in select studies85. Exclusion of patients with PIK3CA 
mutations did not change the response to cetuximab in 
patients with KRAS/NRAS/BRAF wild-type tumours in 
calgb 8040512. Meta-analyses support the indeterminacy 
of an overall effect of PIK3CA mutation (regardless of exon), 
the interpretation of which is confounded by the fact that 
PIK3CA is often a co-mutation with others86,87. Currently, 
there is no clinical implication for PIK3CA mutations out-
side of a research context.

MET Alterations
The met receptor tyrosine kinase can be overexpressed, 
mutated, and amplified in mcrc, and its amplification is 
recognized as a potential mechanism of acquired resis-
tance for mcrc treated with anti-egfr therapy88. However, 
multiple trials with various forms of met inhibition have 
been unsuccessful in mcrc89. Therefore, although genomic 
aberration in MET is commonly observed in mcrc, it re-
mains in the research setting and has not been associated 
with innate resistance to anti-egfr therapy.

Consensus Molecular Subtyping
As defined by gene expression profiling, mcrc has been 
divided into 4 distinct consensus molecular subtypes 
(cmss). The 4 subtypes are cms1, with msi and immune ac-
tivation (14%); cms2, with canonical crc alterations (37%); 
cms3, with metabolic dysregulation (13%); and cms4, with 
mesenchymal features (23%)90. Those subtypes reflect 
distinct biology and have been shown to be both prognostic 
for os and, in the calgb 80405 trial, predictive for benefit 
from cetuximab and bevacizumab91. Patients classified 
as cms1 appear to derive more benefit from bevacizumab, 
while those classified cms2 appear to derive more bene-
fit from cetuximab (p for interaction: <0.001). Although 
many prospective trials using cms to stratify patients are 
planned, cms subtyping is not currently a standard of care 
and remains in the research environment.

UNDERSTANDING THE TESTS ORDERED

As the number of biomarkers of relevance discovered in 
mcrc increase, understanding the appropriate methods 
for identifying abnormalities becomes increasingly im-
portant to clinicians. In the second part of this review, 
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we discuss the relevance of each technique in the era of 
precision oncology.

Conventional Laboratory Techniques

IHC
Widely available and low in cost, ihc is a method of detect-
ing one or more specific antigens on a tissue by labelling 
them with an antibody against the whole protein or smaller 
epitopes. A secondary antibody is applied which is conju-
gated with either florescent or non-fluorescent markers 
(such as the brown 3,3′-diaminobenzidine stain commonly 
seen) that identify the antigen of interest under microsco-
py92. Immunohistochemistry remains an effective method 
for identifying dmmr and Lynch syndrome93. Similarly, the 
European Society for Medical Oncology recommends a 
2-tier NTRK fusion detection algorithm with ihc population 
screening and confirmatory sequencing to reduce cost and 
handling time94. BRAF V600E mutation in melanoma can 
also be determined by ihc with high concordance. However,  
a high false-positive rate of 39% and a false-negative rate 
of 11% have been cited in the setting of mcrc95. Although 
other studies suggest better sensitivity and specificity, the 
conflicting evidence should caution against reliance on ihc 
alone for the detection of BRAF V600E mutations in mcrc96.

FISH
In the fish cytogenetic technique, florescent dna probes 
are hybridized to a sample, and the relative distribution of 
the probes determines the cytogenetic defect97. Increased 
numbers of fish probes can be used as confirmatory test-
ing for her2 amplification when ihc shows intermediate 
staining98. Detection of fusions by fish (merging of two 
probes to give a different colour) is also a possibility, but 
can be labour-intensive if there are multiple potential fu-
sion partners that are not known. In cases of fusions (such 
as NTRK, with its multiple fusion partners), targeted rna 
sequencing is therefore preferred to fish because of its high 
sensitivity, high throughput capability, and requirement 
for no prior knowledge of the fusion partners involved in 
the translocation80,81.

Sequencing Techniques

Sanger Sequencing: Sanger sequencing is a direct gene 
sequencing technique developed in 1977 to which all mod-
ern molecular testing assays are benchmarked. However, it 
has fallen out of favour because of newer technologies that 
allow for concurrent testing of multiple genes and greater 
sensitivity for low-allele-frequency mutations99. For exam-
ple, single-gene companion diagnostic kits for KRAS use 
allele-specific polymerase chain reaction to increase assay 
sensitivity, allowing for detection of allele frequencies as 
low as 0.1%, compared with the 10% lower limit of detection 
with Sanger sequencing100. The enhanced sensitivity of 
newer testing assays results in the identification of up to 
20% more patients with a RAS mutation, which has signif-
icant treatment implications101. The minimum detectable 
allele frequency is an important consideration. The crystal 
trial showed that RAS mutation frequency as low as 0.1% 
can predict the ineffectiveness of anti-egfr therapy102.

NGS: Next-generation sequencing refers to parallel se-
quencing reactions for multiple genes and multiple samples 
concurrently. An example of this technology uses fluores-
cence in added bases to detect the dna sequence. After 
dna purification and fragmentation, single-stranded dna 
is attached to the surface of a flow-cell channel. The single 
strands are amplified repeatedly to create dense clusters of 
template dna. Fluorescently labelled reversible terminator 
nucleotides, which can be detected by a camera, are added 
to the dna in subsequent cycles103. Other technologies use 
techniques such as pH changes when a nucleotide is added 
to provide sequence information.

NGS Sample Selection: When selecting which sample from 
a patient to use for sequencing, a few important consider-
ations are necessary. In mcrc, high concordance for RAS 
and BRAF V600E mutation detection is observed between 
the primary tumour and metastases at various sites in 
the body104–106. Guidelines therefore suggest that testing 
a metastatic lesion is ideal; however, archival tissue can 
be used10. Fresh biopsies of recurrent tumours have the 
advantage of yielding higher-quality nucleic acids, par-
ticularly rna for transcriptomic analysis. Formalin-fixed, 
paraffin-embedded archival samples more than a few 
years old can introduce sequencing artefacts or errors107, 
but for most non-research biomarkers currently used, such 
archival samples are acceptable108.

Sequencing quality also depends on the ratio of tu-
mour to normal tissue in a sample. If a particular nucleotide 
is sequenced 100 times and only 5% of the sample contains 
tumour cells, most of the measured dna will be from normal 
tissue, making cancer mutations hard to detect. Macrodis-
section by a pathologist to remove normal tissue under the 
microscope can help with that challenge. With such dis-
section, less normal dna remains to be sequenced, and so 
more of the sequencing reads are attributed to cancer dna.

Depth of Coverage: Another important metric in ngs is 
the concept of depth of coverage. “Depth of coverage” is 
defined as the number of times a particular nucleotide is se-
quenced; it is often denoted using a number that represents 
the average or median of the depth, followed by the letter x 
(that is, “400x”). With more depth, the variant detected is, 
importantly, more likely to be real rather than an artefact, 
and low-allele-frequency mutations are more likely to be de-
tected, although other technical issues can affect sensitivity.

Panel Selection: Selecting the sequencing panel to use 
can be a challenge for clinicians and patients. At most 
academic institutions, individual companion diagnostic 
tests have been replaced by either a “home brew” ngs 
panel designed to meet local needs or a commercially 
available ngs panel such as FoundationOne CDx [324 
genes (Hoffmann–La Roche, Mississauga, ON)] or Caris 
Molecular Intelligence [592 genes (Caris Life Sciences, 
Irving, TX, U.S.A.)]. For routine mcrc management, only 
a very targeted ngs panel is essential, but to balance the 
research interests of the institution and the ability to use 
one panel for multiple types of cancer, larger panels are 
often performed at a marginal increase in cost (for better 
economy of scale).
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RNA Sequencing: Sequencing of rna involves extraction 
of rna, enrichment for messenger rna, and subsequent 
reverse transcription to create complementary dna that is 
then sequenced using ngs technologies just as dna would 
be. Other technologies such as array-based platforms 
are available for targeted assessment of gene expression. 
Apart from its previously mentioned role in fusion detec-
tion, rna sequencing can characterize the differences in 
gene expression that define the molecular subtypes of 
mcrc. Several iterations of those molecular subtypes have 
been presented; the cms version appears to be of greatest 
utility, but it remains in the research realm90. Sequencing 
of rna usually provides information about gene expres-
sion, but it can also be used to identify various types of 
mutations beyond fusions, such as single-nucleotide 
variants. However, because of sample degradation and 
artefacts, sequencing of rna can be more challenging to 
perform than conventional dna sequencing in archived 
formalin-fixed tissues.

Utility of Liquid Biopsy: When discussing liquid biop-
sies, the term “cell-free dna” refers to all dna found in 
the plasma, of which ctdna is the subset of tumour origin 
only. Typically, ctdna consists of short dna fragments ap-
proximately 166 bp long, with an estimated half-life of 16 
minutes to 2.5 hours109. In treatment-naïve patients with 
mcrc, diagnostic molecular profiling of ctdna appears 
to have high concordance with tissue-based assays110. 
Although up to 15% of samples can be nondiagnostic be-
cause of a lack of detectable ctdna, the same problem can 
occur in tissue sequencing110,111. Detection of ctdna has 
also shown value in the risk-stratification of patients at 
risk of recurrence. In one study, the hr for stage ii patients 
with detectable ctdna after resection was 18 (95% ci: 7.9 
to 40.0; p < 0.001)112. Amplifications can also be detected 
using ctdna. In the heracles trial, ctdna successfully 
detected amplifications in 46 of 48 patients with her2- 
amplified disease, and detection of higher copy numbers 
was associated with orr and pfs113. Some ctdna assays are 
also validated for detection of msi109.

SUMMARY

Increased appreciation of molecular subtypes beyond 
KRAS exon 2–mutant crc has refined the management 
of patients with mcrc. With the development of patient- 
friendly technologies such as ctdna, which allows for 
noninvasive molecular assessment, the integration of 
biomarkers can be expected to become more integral to 
every decision made in the clinic and will further improve 
outcomes for patients.
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