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Abstract

Evolve and resequence (E&R) studies are frequently used to dissect the genetic basis of quantitative traits. By subjecting a
population to truncating selection for several generations and estimating the allele frequency differences between
selected and nonselected populations using next-generation sequencing (NGS), the loci contributing to the selected
trait may be identified. The role of different parameters, such as, the population size or the number of replicate
populations has been examined in previous works. However, the influence of the selection regime, that is the strength
of truncating selection during the experiment, remains little explored. Using whole genome, individual based forward
simulations of E&R studies, we found that the power to identify the causative alleles may be maximized by gradually
increasing the strength of truncating selection during the experiment. Notably, such an optimal selection regime comes
at no or little additional cost in terms of sequencing effort and experimental time. Interestingly, we also found that a
selection regime which optimizes the power to identify the causative loci is not necessarily identical to a regime that
maximizes the phenotypic response. Finally, our simulations suggest that an E&R study with an optimized selection
regime may have a higher power to identify the genetic basis of quantitative traits than a genome-wide association study,
highlighting that E&R is a powerful approach for finding the loci underlying complex traits.
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Introduction

Most variation of traits important in agriculture, medicine,
ecology, and evolution is quantitative (Mackay 2001).
Variation in such quantitative traits (or complex traits) is
usually due to multiple segregating loci (Mackay 2001). For
these quantitative traits the simple Mendelian correspon-
dence between genotype and phenotype breaks down,
such that one particular phenotype may be due to several
distinct genotypes (Lander and Schork 1994). Unraveling the
genetic basis of quantitative traits will be crucial for improving
crop yield, leveraging personalized medicine and shedding
light on poorly understood evolutionary processes such as
extinctions, rapid adaptation, and canalization. It has even
been argued that identifying the genetic basis of quantitative
traits will be the key challenge for biology in the 21st century
(Mackay 20071; Stapley et al. 2010; Losos et al. 2013).

Due to this wide interest many approaches for identifying
the genetic basis of complex traits have been developed, such
as quantitative trait locus (QTL) mapping and genome-wide
association studies (GWAS) (Mackay 2001; Korte and Farlow
2013). These methods suffer from some limitations. QTL
studies only capture a limited amount of the variation pre-
sent in natural populations and the resolution of QTL studies
is usually low (Mackay 2001). Identifying the causative quan-
titative trait nucleotide (QTN) is thus rarely achieved with

QTL studies (Rockman 2012). GWAS however capture more
natural variation and have a higher resolution than QTL stud-
ies, frequently enabling the identification of some QTNs.
GWAS achieve this high resolution by utilizing historical re-
combination events rather than recombination events occur-
ring within QTL mapping populations (Mackay et al. 2009).
However, GWAS have also some limitations. With GWAS it is
difficult to identify rare variants and variants of small effect
size (Marchini et al. 2004; Korte and Farlow 2013). Hence
alternative approaches for identifying the QTNs are of wide
interest.

The advent of NGS made it feasible to monitor adaptation
at the genomic level with an approach termed Evolve and
resequence (E&R [Long et al. 2015; Schl6tterer et al. 2015]). A
base population, that usually captures a substantial amount
of the variation of a natural population, is subject to some
selective pressure over multiple generations and allele fre-
quency changes are monitored by sequencing the experimen-
tal populations. The selective pressure may be either natural,
when a population is exposed to a defined environment, or
artificial, when a specific phenotype is selected (Garland and
Rose 2009; Schlotterer et al. 2015). Since the selected traits are
usually not known with natural adaptation, E&R studies re-
lying on natural selection are mostly used to study the dy-
namics of adaptation rather than the genetic basis of complex
traits. However E&R studies with artificial selection may be a
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powerful approach for identifying the QTNs, especially since
E&R studies rely on both, historical recombination events
(base population) and recombination events occurring dur-
ing the experiment. Using computer simulations several the-
oretical studies found that E&R studies have sufficient power
to identify selected loci, provided that a powerful experimen-
tal design is used (Baldwin-Brown et al. 2014; Kofler and
Schlétterer 2014; Kessner and Novembre 2015). Such a pow-
erful design usually requires large population sizes (>1,000),
several replicates (>5), and multiple generations of selection
(>90). Hence E&R studies are mostly suitable for small organ-
isms having short generation times such as fruit flies (Turner
et al. 2011; Orozco-Terwengel et al. 2012; Turner and Miller
2012; Tobler et al. 2014), nematodes (Teotonio et al. 2012),
yeast (Kosheleva and Desai 2018), bacteria (Wannier et al.
2018), and mice (Keightley and Bulfield 1993). But even for
model organisms, E&R studies come at a considerable cost in
terms of time and sequencing effort. It is thus important to
ensure that the invested resources are optimally utilized by
maximizing the power to identify the QTNs. One promising
but little explored approach for increasing the performance of
E&R studies is the selection regime, that is the number of
selected individuals during the experiment. This approach is
especially promising as an optimized selection regime comes
at no, or only little, additional cost (time, sequencing, and
phenotyping). As a major challenge, an optimal selection re-
gime needs to strike a balance between too weak and too
strong selection. With weak selection it will be difficult to
distinguish QTNs from neutral loci subject to genetic drift,
whereas with strong selection the QTNs may not be distin-
guished from vast amounts of hitchhikers.

Using genome-wide forward simulations of populations
under truncating selection we show that the performance
of E&R studies may be maximized by gradually increasing
the strength of selection during the experiment, that is de-
creasing the number of selected individuals with time. This
approach reduces hitchhiking associated with strongly se-
lected loci but nevertheless generates a noticeable response
of weakly selected loci. Interestingly, we found that an E&R
study with an optimized selection regime may have a higher
power to identify QTNs than a GWAS involving several thou-
sands of individuals. A suboptimal selection regime, such as
constant strong selection, however results in a poor perfor-
mance. Our results highlight that the selection regime is a
crucial factor determining the success of E&R studies.

Results

To test if the selection regime has an influence on the per-
formance of E&R studies we performed genome-wide for-
ward simulations with MimicrEE2 (Vlachos and Kofler
2018). MimicrEE2 is a versatile tool that allows the simulation
of temporally variable truncating selection with a quantitative
trait. We aimed to capture the genomic landscape of
Drosophila melanogaster, a commonly used model organism
for E&R studies (Long et al. 2015; Schlotterer et al. 2015). We
used the recombination rate estimates of Comeron et al.
(2012) for windows of 100 kb and a base population

Table 1. Overview of the Default Parameters Used for the
Simulations.

Parameter Default Value
Population size (N) 1,000
Number of causative loci 100
Number of generations 90
Replicates 10

Distribution of effect sizes Gamma with shape = 0.42
and scale = 1

1 (genotype to phenotype
mapping = 1:1)

Comeron et al. (2012)

10 (using different causative

loci and effect sizes)

Heritability

Recombination map
Repetitions

consisting of 1,000 diploid and homozygous genomes that
reproduce the pattern of natural variation found in a D.
melanogaster population from Vienna (Bastide et al. 2013;
Kofler and Schlotterer 2014) (supplementary fig. 1,
Supplementary Material online). Simulations were performed
for the major autosomes, where low recombining regions
were excluded as they inflate the false-positive rate (FPR)
(Kofler and Schlotterer 2014) (supplementary fig. 1,
Supplementary Material online). Based on the recommenda-
tions of Kofler and Schlotterer (2014) we simulated an E&R
study with a population size of 1,000, 10 replicates and 90
generations of selection (table 1). We simulated a quantitative
trait model, where 100 randomly selected loci contribute to a
trait (100 QTNs). Only loci with frequencies between 5% and
95% were selected, which ensures that all selected single nu-
cleotide polymorphisms (SNPs) contribute at least moder-
ately to the genotypic variance (Falconer and Mackay 1960).

The effect sizes of the QTNs followed a gamma distribu-
tion that captures the distribution of effect sizes found with
QTL studies (Hayes and Goddard 2001; Meuwissen et al.
2001) (table 1). We thus simulated quantitative traits with
few large effect loci and many weak effect loci. The sign of the
effect (a vs. —a) was randomly chosen and a heritability of h”
= 1 was initially used. Simulations for each experimental de-
sign were repeated ten times using different sets of randomly
drawn QTNs (random position and effect size) (table 1). The
significance of the allele frequency differences between the
base population and the evolved populations was estimated
with the Cochran—Mantel-Haenszel (CMH) test (Landis et al.
1978). This test takes replicates into account and has a good
performance with E&R studies (Kofler and Schlotterer 2014;
Schlétterer et al. 2015). The power of the different selection
regimes was assessed using Receiver Operating Characteristic
(ROC) curves (Hastie et al. 2009), which relate the true-
positive rate (TPR) to the FPR). The TPR can be calculated
as TP/(TP + FN), where TP stands for true positives and FN
for false negatives. The FPR can be calculated as FP/(TN + FP),
where FP refers to false positives and to TN true negatives. A
ROC curve having a TPR of 1.0 with a FPR of 0.0 indicates the
best possible performance. We displayed average ROC curves
based on the ten different sets of QTNs. As we are mostly
interested in identifying QTNs at a low FPR we used a FPR
threshold of 0.01 and computed the area under the partial
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Fic. 1. The selection regime has a significant influence on the performance of E&R studies. (A) We simulated three truncating selection regimes.
The strength of selection increased (green), remained constant (black), or decreased (red) during the experiment. Note that the total number of
selected individuals is identical for the three selection regimes. (B) ROC curves showing the performance of the three selection regimes. The

increasing selection regime has the best performance.

ROC curve (pAUC = f(;) T ROC(f)df) to assess the perfor-
mance of a selection regime. For an overview of the simula-
tion pipeline see supplementary figure 2, Supplementary

Material online.

The Selection Regime Influences the Performance of
E&R Studies

We first tested the hypothesis that selection regimes have a
significant influence on the performance of E&R studies. We
generated different selection regimes by varying the strength
of truncating selection throughout the experiment. With
truncating selection the individuals having the most pro-
nounced phenotypes are selected and allowed to mate. The
offspring of the selected individuals will constitute the next
generation. We evaluated the performance of three different
selection regimes: 1) constant strength of selection, where
50% of the individuals are selected at each generation
(50%); 2) linearly increasing strength of selection, where
90% of the individuals are selected at the beginning of the
experiment and 10% at the end (90 — 10%); and 3) linearly
decreasing strength of selection, where 10% of the individuals
are selected at the beginning of the experiment and 90% at
the end (10 — 90%, fig. 1A). Note that the sum of individuals
selected over the 90 generations is identical for the three
selection regimes.

We found that the selection regime has a significant influ-
ence on the power to identify the causative loci (Kruskal—
Wallis rank-sum test with pAUGC; P = 2.8e—06) where linearly
increasing strength of selection (henceforth “increasing
regime”) had the best performance (fig. 1B). A constant
strength of selection had an intermediate performance
(henceforth “constant regime”) and decreasing the strength
of selection (henceforth “decreasing regime”) had the worst
performance (fig. 1B).

This raises the question why the increasing regime per-
formed better than the constant and the decreasing regime.
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Apart from technical problems (e.g. sequencing) an E&R
study has two sources of noise: genetic drift and hitchhiking
of neutral alleles linked to selected loci. If selection is weak,
allele frequency changes of neutral loci subject to genetic drift
may be more pronounced than the response to selection of
the QTNs. However if selection is strong, alleles linked to
selected loci will have little opportunity to recombine to neu-
tral haplotypes. These hitchhikers will thus show a significant
response to selection. An optimal selection regime must thus
aim to minimize both sources of noise, hitchhiking, and drift.

To identify possible causes for the performance differences
among selection regimes we investigated the trajectories of
strong (effect size >1), weak (effect size <1), and neutral
alleles in a single replicate of each selection regime (supple-
mentary fig. 3, Supplementary Material online). Most selected
loci got fixed (frequency of 1.0, polarized to selected allele) in
all three selection regimes, but fixation of selected alleles
appears to be delayed in the increasing regime relative to
the other regimes (supplementary fig. 3, Supplementary
Material online). Delayed fixation of selected alleles could
lead to fewer hitchhikers and thus account for the perfor-
mance differences among selection regimes (supplementary
fig. 4, Supplementary Material online). To test this hypothesis
we quantified the response to selection of strong and weak
effect loci in the selection regimes using 50 simulations with
different random sets of QTNs (50 sets of QTNs; 1 replicate;
supplementary fig. 5 Supplementary Material online).
Fixation of both strong and weak effect loci was significantly
delayed in the increasing regime compared with the constant
and the decreasing regime (Wilcoxon rank-sum test; P <
2.2e—16). Furthermore, fixation of strong effect loci was
more delayed than fixation of weak effect loci (strong: incr./
cons. = 19X, incr./decr. = 5.2; weak: incr./cons. = 14X,
incr./decr. = 3.3X%; supplementary fig. 5, Supplementary
Material online). This suggests that the increasing regime
affords more time to neutral alleles to recombine away
from selected haplotypes.


https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data

Optimizing QTL Identification - doi:10.1093/molbev/msz183

MBE

Next, we aimed to quantify the extent of hitchhiking for
the three selection regimes. Replicated E&R studies enable to
roughly distinguish between hitchhikers and alleles subject to
genetic drift by the consistency of the allele frequency change
among replicates. For example, alleles that increase in fre-
quency in some replicates but decrease in frequency in others
are likely subject to drift, whereas neutral alleles that increase
in frequency in all replicates are likely hitchhikers. We thus
classified loci as hitchhikers when the allele frequency consis-
tently changed in the same direction in all 10 replicates (ex-
cluding QTNs). In agreement with our hypothesis we found
fewer hitchhikers in the increasing regime than in the other
two regimes (10 set of QTNs; 10 replicates; supplementary fig.
6, Supplementary Material online). Furthermore, the allele
frequency change of hitchhikers was least pronounced in
the increasing regime (supplementary fig. 6, Supplementary
Material online). However, most loci subject to genetic drift
(consistent allele frequency change in 4—6 replicates) were
found for the increasing regime, but the allele frequency
change due to drift was least pronounced for the constant
regime (supplementary fig. 6, Supplementary Material online).
Of course, constant weak selection where for example 90% of
the individuals are selected may reduce hitchhiking even
more than the tested increasing regime (supplementary fig.
5, Supplementary Material online). However, constant weak
selection results in an overall reduced response to selection
(supplementary fig. 5, Supplementary Material online) such
that the noise generated by genetic drift may dominate the
weak signal of selected loci. In summary, we propose that the
increasing regime has a high performance because it initially
delays the fixation of strong effect alleles, allowing hitchhikers
to recombine out of selected haplotypes, but amplifies the
response of weak effect loci at the end of the experiment.

So far, we have evaluated the performance of three differ-
ent selection regimes having an identical total number of
selected individuals. However many more different selection
regimes, with varying amounts of selected individuals are fea-
sible. We thus carried out additional simulations to test if
increasing regimes outperform other selection regimes.

Linearly Increasing the Strength of Selection
Maximizes the Power to Identify QTNs

Among all feasible linear selection regimes (increasing, con-
stant, and decreasing) we aimed to identify the regime that
results in the highest power to identify the QTNs. Since
genome-wide forward simulations are computationally de-
manding we needed to limit the number of necessary simu-
lations. As the decreasing regime had a poor performance we
solely considered increasing and constant regimes (fig. 1; sup-
plementary figs. 5 and 6, Supplementary Material online).
Furthermore, we evaluated the performance of selection
regimes in steps of 10% selected individuals (fig. 2A and B).
To identify the best increasing regime we thus evaluated the
performance of 36 different regimes (90 — 80%, 90 — 70%,
290 — 10%, . . ., 20 — 10%; fig. 2A, left panel). Based on the
area under the partial ROC curve (pAUC) we found that the
increasing regime where 90% of the individuals are selected at
the beginning of the experiment and 20% at the end had the

best performance (90 — 20% increasing regime; fig. 2A). Out
of the constant regimes, however, selection of 80% of the
individuals resulted in the highest power to identify the
QTNs (fig. 2B). This is in agreement with the results of
Kessner and Novembre (2015) who evaluated the perfor-
mance of multiple constant regimes (20%, 40%, 60%, and
80%) under a QTL model with truncating selection and found
that selection of 80% of individuals performed best. However,
we found that the best increasing regime had a higher power
to identify QTNs than any of the evaluated constant regimes
(fig. 2B; Wilcoxon rank-sum test with pAUG; 90 — 20% vs.
each constant regime; P < 0.0002).

Influence of the Experimental Design

Depending on the experimental organism, the default of 90
generations of selection may be quite time consuming (e.g. 3
years in Drosophila). We thus asked whether a high perfor-
mance may also be achieved with shorter experiments if an
optimized selection regime is used. We evaluated the perfor-
mance of different selection regimes for 20, 45, and 90 gen-
erations of selection (fig. 3). Simulations were performed for
all 45 combinations of increasing and constant regimes (9
constant and 36 increasing regimes, as shown in fig. 2A and C).

In agreement with previous works we found that the per-
formance of E&R studies increases with the number of gen-
erations of selection (Baldwin-Brown et al. 2014; Kofler and
Schlotterer 2014; Kessner and Novembre 2015) (fig. 3). Of the
constant regimes, selection of 80% of the individuals consis-
tently had the best performance, irrespective of the length of
the experiment (fig. 3). This is again in agreement with
Kessner and Novembre (2015). With 90 and 45 generations
of selection the best increasing regime significantly outper-
formed the constant regimes (Wilcoxon rank-sum test with
pAUC, pss = 0.014 for 16% increased performance; pgy =
0.0002 for 22.4% increased performance). With 20 generations
of selection, however, the performance of the best increasing
and constant regime was quite similar (Wilcoxon rank-sum
test with pAUG; p,, = 0.68 for 2% increased performance).
We also noticed that the optimal increasing regime changed
from 90 — 20% with 90 generations of selection to 90 — 70%
with 20 generations. With 45 generations of selection the
performance of the 80 — 10% increasing regime was not
significantly different from the 90 — 20% increasing regime
(Wilcoxon rank-sum test, P = 1). For short experiments the
performance of the best increasing regime thus approaches
the performance of the best constant regime. Short experi-
ments may not provide sufficient time for the benefit of in-
creasing regimes, such as the delayed fixation of large effect
loci, to take effect and thus influence the performance. We
conclude that an optimized selection regime is not able to
compensate for the loss of performance incurred by reducing
the generations of selection. In fact the advantage of an op-
timized selection regime, such as the increasing regime, is
most pronounced for long experiments.

Next, we assessed the effect of the number of replicate
populations on the shape of the optimal selection regime. We
evaluated the performance of the different selection regimes
with 3, 5, and 10 replicates (10 is the default). Our results

2893


https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msz183#supplementary-data

Vlachos and Kofler - doi:10.1093/molbev/msz183

MBE

A
90
S
© 701
[}
>
e
=
_-Cg) 50
e
2
(6]
9 301
[}
(2]
10 ~
1 U 1 1
0 30 60 90
generation
B
<
— | — 1095 — 40% 70% — 90-»20%
— 20% 50% 80%
O © | —— 309° o,
5 o1 30% 60% 90%
[}
= =
‘@ g' = . _ = -
8 = - = = - F ET—F
o) - = = S = cS
2 < : ¥ =
+ o = el
() -
o)  d
& -
O -
s 1|/~
=
° T T T T T T
0.0 0.002 0.004 0.006 0.008 0.01

false positive rate

1.0

1 = best increasing regime (90>20%)

suboptimal increasing regime

0.6 0.8
1 1

0.4

average true positive rate

0.2

0.004 0006 0.008

false positive rate

0.002 0.01

0.4 05 06

mean pAUC

0.3
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suggest that the best increasing regime significantly outper-
forms the best constant regime when 10 or 5 replicates are
used (Wilcoxon rank-sum test with pAUG; ps = 0.0004 for
16% increased performance; p;o = 0.0002 for 22.4% increased
performance; supplementary fig. 7, Supplementary Material
online). For 3 replicates the performance of the best increas-
ing regime is not significantly different from the best constant
regime (Wilcoxon rank-sum test with pAUG p; = 0.5 for
4.9% increased performance). The advantage of an increasing
regime is thus most pronounced when many replicates are
used. Interestingly, also the shape of the optimal selection
regime depends on the number of replicates, where strong
selection at the end of the experiment is especially beneficial
when many replicates are used (supplementary fig. 7,
Supplementary Material online).

This raises the question why replication influences the
shape of the optimal selection regime. For loci mostly subject
to genetic drift the direction of the allele frequency change
will vary across replicates. As high CMH-scores require con-
sistent allele frequency changes across replicates, it will be
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easier to distinguish between selected loci and loci subject
to drift when many replicates are used. An elevated strength
of selection at the end of highly replicated E&R studies may
thus boost the response to selection of weak effect loci with-
out incurring excessive additional noise from genetic drift
caused by the population size reduction at the end of the
experiment.

Finally, we investigated the influence of the population size
(supplementary fig. 8, Supplementary Material online). We
found that an increasing regime consistently performed bet-
ter than the constant regimes where especially the 90 — 20%
increasing regime had a high performance with the evaluated
population sizes (supplementary fig. 8, Supplementary
Material online).

To summarize, in all tested experimental designs an in-
creasing regime outperformed the constant regimes.
However, the slope and intercept of the optimal increasing
regime depends on the experimental design where especially
the number of replicates and the length of the experiment
had a noticeable influence.
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of an increasing regime is most pronounced for long E&R studies.

Influence of the Trait Architecture

We next asked if the optimal selection regime depends on the
architecture of a quantitative trait. We investigated the influ-
ence of the number of QTNs, the heritability and the effect
size distribution of the QTNs.

First, we considered the influence of the number of QTNs.
We simulated E&R studies with 25 and 1,000 QTNs in addi-
tion to the default of 100 QTNs. In agreement with previous
works we found that the performance of E&R studies is weak
when the number of QTNs is large (supplementary fig. 9,
Supplementary Material online [Kofler and Schlétterer
2014; Kessner and Novembre 2015]). A large number of
QTNs results in widespread interference among selected
loci, which cannot (or only very slowly) be resolved by re-
combination events arising during the experiment. Regardless
of the number of QTNs, the best constant selection regime
was 80%. This is again in agreement with previous works
(Kessner and Novembre 2015). Although an increasing re-
gime consistently performed better than the constant

regimes (supplementary fig. 9, Supplementary Material on-
line) the advantage of an increasing regime was most pro-
nounced for intermediate numbers of QTNs (supplementary
fig. 9, Supplementary Material online; 2% increased perfor-
mance for 25 QTNs; 22.4% increased performance for 100
QTNs; 6% increased performance for 1,000 QTNs). We no-
ticed that the 90 — 20% increasing regime resulted in a good
performance for diverse numbers of QTNs (supplementary
fig. 9, Supplementary Material online).

The heritability, that is the proportion of the phenotypic
variance that is due to the genotype, varies among environ-
ments, populations and traits (Falconer 1992; Visscher et al.
2008). To explore the influence of the heritability we simu-
lated E&R studies with heritabilities of h> = 0.3 and h> = 0.6
in addition to the default of h” = 1.0 (supplementary fig. 10,
Supplementary Material online). We found that an increasing
regime consistently outperformed the constant regimes (sup-
plementary fig. 10, Supplementary Material online) (Wilcoxon
rank-sum test; po; = 0.035 for 9% increased performance; pg 6
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= 0.035 for 7.5% increased performance; p;, = 0.0002 for
22.4% increased performance). Especially the 90 — 20% in-
creasing regime had a high performance across different her-
itabilities. The advantage of an increasing regime was however
most pronounced for a high heritability (h> = 1; supplemen-
tary fig. 10, Supplementary Material online). We also noticed
that the influence of the selection regime diminishes with
decreasing  heritability ~ (supplementary  fig. 10,
Supplementary Material online).

Finally, we evaluated the influence of the effect size distri-
bution of the QTNs. Per default we used a distribution that
captures the effect sizes found in QTL studies (gamma distri-
bution with shape 0.42) (Hayes and Goddard 2001; Meuwissen
et al. 2001). However, the effect size distribution may vary
among traits, populations and even environments (El-Soda
et al. 2014; Dittmar et al. 2016). To evaluate the influence of
the effect size distribution we simulated E&R studies with
QTNs drawn from different gamma distributions with shape
parameters ranging from 0.1 to 1.0. Furthermore, we simulated
one distribution where all loci had identical effect sizes. Note
that the absolute value of the effect size is not important when
truncating selection (i.e. soft selection) is used and that effect
sizes are getting more similar with an increasing shape param-
eter (e.g. ratio between the 10% largest and smallest effect sizes
Io; = 602, 622; T';y = 62). Interestingly, we found that an
increasing regime consistently performed best when effect
sizes followed a gamma distribution (Wilcoxon rank-sum
test with pAUG; po1 = 4.33e—05 for 29% increased perfor-
mance; po 4, = 2e—04 for 22.4% increased performance; py; =
3.2e—04 for 12.3% increased performance; p; o = 0.035 for 7%
increased performance; fig. 4). However, when effect sizes were
identical constant selection of 90% of the individuals per-
formed best. For gamma distributed effect sizes the 90 —
20% increasing regime consistently had a high performance.
Generally, we note that increasing regimes perform best when
effect sizes are highly unequally distributed (e.g. gamma with
shape = 0.1). This is in agreement with our proposed expla-
nation for the good performance of increasing regimes, that is
an initially delayed fixation of large effect loci combined with
an encouraged fixation of small effect loci at later generations.
Such dynamics will not be beneficial when all loci have iden-
tical effect sizes.

Finally, we asked if selection regimes may influence our
ability to estimate the effect size distribution of QTNs. We
investigated the effect sizes of QTNs among the 2,000 most
significant SNPs in the simulations with gamma distributed
effect sizes (supplementary fig. 11, Supplementary Material
online). For both increasing and constant regimes, the 2,000
most significant SNPs only contained a fraction of the QTNs
(supplementary fig. 11, Supplementary Material online).
However, the best increasing regime allowed the recovery
of a higher fraction of the QTNs than the best constant re-
gime (increasing regimes 42.3%, constant regimes 29.2%).
Especially, loci with weak effect sizes were more readily iden-
tified with an increasing regime (supplementary fig. 11,
Supplementary Material online). Hence, increasing regimes
may enable us to more accurately recover the effect size dis-
tribution of QTNs than constant regimes.

2896

To summarize, with the exception of a trait architecture
where QTNs have identical effects, increasing regimes out-
performed constant regimes over a wide range of different
trait architectures.

Selection That Optimizes the Power to Identify QTNs
Does Not Necessarily Maximize the Phenotypic
Response

Before the advent of E&R studies truncating selection was
used to change a phenotype of interest. In a classic example
the oil content of maize was raised from 5% to about 20% by
continuously selecting the individuals with the highest oil
content (Dudley and Lambert 2010). We were interested
whether selection regimes that aim to optimize the power
to identify QTNs (henceforth “QTN regime”) are identical to
selection regimes that aim to maximize the phenotypic re-
sponse (henceforth “phenotype regime”). To address this
question we simulated multiple truncating selection regimes
in steps of 10% selected individuals and identified 1) the best
QTN regime (see above) and 2) the best phenotype regime,
that is the regime that maximizes the phenotypic difference
between the base and the evolved population (R).

We found that a selection regime that maximizes the phe-
notypic response to selection does not necessarily have a high
power to identify QTNs (fig. 5). This discrepancy is especially
pronounced for short experiments (fig. 5 20 generations;
Wilcoxon rank-sum test with pAUGC; 90 — 70% vs. 20 —
10%; P = 1.083e—05).

To maximize the phenotypic response strong selection is
optimal for short experiments whereas weaker selection is
best for long experiments (fig. 5). This is in agreement with
previous theoretical works which found that the optimal per-
centage of selected individuals increases with the length of
the experiment (Robertson 1970a). For very long experiments
(infinite generations) and in the absence of linkage the opti-
mal phenotype regime approaches constant selection of 50%
of the individuals (Robertson 1960). With linkage, as in our
simulations, a slightly larger fraction of selected individuals is
optimal (Robertson 1970b). Previous works also found that
for finite experiments an increasing regime (albeit a sigmoid
increase in the strength of selection) yields the largest phe-
notypic response to selection (Robertson 1970a). Interestingly
with QTN regimes the situation is reversed. Here, weak selec-
tion is optimal for short experiments whereas stronger selec-
tion, especially at the end of the experiment, is best for long
E&R studies (fig. 5). Due to these two contrasting trends the
optimal QTN and phenotype regime are very similar at in-
termediate generations of selection (45 generations; fig. 5A).

What is responsible for the discrepancy between optimal
QTN and phenotype regimes? We think that two factors are
likely important: hitchhiking and replication. Neutral hitch-
hikers are a major source of noise for QTN studies but do not
impede selection of phenotypes. Hence, for short studies,
phenotype regimes may benefit more from strong selection
than QTN regimes. However, the phenotypic response to
selection is not affected by the number of replicates but
the power to identify QTNs increases with replication
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(supplementary fig. 7, Supplementary Material online). With replication may explain why strong selection at the end is
QTN studies, strong selection at the end seems to be espe- more beneficial for QTN regimes than for phenotype regimes.
cially beneficial when many replicates are used (supplemen- We however also made the observation that an optimized
tary fig. 7, Supplementary Material online). This influence of selection regime seems to be more important for QTN
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identification than for phenotype selection. Even suboptimal
phenotype regimes yield a substantial phenotypic response to
selection (fig. 5A; most linear regimes yield a similar R). This is
in agreement with previous works which found that the phe-
notypic response to selection is quite robust over many dif-
ferent selection regimes (Robertson 1960). However the same
observation does not hold for QTN regimes, where deviations
from the best regime lead to a noticeable drop in the power
to identify QTNs (fig. 5B; constant regimes lead to dissimilar
pAUC values).

We conclude that selection regimes that maximize the
phenotypic response to selection are not necessarily identical
to regimes that have a high power to identify QTNs.
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Furthermore, optimizing the selection regime is more impor-
tant for QTN identification than for phenotype selection.

E&R versus GWAS

One of the most widely used approaches for identifying the
genetic basis of quantitative traits are GWAS (Visscher et al.
2012). They have for example been used to shed light on the
genetic basis of schizophrenia in humans (Ripke et al. 2014)
and starvation resistance in Drosophila (Mackay et al. 2012).
GWAS allow to more accurately pinpoint the location of the
causative variants than the widely used QTL studies (Mackay
2001). GWAS achieve this high resolution by utilizing histor-
ical recombination events whereas QTL studies solely rely on
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recombination events occurring in the mapping populations
(Mackay et al. 2009). Since E&R studies utilize both historical
recombination events and recombination events occurring in
the experimental populations we hypothesized that E&R may
offer a higher power to identify QTNs than GWAS.

Ideally, one would compare the performance of a GWAS
to an E&R study requiring identical effort, in terms of pheno-
typing, time and sequencing. Such a comparison is however
difficult to accomplish. Although GWAS typically require se-
quencing and phenotyping of each strain/genotype sepa-
rately, shortcuts may be used for E&R studies. For example,
most E&R studies solely require estimates of allele frequencies
which can be readily obtained by sequencing the populations
as pools (e.g. with 10 replicates only 20 sequencing libraries
are necessary). With E&R studies shortcuts may also be used
for phenotyping. For example, Turner et al. (2011) performed
an E&R study selecting for increased body size in Drosophila
using a sieving apparatus.

We therefore decided to compare the performance of an
E&R study (using default parameters; table 1) to multiple
GWAS having different population sizes (ranging from 500
to 8,000). By iteratively sampling haplotypes of a small pop-
ulation from the next larger population we ensured that SNPs
segregating in small populations are a subset of SNPs segre-
gating in each of the larger populations. Furthermore, solely
SNPs with a frequency between 5% and 95% in each popu-
lation were picked as QTNs (supplementary fig. 12,
Supplementary Material online). GWAS was performed
with the widely used tool SNPtest (Marchini et al. 2007)
and the performance of the two approaches was evaluated
with ROC curves (fig. 6). Note that ROC curves avoid the
problem of picking arbitrary significance thresholds for
GWAS and E&R.

As expected, the power of GWAS increased with the pop-
ulation size (fig. 6A) (Gibson 2018). Interestingly, an E&R
study with an optimized regime (90 — 10%) had a higher
power to identify QTNs than a GWAS with 8,000 individuals
(fig. 6A); (Wilcoxon rank-sum test; E&R; goo vs. GWASg g0 P
= 2.16e—05). This is also evident from the Manhattan plots,
where most peaks in the GWAS are due to large effect loci
whereas also many small effect loci generate peaks in the E&R
study (fig. 6B and C). However, the power of E&R drops dra-
matically when a suboptimal selection regime is used (fig. 6G
red, 20% constant selection), highlighting that the selection
regime is a crucial factor determining the performance of an
E&R study.

Next, we tested if the performance differences between
E&R studies and GWAS depend on the architecture of a trait.
With a reduced heritability (h> = 0.5) the E&R study also had
a higher performance than the GWAS (Wilcoxon rank-sum
test; E&R 000 V. GWASg o0 P = 0.023; supplementary fig. 13,
Supplementary Material online). Interestingly, when all loci
have identical effect sizes, the GWAS had a higher perfor-
mance than the E&R study (Wilcoxon rank-sum test;
E&R1000 VS. GWASgnop P = 1.08e—05; supplementary fig.
13, Supplementary Material online). One complication how-
ever arises from the fact that large populations have more
polymorphism than small populations. Thus for a given FPR

threshold different numbers of false positive SNPs will be
compared. We therefore repeated this analysis using absolute
numbers of false positive SNPs, but obtained largely similar
results (supplementary fig. 14, Supplementary Material
online).

It has been shown that GWAS have a low power with rare
alleles and alleles of small effect (Gibson 2012; Visscher et al.
2012). We were thus interested if E&R studies suffer from the
same or similar weaknesses and investigated the effect sizes
and allele frequencies of QTNs among the 2,000 most signif-
icant SNPs identified with either approach.

Consistent with expectations, the GWAS (N = 8,000) iden-
tified all large effect loci (>>1: 100%) but only few of the small
effect loci (<1: 30%; fig. 6D). An E&R study with an optimized
design had a worse performance with large effect loci (>1:
64%) but a higher performance with small effect loci (<1
50%; fig. 6D). Since small effect loci were more abundant than
large effect loci, the E&R study allowed to identify significantly
more QTNs than the GWAS (Wilcoxon rank-sum test;
E&R 1 000 V5. GWASg 0o P = 0.0008).

Furthermore, the GWAS identified most of the loci with
intermediate allele frequencies (0.2 > f > 0.8: 46%) but few of
the alleles with low or high frequencies (f < 0.2: 32%, f > 0.8:
36%; supplementary fig. 15, Supplementary Material online).
In contrast, the E&R study allowed to identify most of the loci
with low and medium frequencies in the base population (f <
0.2:90%, 0.2 > f > 0.8: 57%) but few of the loci having a high
frequency (f > 0.8: 0%; supplementary fig. 15, Supplementary
Material online). This is due to the fact that selected loci
already starting at a high frequency may only exhibit a small
allele frequency change, which will usually result in insignifi-
cant P values (low signal). So far, we simulated an E&R study
with a powerful design (N = 1,000, 10 replicate, 90 genera-
tions). Although feasible with organisms such as Drosophila
(Graves et al. 2017; Barghi et al. 2019), this design requires a
substantial effort and may therefore be out of reach for many
research questions. We were thus interested in the perfor-
mance of E&R studies with a less powerful design (N = 500, 5
replicates, 45 generations). This low-budget design still
resulted in a considerable power to identify QTNs, with a
performance comparable with a GWAS with about 1,000-
2,000 individuals (supplementary fig. 16, Supplementary
Material online).

We conclude that an optimized E&R study may provide a
higher power to identify QTNs than a GWAS. E&R studies
avoid some problems of GWAS, such as a low power with rare
alleles and alleles of weak effect, but have other weaknesses in
turn, such as a low power with alleles starting at high fre-
quency and a sensitivity to suboptimal selection regimes.

Discussion

We showed that E&R is a powerful approach for dissecting
the genetic basis of complex traits and that the performance
of E&R can be optimized by gradually increasing the strength
of selection during the experiment. In contrast to previous
works which showed that the performance of E&R
studies may be improved by increasing the number of
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replicates, the length of the experiment and the population
size (Baldwin-Brown et al. 2014; Kofler and Schlotterer 2014;
Kessner and Novembre 2015), an optimized selection regime
as suggested in this work comes at no, or only little, additional
cost.

All approaches for identifying the genetic basis of complex
traits rely on a crucial assumption about the distribution of
effect sizes. A classic model proposed by Fisher et al. holds
that an infinite number of loci with equal and small effects
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contribute to a quantitative trait (Fisher 1930; Barton et al.
2017). If this model is correct any attempts to identify the
QTNs, irrespective of the used method (e.g. GWAS or E&R),
are hopeless (Mackay 2001). Alternatively, Robertson (1970a)
and others suggested that the distribution of QTN effects
may resemble an exponential distribution, with few loci hav-
ing large effects and many loci having small effects (Mackay
2001). In this case it should be feasible to identify at least a
fraction of the QTNs (Mackay 2001). Although there is
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evidence that the infinitesimal model is a good approxima-
tion for many traits, there is also substantial evidence that
effect sizes of many traits follow a more or less exponential
distribution, with a few QTNs of large and many QTNs of
small effect. (Hayes and Goddard 2001; Mackay 2001). For
these traits it should be feasible to identify QTNs, at least
QTNs with an appreciable effect size. We thus assumed a
finite architecture of quantitative traits (10-1,000 QTNs;
mostly using gamma distributed effect sizes) throughout
the manuscript. The assumption of a limited number of
QTNs also explains why we did not simulate de novo muta-
tions. Under an infinitesimal model most mutations will hit a
QTN and thus affect the quantitative trait. Hence, de novo
mutations will generate some genetic variation at each gen-
eration (Barton et al. 2017). Under the alternative assumption
of a finite trait architecture de novo mutations will rarely hit
one of the few QTNs and thus only generate a limited
amount of genetic variation. Furthermore, even if de novo
mutations hit a QTN, the mutation will be restricted to a
single replicate and thus only have a minor influence on the
dynamics of highly replicated E&R studies as simulated in this
work. For these reasons we did not consider de novo
mutations.

Here, we aimed to identify the selection regime that max-
imizes the power to identify QTNs. Since genome-wide for-
ward simulations are computationally demanding we
simulated increasing regimes using steps of 10% selected indi-
viduals. Due to this discrete sampling of selection regimes we
likely missed the absolutely best increasing regime.
Nevertheless we think that our approach allowed us to obtain
a reasonable approximation of the absolutely best regime as,
for example, the three regimes with the highest performance
in our simulations consistently have a very similar perfor-
mance, slope and intercept (supplementary table 1,
Supplementary Material online). It is however feasible that
nonlinear selection regimes achieve a better performance
than linear regimes. For example Robertson (1970b) found
that the best selection regime for maximizing the phenotypic
response to selection has a sigmoid shape. Mostly for com-
putational reasons we did not consider nonlinear regimes.
Evaluating the different linear regimes already required about
378,000 CPU hours and specifying the shape of nonlinear
regimes will at least require one additional parameter which
would substantially increase the number of necessary
simulations.

We assessed the significance of the response to selection
using the CMH test which contrasts, for each SNP, the allele
frequency of the base and the evolved populations (Landis
et al. 1978). The CMH test is fast, implemented in user-
friendly software and, so far, has the best performance among
tests that rely on allele frequency estimates for two time-
points (Kofler et al. 2011; Kofler and Schlotterer 2014;
Schlotterer et al. 2015). For theses reasons the CMH test is
widely used in E&R studies (Orozco-Terwengel et al. 2012;
Martins et al. 2014; Tobler et al. 2014; Phillips et al. 2018;
Barghi et al. 2019; Kelly and Hughes 2019). Recently however
several test-statistics became available that utilize time-series
data, that is allele frequencies estimates for multiple time

points (>2) during the experiment (Topa et al. 2015;
I[ranmehr et al. 2017; Spitzer et al. 2019). We were interested
if our conclusion, that an increasing regime enhances the
power to identify QTNs, also holds when a time-series based
test-statistic is used. We evaluated an adaptation of the CMH
test to E&R studies, which utilizes time-series data and takes
the over-dispersion resulting from drift and pooled sequenc-
ing into account (Spitzer et al. 2019). In addition, we evalu-
ated CLEAR, a composite likelihood based approach for
detecting selected regions with E&R studies. With both test
statistics the selection regime had a significant influence on
the power to identify the QTNs and the increasing regime
outperformed the constant regime (supplementary figs. 17
and 18, Supplementary Material online). Throughout this
work we assumed that allele frequencies were accurately es-
timated, which usually requires sequencing all individuals in a
population separately. As this approach is prohibitively costly
most E&R studies rely on Pool-Seq, that is sequencing pop-
ulations as pools, to obtain allele frequency estimates
(Schlotterer et al. 2014; Long et al. 2015). To evaluate the
influence of the coverage, a crucial parameter determining
the accuracy of allele frequency estimates with Pool-Seq, we
performed binomial sampling of allele frequencies to different
coverages. An increasing regime outperformed the constant
regime, irrespective of the coverage (supplementary fig. 19,
Supplementary Material online).

We found that the optimal selection regime depends on
the experimental setup and the trait architecture.
Unfortunately the trait architecture is usually not known at
the onset of an E&R study. In fact shedding light on the
architecture of a trait of interest may be the aim of an E&R
study. We however noticed that the 90 — 20 increasing re-
gime, where 90% of the individuals are selected at the begin-
ning and 20% at the end of the experiment, shows a good
performance over a wide range of parameters. The only
exceptions are short experiments and traits with QTNs of
identical effect sizes, where constant weak selection (e.g.
80% selected individuals) achieves the best results.
Furthermore, we noticed that the advantage of an increasing
regime is most pronounced for traits having a high heritability
and intermediate numbers of QTNs as well as E&R studies
with many replicates. In any case a selection regime where the
strength of selection decreases with time performed worst
and we thus do not recommend to use it.

A scan of previously used selection regimes showed that
many E&R studies applied very strong selection: Turner et al.
(2011) selected the ~=9% largest flies for over 100 generations;
Turner and Miller (2012) selected 20% of the flies with the
longest pause in courtship song for 14 generations; Hardy
et al. (2018) selected 20% of the most starvation resistant flies
for 80 generations; Griffin et al. (2017) selected the 10% most
desiccation resistant flies for 20 generations; Castro et al.
(2018) selected the 20% mice with the longest legs for
more than 20 generations; Although the impact of the selec-
tion regime is weaker with low heritabilities as expected for
many traits used in real E&R studies (h* = 0.3-0.6 [Visscher
et al. 2008]; supplementary fig. 10, Supplementary Material
online), this work and previous works suggest that such
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strong selection likely results in a suboptimal power to iden-
tify QTNs (Kessner and Novembre 2015). We speculate that
the main motivation for choosing strong selection is the con-
cern about an insufficient response to selection of the QTNs
with weak selection. With a weak response to selection it may
not be possible to distinguish the QTNs from noise generated
by genetic drift. We however show that hitchhikers generated
by strong selection may also lead to a substantial amount of
noise, thus reducing the power to identify QTNs. We thus
argue that an ideal selection regime needs to strike a balance
between too strong and too weak selection. This also explains
why the performance of E&R studies is very sensitive to the
selection regime, where a suboptimal regime may result in a
dramatically reduced power to identify the QTNs. The 90 —
20 increasing regime seems to provide a good compromise
between the two opposing sources of noise, drift and hitch-
hiking, over a wide range of parameters.

Finally, we found that E&R studies may have a higher
power to identify QTNs than GWAS. Ideally the performance
of these two approaches would be compared at an identical
effort, in terms of sequencing phenotyping, and time re-
quired. This is however difficult due to several reasons. In
terms of sequencing an E&R study clearly requires less effort
than a GWAS. Even for a powerful E&R study involving 10
replicates, solely 20 sequencing samples are necessary,
whereas several hundreds (or thousands) sequencing samples
are necessary for a powerful GWAS. However for GWAS with
a reference panel sequencing of each strain is solely per-
formed once and many GWAS using different traits may be
performed (Mackay et al. 2012; Schlotterer et al. 2015). Thus
after an initial investment, all further GWAS carried out with
the reference panel will not incur additional sequencing cost.
Also the phenotyping effort is difficult to compare. For ex-
ample, the low-budget E&R study (N = 500, 5 replicates, 45
generations) had a similar performance to a GWAS with
about 1,500 individuals. Hence, 112,500 (500 * 5 * 45) individ-
uals need to be phenotyped with the E&R study to achieve a
similar performance to a GWAS with 1,500 phenotyped indi-
viduals. In case all individuals need to be phenotyped sepa-
rately GWAS thus clearly requires less phenotyping effort
than an E&R study (unless GWAS is performed with a refer-
ence panel where each strain may be phenotyped multiple
times for the same trait). However, with E&R studies, short-
cuts that allow bulked phenotyping of populations are fre-
quently used. For example Turner et al. (2011) selected for
large flies using a sieving apparatus. Griffin et al. (2017) se-
lected for desiccation resistance by exposing fly populations
to dry conditions until 90% of the flies died. Hardy et al. (2018)
selected for starvation resistance by depriving flies of food
until 80-90% died. Other examples of bulked phenotyping,
that could be used in E&R studies, are selection for flight
speed using wind tunnels (Weber 1996) and selection for
pathogen resistance by breeding survivors of infections
(Kraaijeveld and Godfray 2008). In terms of our previous ex-
ample, only 225 (5 * 45) bulked phenotypings of populations
need to be performed for the E&R study compared with 1,500
phenotypings for the GWAS. When bulked phenotyping is
feasible an E&R study may thus require less phenotyping

2902

effort than a GWAS. However many traits not amenable to
bulked phenotyping, like pigmentation in Drosophila, may
only become accessible to E&R studies when phenotyping
can be automated, for example with devices such as the
FlySorter (Zucker and Zucker 2017). An E&R study is usually
much more time consuming than a GWAS, as E&R typically
requires multiple generations of selection. This may take sev-
eral years, depending on the organism used. An exception is a
GWAS with a reference panel, where establishment of the
highly inbred lines requires many generations. For example
the Drosophila Genetic Reference panel was inbred for 20
generations (Mackay et al. 2012). This is however again a
one-time investment, that is paid off by every GWAS per-
formed with the reference panel.

For these reasons it is difficult to compare the required
effort between GWAS and E&R. As a very rough guide to
feasibility of an experiment, we may ask which experimental
designs have been used so far. For example in Drosophila
powerful E&R studies were already used: Barghi et al. (2019)
used 10 replicates, N = 1,250 and 68 generations of adapta-
tion. To our knowledge the largest GWAS in Drosophila used
several 100 individuals (Mackay et al. 2012); not considering
Pool-GWAS (Bastide et al. 2013). Based solely on the exper-
imental designs that have been used so far in Drosophila, E&R
may thus be a more powerful approach to identify QTNs
than GWAS. However, GWAS involving several thousands
of individuals are regularly performed in humans (Visscher
et al. 2017) where E&R is not feasible. The optimal approach
for identifying QTNs will thus depend on the organism and
the phenotype (e.g. if bulked phenotyping is feasible).

Our results suggest that E&R studies suffer to a lesser ex-
tent from some problems of GWAS, like the weak perfor-
mance with rare alleles and alleles of small effect. With an
optimal selection regime E&R studies can identify many rare
alleles and weak effect loci. However, E&R studies suffer from
their own limitations. Most notably E&R studies have difficul-
ties identifying alleles starting at a high frequency and E&R
studies are highly sensitive to the selection regime. A subop-
timal regime may result in a dramatically reduced power to
identify QTNs, which makes E&R a more risky approach than
GWAS. Moreover, with E&R studies it is not feasible to esti-
mate the fraction of the genetic variation explained by the
identified QTNs, a crucial benchmark for GWAS (Yang et al.
2011; Segura et al. 2012). Finally, due to the requirement for
large populations and many generations of selection E&R will
only be an option for small organisms with a short generation
time such as yeast, Drosophila and Caenorhabditis (Long et al.
2015). Therefore, we do not view E&R as an alternative to
GWAS but rather as a complementary approach with its own
strengths and weaknesses.

Materials and Methods

Forward Simulations

All simulations were performed with the software MimicrEE2
(Vlachos and Kofler 2018). Briefly, MimicrEE2 is able to per-
form genome-wide forward simulations of evolving popula-
tions. It uses nonoverlapping generations and supports
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simulation of temporally varying truncating selection, that is
different numbers of individuals may be selected at each gen-
eration (Vlachos and Kofler 2018). As not-evolved base pop-
ulation we obtained haplotypes that capture the pattern of
natural variation of a D. melanogaster population from
Vienna (2010) (Bastide et al. 2013; Kofler and Schl6tterer
2014). We used the recombination rate estimates for D. mel-
anogaster of Comeron et al. (2012). Recombination rate esti-
mates were obtained for 100 kb windows from the RRC
webpage (Version 23) (Fiston-Lavier et al. 20710).
Simulations were performed for chromosomes 2L, 2R, 3L,
and 3R. Hence, sex chromosomes were excluded. Low recom-
bining regions, including the entire chromosome 4, were ex-
cluded from the analysis, as these regions inflate the FPR
(Kofler and Schl6tterer 2014). De novo mutations were not
considered since we are mostly interested in adaptation from
standing genetic variation. We simulated populations of her-
maphrodites. Because males do not recombine in D. mela-
nogaster we divided the recombination rate estimates by two.

If not mentioned otherwise we simulated an E&R study
with a population size of N = 1,000, 10 replicates, and 90
generations of selection. We randomly picked 100 QTNs
where effect sizes were drawn from a gamma distribution
with shape = 0.42. The sign of the effect (a vs. —a) was
randomly chosen and a heritability of h> = 1 was initially
used. Only QTNs with allele frequencies between 5% and
95% were considered (default parameters used for the simu-
lations are shown in table 1).

The QTN effects were additive (no dominance or epistasis
was simulated). All simulations were repeated ten times with
independent sets of randomly drawn QTNs.

Statistical Analysis

We used the CMH test (Landis et al. 1978) implemented in
PoPoolation2 (Kofler et al. 2011) to identify selected loci.
Previous works showed that the CMH test has a high power
to identify selected loci in E&R studies (Kofler and Schltterer
2014; Vlachos and Kofler 2018). The CMH test is based on a
meta-analysis of a 2 * 2 * k contingency table. This contin-
gency table contains for each replicate (k) the counts of the
major and the minor allele (2), for the base and the evolved
population (2). The null hypothesis is the absence of differ-
entiation between base and evolved populations. In addition,
we evaluated the performance of two time-series bases
approaches: CLEAR and an adaptation of the CMH test to
E&R studies (Iranmehr et al. 2017; Spitzer et al. 2019). To
obtain time-series data we performed simulations with the
default parameters, requesting an output each 10th genera-
tion (10 time points in total). We provided the harmonic
mean of the population size (i.e. the number of selected
individuals) as estimate of Ne required by the adapted
CMH test. As CLEAR is very slow, we solely analyzed the
data for a single chromosome arm (2L). Finally, we used the
programming language R (R Core Team 2014) and the library
ROCR to generate ROC curves and to compute the area
under the ROC curve (AUC) (Sing et al. 2005).

Maximizing the Phenotypic Response

Truncating selection may be performed either to identify the
QTNs or to maximize the phenotypic response. To compare
the performance of selection regimes that are best suited for
these two tasks we simulated truncating selection for 90
generations. The selection regime with the highest power
to identify QTNs was identified as described above (E&R
study with N = 1,000, 10 replicates; 10 independent sets of
QTNs). To identify the regime which maximizes the pheno-
typic value we computed the response to selection (R: phe-
notypic difference between evolved and base population) for
all increasing regimes using steps of 10% selected individuals
(E&R study with N = 1,000, 1 replicate; 100 independent sets
of QTNs). Finally we picked the regime with the largest aver-
age response.

Genome-Wide Association Studies

All GWAS were performed with the software SNPtest
(Marchini et al. 2007). We used an additive model and raw
phenotypic data for a quantitative trait (parameters: -fre-
quentist 1 -method expected -use_raw_phenotypes). All sim-
ulations were performed with ten independent sets of SNPs.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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