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Abstract

Background: Producing cost-effective haplotype-resolved personal genomes remains challenging. 10x Linked-Read
sequencing, with its high base quality and long-range information, has been demonstrated to facilitate de novo assembly of
human genomes and variant detection. In this study, we investigate in depth how the parameter space of 10x library
preparation and sequencing affects assembly quality, on the basis of both simulated and real libraries. Results: We prepared
and sequenced eight 10x libraries with a diverse set of parameters from standard cell lines NA12878 and NA24385 and
performed whole-genome assembly on the data. We also developed the simulator LRTK-SIM to follow the workflow of 10x
data generation and produce realistic simulated Linked-Read data sets. We found that assembly quality could be improved
by increasing the total sequencing coverage (C) and keeping physical coverage of DNA fragments (CF) or read coverage per
fragment (CR) within broad ranges. The optimal physical coverage was between 332× and 823× and assembly quality
worsened if it increased to >1,000× for a given C. Long DNA fragments could significantly extend phase blocks but
decreased contig contiguity. The optimal length-weighted fragment length (WμF L ) was ∼50–150 kb. When broadly optimal
parameters were used for library preparation and sequencing, ∼80% of the genome was assembled in a diploid state.
Conclusions: The Linked-Read libraries we generated and the parameter space we identified provide theoretical
considerations and practical guidelines for personal genome assemblies based on 10x Linked-Read sequencing.
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Background

The human genome holds the key for understanding the ge-
netic basis of human evolution, hereditary illnesses, and many
phenotypes. Whole-genome reconstruction and variant discov-
ery, accomplished by analysis of data from whole-genome se-
quencing experiments, are foundational for the study of hu-
man genomic variation and analysis of genotype-phenotype re-
lationships. Over the past decades, cost-effective whole-genome
sequencing has been revolutionized by short-fragment ap-
proaches, the most widespread of which have been the con-
sistently improving generations of the original Solexa technol-
ogy [1, 2], now referred to as Illumina sequencing. Illumina’s

strengths and weaknesses are inherent in the sample prepara-
tion and sequencing chemistry. Illumina generates short paired
reads (2 × 150 bp for the highest-throughput platforms) from
short fragments (usually 400–500 bp [3]. Because many clon-
ally amplified molecules generate a robust signal during the se-
quencing reaction, Illumina’s average per-base error rates are
very low.

The lack of long-range contiguity between end-sequenced
short fragments limits their application for reconstructing per-
sonal genomes. Long-range contiguity is important for phasing
variants and dealing with genomic complex regions. For hap-
lotyping, variants can be phased by population-based methods
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[4, 5] or family-based recombination inference [6, 7]. However,
such approaches are only feasible for common variants in sin-
gle individuals or when a trio or larger pedigree is sequenced.
Furthermore, highly polymorphic regions such as the human
leukocyte antigen (HLA) in which the reference sequence does
not adequately capture the diversity segregating in the popu-
lation are refractory to mapping-based approaches and require
de novo assembly to reconstruct [8]. Short-read/short-fragment
data are challenged by interspersed repetitive sequences from
mobile elements and by segmental duplications, and only sup-
port highly fragmented genome reconstruction [9, 10].

In principle, many of these challenges can be overcome by
long-read/long-fragment sequencing [11, 12]. Assembly of Pa-
cific Biosciences (PacBio) or Oxford Nanopore (ONT) data can
yield impressive contiguity of contigs and scaffolds. In 1 study
[13], scaffold N50 reached 31.1 Mb by hierarchically integrating
PacBio long reads and BioNano for a hybrid assembly, which
also uncovered novel tandem repeats and replicated the struc-
tural variants (SVs) that were newly included in the updated
hg38 human reference sequence. Another study [14] produced
human genome assemblies with ONT data, in which a contig
N50 ∼3 Mb was achieved, and long contigs covered all class I
HLA regions. A recent whole-genome assembly of NA24385 [15]
with high-quality PacBio Circular Consensus Sequencing (CCS)
reads generated contigs with an N50 of 15 Mb. However, long-
fragment sequencing is hindered by extremely high cost (in the
case of PacBio CCS) or low base quality (in the case of single-
pass reads of either technology), hampering its usefulness for
personal genome assembly.

Hierarchical assembly pipelines in which multiple data types
are used is another approach for genome assembly [16]. For ex-
ample, in the reconstruction of an Asian personal genome, fos-
mid clone pools and Illumina data were merged, but because
fosmid libraries are highly labor intensive to generate and se-
quence, this approach is not generalizable to personal genomes.
The “long fragment read” (LFR) approach [17], where a long
fragment is sequenced at high depth via single-molecule frag-
mented amplification, reported promising personal genome as-
sembly and variant phasing by attaching a barcode to the short
reads derived from the same long fragment. However, because
LFR is implemented in a 384-well plate, many long fragments
would be labeled by the same barcodes, making it difficult for
binning short reads, and the great sequencing depth required
rendered LFR not cost-effective.

An alternative approach is offered by the 10x Genomics
Chromium system, which distributes the DNA preparation
into millions of partitions where partition-specific barcode se-
quences are attached to short amplification products that are
templated off the input fragments. Because of the limited re-
action efficiency in each partition, the sequencing depth for
each fragment is too shallow to reconstruct the original long
fragment, distinguishing this approach from LFR [18]. However,
to compensate for the low read coverage of each fragment,
each genomic region is covered by hundreds of DNA fragments,
giving overall sequence coverage that is in a range compara-
ble to standard Illumina short-fragment sequencing while pro-
viding very high physical coverage. Novel computational ap-
proaches leveraging the special characteristics of 10x Genomics
data have already generated significant advances in power and
accuracy of haplotyping [19, 20], cancer genome reconstruction
[21, 22], metagenomic assemblies [23], and de novo assembly of
human and other genomes [24–26], compared to standard Illu-
mina short-fragment sequencing. While the uniformity of se-
quence coverage is not as good as with PCR-free Illumina li-

braries, 10x Linked-Read sequencing is a promising technology
that combines low per-base error and good small-variant discov-
ery with long-range information for much improved SV detec-
tion in mapping-based approaches [22, 27], and the possibility
of long-range contiguity in de novo assembly [24, 26, 28].

Practical advantages of the technology include the low DNA
input mass requirement (1 ng per library, or ∼300 haploid human
genome equivalents). Real input quantities can vary, along with
other factors, to influence an interconnected array of parame-
ters that are relevant to genome assembly and reconstruction.
The parameters over which the experimenter has influence are
(Fig. 1) as follows: (i) CR: average coverage of short reads per frag-
ment; (ii) CF: average physical coverage of the genome by long
DNA fragments; (iii) NF/P: number of fragments per partition; (iv)
fragment length distribution, several parameters of which are
used, specifically μF L : mean unweighted DNA fragment length
and WμF L : length-weighted mean of DNA fragment length. Note
that several parameters depend on each other. For example, a
greater amount of input DNA will increase NF/P; shorter frag-
ments increase NF/P at the same DNA input amount compared
to longer fragments; less input DNA will (within practical con-
straints) increase CR and decrease CF; and their absolute values
are set by how much total sequence coverage is generated be-
cause CR × CF = C.

Our goal in this study was to experimentally explore the 10x
parameter space and evaluate the quality of de novo diploid as-
sembly as a function of the parameter values. For example, we
set out to ask whether longer input fragments produce better
assemblies, or what the effect of sequencing vs physical cov-
erage is on contiguity of assembly. To constrain the parameter
space, we first performed computer simulations with reasonably
realistic synthetic data. The simulation results suggested cer-
tain parameter combinations that we then approximated in the
generation of real, high-depth, sequence data on 2 human refer-
ence genome cell lines, NA12878 and NA24385. These simulated
and real data sets were then used to produce de novo assemblies,
with an emphasis on the performance of 10x’s Supernova2 [24].
We finally assessed the quality of the assemblies using standard
metrics of contiguity and accuracy, facilitated by the existence
of a gold standard (in the case of simulations) and comparisons
to the reference genome (in the case of real data).

Methods
Library preparation, physical parameters, and
sequencing coverage

We made 6 DNA preparations that varied in fragment size
distribution and amount of input DNA, 3 each from NA12878
(Coriell, Camden, NJ, USA; Cat. No. GM12878, RRID:CVCL 7526)
and NA24385 (Coriell; Cat. No. GM24385, RRID:CVCL 1C78). From
these, we prepared 8 libraries, 5 from NA12878 and 3 from
NA24385 (Table S1). To generate libraries L1L , L1M, and L1H (the
subscripts L, M, and H represent low, medium, and high CF, re-
spectively), genomic DNA was extracted from ∼1 million cul-
tured NA12878 cells using the Gentra Puregene Blood Kit fol-
lowing manufacturer’s instructions (Qiagen, Germantown, MD,
USA; Cat. No 158 467). The emulsions (GEMs) were divided into 3
tubes with 5%, 20%, and 75% to generate libraries L1L , L1M, and
L1H , respectively (Figs S1–S3). For the other libraries, to gener-
ate longer DNA fragments (WμF L = 150 kb and longer, Figs S4–
S8), a modified protocol was applied. Two-hundred thousand
NA12878 or NA24385 cells of fresh culture were added to 1 mL
cold 1× phosphate-buffered saline in a 1.5-mL tube and pelleted

https://scicrunch.org/resolver/RRID:CVCL_7526
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Figure 1: The Linked-Read sets prepared to evaluate the impact of CF, CR , μF L , and WμF L on human diploid assembly.

for 5 minutes at 300g. The cell pellets were completely resus-
pended in the residual supernatant by vortexing and then lysed
by adding 200 μL Cell Lysis Solution and 1 μL of RNaseA So-
lution (Qiagen, Cat. No. 158 467), mixing by gentle inversion,
and incubating at 37◦C for 15–30 minutes. This cell lysis solu-
tion is used immediately as input for the 10x Genomics (Pleasan-

ton, CA, USA) Chromium preparation (ChromiumTM Genome Li-
brary & Gel Bead Kit v2, PN-120 258; ChromiumTM i7 Multiplex
Kit, PN-120 262). The fragment size of the input DNA can be
controlled by gentle handling during lysis and DNA prepara-
tion for Chromium. The amount of input DNA (between 1.25
and 4 ng) was varied to achieve a wide range of physical cov-
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erage (CF).The Chromium Controller was operated and the GEM
preparation was performed as instructed by the manufacturer.
Individual libraries were then constructed by end repairing, A-
tailing, adapter ligation, and PCR amplification. All libraries were
sequenced with 3 lanes of paired-end 150-bp runs on the Illu-
mina HiSeqX to obtain very high coverage (C = 94×–192×), al-
though the 2 with the fewest gel beads (L1L and L1M) exhibited
high PCR duplication rates because of the reduced complexity of
the libraries (Table S1).

Linked-Reads subsampling

The high sequencing coverage in the libraries allowed subsam-
pling to facilitate the matching of parameters among the differ-
ent libraries, for purposes of comparability; these subsampled
Linked-Read sets are denoted Rid (Fig. 1). We aligned the 10x
Linked-Reads to human reference genome (hg38, GRCh38 Ref-
erence 2.1.0 from 10x website) followed by removing PCR du-
plication by barcode-aware analysis in Long Ranger [21]. Orig-
inal input DNA fragments were inferred by collecting the read
pairs with the same barcode that were aligned in proximity to
each other. A fragment was terminated if the distance between 2
consecutive reads with the identical barcode >50 kb. Fragments
were required to have ≥2 read pairs with the same barcode and
a length of ≥2 kb. Partitions with <3 fragments were removed.
We subsampled short reads for each fragment to satisfy the ex-
pected CR.

Generating 10x simulated libraries by LRTK-SIM

To compare the observations from real data with a known
truth set, we developed LRTK-SIM, a simulator that follows the
workflow of the 10x Chromium system and generates synthetic
Linked-Reads like those produced by an Illumina HiSeqX ma-
chine (Supplementary Information and Fig. S9). Based on the
parameters commonly used by 10x Genomics Linked-Read se-
quencing and the characteristics of our libraries, LRTK-SIM gen-
erated simulated data sets from the human reference (hg38), ex-
plicitly modeling the 5 key steps in real data generation. Param-
eters in parentheses are from the standard 10x Genomics proto-
col: (i) shearing genomic DNA into long fragments (WμF L from
50 to 100 kb); (ii) loading DNA to the 10x Chromium instrument
(∼1.25 ng DNA); (iii) allocating DNA fragments into partitions to
which are attached the unique barcodes (∼10 fragments per par-
tition); (iv) generating short fragments; (v) generating Illumina
paired-end short reads (800,000,000–1,200,000,000 reads). LRTK-
SIM first generated a diploid reference genome as a template by
duplicating the human reference genome (hg38) into 2 haplo-
types and inserting single-nucleotide variants (SNVs) from high-
confidence regions in (GIAB) of NA12878 [29]; for low-confidence
regions we randomly simulated 1 SNV per 1 kb. The ratio was
2:1 for heterozygous and homozygous SNVs. From this diploid
reference genome, LRTK-SIM generated long DNA fragments by
randomly shearing each haplotype with multiple copies into
pieces whose lengths were sampled from an exponential distri-
bution with mean of μF L . These fragments were then allocated
to pseudo-partitions, and all the fragments within each parti-
tion were assigned the same barcode. The number of fragments
for each partition was randomly picked from a Poisson distri-
bution with mean of NF/P. Finally, paired-end short reads were
generated according to CR and replaced the first 16 bp of the
reads from the forward strand to the assigned barcodes followed

by 7 Ns. More information about implementation can be found
in the Supplementary Information. From that diploid genome,
Linked-Read data sets were generated that varied in CR, CF, and
μF L (WμF L ) (Tables S2 and S3). Varying NF/P was only done for
chromosome 19 because of the infeasibility of running Super-
nova2 on whole-genome assemblies with large NF/P; within prac-
tically reasonable values, NF/P does not seem to influence assem-
bly quality (Fig. S10). In total, we generated 17 simulated Linked-
Read data sets to explore the overall parameter space (Tables S2
and S3) and 11 to match the parameters of the aforementioned
real libraries (Fig. 1).

LRTK-SIM provides more flexible simulation parameters than
another method for simulating Linked-Read data, LRSIM [30]. It
explicitly allows users to input CF, CR, WμF L , and μF L , which
have strong connections with library preparation and Illumina
sequencing, whereas LRSIM only lets the user set the total num-
ber of reads. For example, CF is driven by input DNA amount,
and μF L by DNA preparation and potential size selection. Also,
LRSIM requires many third-party packages and software to be
installed first, such as Inline::C perl library and DWGSIM [31].
By contrast, LRTK-SIM was written in Python and no third-party
software is required to run it. LRTK-SIM can simulate multi-
ple libraries with a variety of parameters simultaneously, and
users can compare the performance of different parameters in
1 run.

Human genome diploid assembly and evaluation

The scaffolds were generated by the “pseudohap2” output of
Supernova2, which explicitly generated 2 haploid scaffolds, si-
multaneously. Contigs were generated by breaking the scaffolds
if ≥10 consecutive N’s appeared, per definition by Supernova2.
For the simulations of human chromosome 19, we used the
scaffolds from the “megabubbles” output. Contig and scaffold
N50 and NA50 were used to evaluate assembly quality. Con-
tigs longer than 500 bp were aligned to hg38 by Minimap2 [32].
We calculated contig NA50 on the basis of contig misassem-
blies reported by QUAST-LG [33]. For scaffolds (longer than 1
kb), we calculated the NA50 following Assemblathon 1’s pro-
cedure [34] (Supplementary Information, Evaluation of Diploid
Assembly).

Genomic variant calls from diploid assembly

We compare SNVs and SVs from the diploid regions of our
assemblies with the ones from standard Illumina data and
reference-based processing of our 10x data. The standard Illu-
mina data were downloaded from GIAB [35] and analyzed with
SvABA [36] to generate SV calls, and with BWA (BWA, RRID:SC
R 010910) [37] and FreeBayes (FreeBayes, RRID:SCR 010761) [38]
to generate SNV calls. Long ranger ([39]) was used to generate
SNV and SV (only deletions) calls for 10x reference-based analy-
sis. We note that R9 failed to be analyzed by Long Ranger owing
to its extremely large CF. For SNVs, we compared the calls from
3 strategies using the benchmark of NA12878 [40] and NA24385
[41]. For SVs, we compared 3 Linked-Read sets (R9, R10, R11) from
HG002 with the Tier 1 SV benchmark from GIAB [42] and used
VaPoR [43] to validate our SV calls based on PacBio CCS reads
from NA24385 [44]. We compared SNV and SV calls among the
different approaches using vcfeval [45] and truvari [42], respec-
tively.

https://scicrunch.org/resolver/RRID:SCR_010910
https://scicrunch.org/resolver/RRID:SCR_010761
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Results
Performance of diploid assembly: influence of total
coverage

Diploid assembly by Linked-Reads requires sufficient total read
coverage (C = CR × CF) to generate long contigs and scaffolds.
In this experiment, to explore the roles of both physical cover-
age (CF) and per-fragment read coverage (CR), we first generated
8 simulated libraries whose total coverage C ranged from 16×
to 78×: 4 with CR fixed and increasing CF and 4 with fixed CF

and increasing CR (Table S2). Contig and scaffold N50s increased
along with increasing either CF or CR (Fig. 2A and B). To inves-
tigate whether the trend was also present in the real data sets,
we analyzed 6 real libraries (3 by varying CF and 3 by varying CR;
Fig. 1): as C increased, we varied CF and CR independently by fix-
ing the other parameter. Contig and scaffold N50s also increased
in these simulations (Fig. 2C and D) and real Linked-Read sets
(Fig. 2E and F) as a function of total coverage C. Contig lengths did
increase a little (621.4 to 758.1 kb for simulation; 110.7 to 119.6
kb for real data) when C was increased beyond 56×. Accuracy,
which we define as the ratio between NA50 (N50 after breaking
contigs or scaffolds at assembly errors) and N50 (Fig. 2C and E),
changed 18% for simulation and 7% for real data (587.5 to 713.3
kb for simulation; 97.1 to 104.5 kb for real data). For scaffolds in
the real data sets, when C increased from 48× (R3) to 67× (R4),
both scaffold N50 and NA50 were significantly improved (N50:
13.4 to 30.6 Mb; NA50: 6.3 to 12.0 Mb), but the accuracy decreased
slightly from 46.6% to 39.1%, which indicated that scaffold accu-
racy may be refractory to extremely high C (Fig. 2F). These results
indicated that assembly length and accuracy were comparable
over a broad range of CF and CR at constant C, which implied
that assembly quality was mainly determined by C.

Performance of diploid assembly: influence of fragment
length and physical coverage

To investigate whether input weighted fragment length (as mea-
sured by WμF L ) influenced assembly quality, we generated 4
simulated libraries (Table S3) with fixed CF and CR and a range
of fragment lengths (Fig. 3A). Contig length decreased with in-
creasing fragment length, a trend that was also seen in 6 real
libraries (Fig. 3B; C = 56×; R6 to R11 in Fig. 1). We then simu-
lated another 6 libraries with the same parameters as the real
ones to explore the effects of physical coverage at constant C =
56× (Fig. 3C). Contig lengths decreased as a function of increas-
ing physical coverage, a trend that is somewhat less clear in real
data possibly owing to confounding other parameters such as
fragment length (Fig. 3D). The 2 Linked-Read sets with the worst
contig qualities in NA12878 (R7) and NA24385 (R10) also showed
a significant increase of the number of breakpoints (Table S4).

Performance of diploid assembly: nature of the source
genome

Assembly errors may occur because of heterozygosity, repetitive
sequences, or sequencing error. To illuminate possible sources
of assembly error, we performed simulations by generating 10x-
like Linked-Reads as above from human chromosome 19, and
then quantified assembly error against these synthetic gold
standards. Removal of interspersed repeat sequences from the
source genome resulted in better contigs with no loss of accu-
racy in experiments by varying CF, CR, and μF L (Fig. 4A, C, and

E) and better scaffolds only if CR was >1× (Fig. 4D). Removal of
variation had little effect on contigs and only gave rise to longer
scaffolds if CR was >0.8× (Fig. S11), which is difficult to achieve
with real libraries. Finally, a 1% uniform sequencing error had
no discernible effect (Fig. S12).

Performance of diploid assembly: fraction of genome in
diploid state

While contiguity is an important parameter for any whole-
genome assembly, evaluation of diploid assemblies necessitates
estimating the fraction of the genome in which the assembly
recovered the diploid state. To this end, we divided the contigs
generated by Supernova2 into “diploid contigs,” which were ex-
tracted from its megabubble structures, and “haploid contigs”
from non-megabubble structures. Pairs of scaffolds were ex-
tracted as the 2 haplotypes from megabubble structures if they
shared the same start and end nodes in the assembly graph.
Diploid contigs were generated by breaking the candidate scaf-
folds at the sequences with ≥10 consecutive Ns and were aligned
to human reference genome (hg38) by Minimap2. The genome
was split into 500-bp windows, and diploid regions were defined
as the maximum extent of successive windows covered by 2
contigs, each from 1 haplotype. Alignment against the human
reference genome revealed the overall genome coverages of the
6 assemblies to be ∼91%. For most assemblies, 70%–80% of the
genome was covered by 2 homologous contigs (Table 1), with R6

only reaching 58.9%, probably owing to the short fragments of
the DNA preparation (μF L = 24 kb). We also analyzed another 7
assemblies produced by 10x Genomics, all of which had diploid
fractions of ∼80% as well (Table S5). In the male NA24385, non-
pseudoautosomal regions of the X chromosome are hemizygous
and should therefore be recovered as haploid regions. Between
79.9% and 87.6% of these regions were covered by 1 contig ex-
actly depending on the assembled library. Library construction
parameters other than fragment length seemed to have had
little effect on the proportion of diploid regions (Table 1 and
Table S5).

Overlapping the diploid regions from the assemblies of the
same individual revealed that 50.24% and 67.27% of the genome
for NA12878 and NA24385 (Fig. S13), respectively, were diploid in
all 3 assemblies. NA12878 was lower because of the low percent-
age of diploid regions in assembly R6 (Table 1). The overlaps were
significantly greater than expected by chance (NA12878: 33.3%,
P-value = 0.0049; NA24385: 45.4%, P-value = 0.0029, χ2 test).
These observations were consistent with heterozygous variants
being enriched in certain genomic segments, in which 2 hap-
lotypes were more easily differentiated by Supernova2. Phase
block lengths were mainly determined by total coverage C and
increased in real data with increasing fragment length (Fig. S14,
Table S6).

Performance of diploid assembly: quality of variant
calls

The ultimate goal of human genome assembly is to accurately
identify genomic variants. We therefore compared the SNVs
and SVs from our assemblies with the calls from referenced-
based processing of standard Illumina and 10x data, and bench-
marked them using gold standard from GIAB [42, 46] and PacBio
CCS reads [44]. The accuracy of SNV calls from reference-based
processing of standard Illumina and 10x data was comparable,
but both were better than assembly-based calls (Tables S7 and
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Figure 2: Contig and scaffold lengths (N50 and NA50) as a function of CF or CR. A and B: Simulated Linked-Reads with predefined parameters (Table S2); C and D:

Simulated Linked-Reads with matched parameters of real Linked-Read data sets (Fig. 1); E and F: Real Linked-Read sets (Fig. 1).

S8). The likely reason for the relatively poor performance of
assembly-based SNV calls is that the assemblies contain only
∼80% of the genome in a diploid state. For SVs, our assem-
blies generated many calls that were missed by the reference-
based strategy (Tables S9–S12) and even by the Tier 1 bench-
mark of GIAB (Table S13), and half of the deletions and a ma-
jority of insertions could be validated by PacBio CCS reads
(Table S14).

Discussion

In the present study, we investigated human diploid assembly
using 10x Linked-Read sequencing data on both simulated and
real libraries. We developed the simulator LRTK-SIM to exam-
ine the likely impact of parameters in diploid assembly and
compared results from simulated reads with those from real li-
braries. We thus determined the impact of key parameters (CR,
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Figure 3: Contig qualities (N50 and NA50) as a function of fragment length WμF L or physical coverage CF, at C = 56×. A and C, results from simulations; B and D, results
from real data.

Figure 4: Comparison of contig and scaffold lengths from 10x data with masked and unmasked repetitive sequences by changing CF, CR , and μF L . CR was fixed to 0.2×
in A and B; CF was fixed to 300× in C and D; CR was fixed to 0.2× and CF was fixed to 300× in E and F.
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Table 1: Genomic coverage of contigs generated by Supernova2

Linked-Reads
set Overall (%)

Diploid
regions (%)

Haploid
regions (%)

Non-
pseudoautosomal

regions of X
chromosome

(%)
Total contig length
(contig > 500 bp)

Length of contigs
from megabubble
(contig > 500 bp) Percentage (%)

R6 91.9 58.9 27.7 5,632,483,053 3,758,345,846 66.73
R7 91.1 73.3 11.3 5,613,140,437 4,668,186,478 83.17
R8 91.7 77.2 9.2 5,635,127,471 4,896,821,850 86.90
R9 91.3 73.4 12.2 85.9 5,637,615,919 4,438,175,621 78.72
R10 91.7 79.2 5.8 79.9 5,749,001,471 4,793,226,150 83.37
R11 91.7 78.1 7.9 87.6 5,677,566,094 4,723,083,367 83.19

R6, R7, and R8 are female; R9, R10, and R11 are male.

CF, NF/P, and μF L /WμF L ) with respect to assembly continuity and
accuracy. Our study provides a general strategy to evaluate as-
semblies of 10x data and may have implications for the evalu-
ation of other barcode-based sequencing technologies such as
CPTv2-seq [47] or stLRF [48] in the future.

10x Practicalities

For standard Illumina sequencing, library complexity is usu-
ally sufficient to generate tremendous numbers of reads from
unique templates and read coverage can be increased simply
by sequencing more. However, the 10x Chromium system per-
forms amplification in each partition, and generally only ∼20–
40% of the original long fragment sequence can be captured as
short fragments and eventually as reads, resulting in shallow se-
quencing coverage per fragment. Sequencing more deeply does
not increase the per-fragment coverage much because most of
the extra reads are from PCR duplicates. The solution is to se-
quence multiple 10x libraries constructed from the same DNA
preparation and merge them for analysis. This means that CR re-
mains in the standard range where PCR duplicates are relatively
rare, but CF increases proportionally to the number of libraries
used. A practical limitation to this approach is that Supernova2
limits the number of barcodes to 4.8 million.

Our results showed that in practice, CF should be between
335× and 823×, but no larger than 1,000×, given the optimal cov-
erage of C = 56× recommended by 10x and the requirement for
sufficient per-fragment read coverage. Surprisingly, we observed
that including more extremely long fragments was detrimental
for assembly quality. This is possibly due to the loss of barcode
specificity for fragments spanning repetitive sequences. From a
computational perspective, too many long fragments are harm-
ful to deconvolving the de Bruijn graph because more complex
paths need to be picked out. In our experiments, WμF L between
50 and 150 kb is the best choice to generate reliable assemblies.

Parameters driving assembly quality

Our results regarding assembly quality, and the 10x parameters
that influence it, may be useful for efforts in which de novo as-
semblies are important for generation of an initial reference se-
quence. We show that maximization of N50 does not necessarily
reflect assembly quality, which we were able to compare to NA50
because there exists a high-quality human reference genome.
Contig and scaffold lengths mostly increased with ascending
sequencing coverage, and at sufficient overall sequence cover-
age it did not matter much whether the increasing coverage C
was accomplished by increasing CR or CF. However, both con-
tig and scaffold accuracy decreased with increasing C. We also

found, counterintuitively, that contig and scaffold length mostly
decreased with increasing fragment length, a phenomenon that
may be due to the specific implementation; however, until there
is another assembler that can be compared to Supernova2 it will
not be possible to reason about this effect. In addition, intrinsic
properties of the genome matter greatly because removal of re-
peats or lack of variation dramatically improves assembly qual-
ity.

Diploid assembly is the appropriate approach for assembly of
genomes of diploid organisms that harbor variation. Therefore,
an important metric to evaluate diploid assembly is the fraction
of the genome that is assembled in a diploid state. The short in-
put fragment length of R6 resulted in ∼20% less of the genome in
a diploid state (<60% vs <80%) compared to the other libraries of
the same individual. This observation suggests that in addition
to metrics such as N50, evaluation of assembly quality should
also include the fraction of the genome (or the assembly) that is
in a diploid state.

Cost-benefit analysis

Overall, we have attempted to give practical guidelines to assem-
bly of 10x data with Supernova2 and evaluate the performance
across a wide range of metrics. Arguably, the metric that mat-
ters most in the context of a personal genome is the discovery of
variation that lower-cost approaches do not enable. We estimate
that the cost increase over standard Illumina sequencing is ∼2×,
given the 10x preparation cost and the higher level of sequence
coverage required. There may be many applications for which
this combination of excellent SNV detection (via barcode-aware
read mapping) and precise SV discovery (via assembly), achieved
by the same data set, is worth the price.

Comparison with hybrid assemblies

Hybrid assembly strategies have been applied successfully to
produce human genome assembly of long contiguity [13, 14,
49]. In these studies, long contigs are first produced by single-
molecule long reads, such as PacBio (NG50 = 1.1Mb [13]) or
Nanopore (NG50 = 3.21 Mb [14]), comparing favorably to our best
results for Linked-Reads assemblies (NG50 = 236 kb). Scaffold-
ing is then performed with complementary technologies such as
BioNano to capture chromosome-level long-range information.
It promoted the scaffold N50 of PacBio to 31.1 Mb [13] and Illu-
mina mate-pair sequencing with 10x data to 33.5 Mb [25]. Using
SuperNova2, the scaffold N50 from our studies reached ∼27.86
Mb (R6) on the basis of 10x data alone, suggesting that 10x tech-
nology gives broadly comparable results at a fraction of the price
of long-read–based hybrid assemblies.
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Availability of Supporting Data and Materials

The raw sequencing data are deposited in the Sequence Read
Archive, and the corresponding BioProject accession number is
PRJNA527321. Diploid assemblies and the codes for comparison
are currently available at http://mendel.stanford.edu/suppleme
ntarydata/zhang SN2 2019 and https://github.com/zhanglu295/
Evaluate diploid assembly. LRTK-SIM is publicly available at ht
tps://github.com/zhanglu295/LRTK-SIM. Additional supporting
data are available in the GigaScience GigaDB database [50].

Additional Files

Table S1. Parameters of libraries prepared for NA12878 and
NA24385.
Table S2. Parameters used to generate Linked-Read sets for eval-
uating the impact of CF and CR on assemblies.
Table S3. Parameters used to generate Linked-Read sets for eval-
uating the impact of μF L and NF/P on assemblies.
Table S4. Contig misassemblies and recovered transcripts of the
6 assemblies.
Table S5. Genomic coverage and fraction of contigs in diploid
state generated by Supernova2 for the 7 libraries prepared by 10x
Genomics. Non-PAR: non-pseudoautosomal regions of X chro-
mosome. WFU, YOR, YORM, and PR are female; HGP, ASH, and
CHI are male.
Table S6. Phase block N50s of the 6 assemblies.
Table S7. Comparison SNV calls from standard Illumina
data, 10x reference-based calls, and assembly-based calls for
NA12878. All calls were compared to the GIAB benchmark.
Table S8. Comparison SNV calls from standard Illumina
data, 10x reference-based calls, and assembly-based calls for
NA24385. All calls were compared to the GIAB benchmark.
Table S9. Comparison of SV calls from standard Illumina data
and 10x assembly-based calls for NA12878.
Table S10. Comparison of SV calls from standard Illumina data
and 10x assembly-based calls for NA24385.
Table S11. Comparison of SV calls from 10x reference-based and
assembly-based calls for NA12878.
Table S12. Comparison of SV calls from 10x reference-based and
assembly-based calls for NA24385.
Table S13. Comparison of SV calls from our de novo assemblies
with the Tier 1 SV benchmark from GIAB.
Table S14. Proportion of assembly-based SV calls supported by
PacBio CCS reads.
Figure S1. Basic statistics for L1L . The distributions of A. the
number of fragments per partition; B. sequencing depth per frag-
ment; C. probability density function of unweighted fragment
lengths; D. cumulative density function of unweighted fragment
lengths; E. reversed cumulative density function of unweighted
fragment lengths; F. reversed cumulative density function of
weighted fragment lengths.
Figure S2. Basic statistics for L1M. The distributions of A. number
of fragments per partition; B. sequencing depth per fragment; C.
probability density function of unweighted fragment lengths; D.
cumulative density function of unweighted fragment lengths; E.
reversed cumulative density function of unweighted fragment
lengths; F. reversed cumulative density function of weighted
fragment lengths.
Figure S3. Basic statistics for L1H . The distributions of A. number
of fragments per partition; B. sequencing depth per fragment; C.
probability density function of unweighted fragment lengths; D.
cumulative density function of unweighted fragment lengths; E.
reversed cumulative density function of unweighted fragment

lengths; F. reversed cumulative density function of weighted
fragment lengths.
Figure S4. Basic statistics for L2. The distributions of A. number
of fragments per partition; B. sequencing depth per fragment; C.
probability density function of unweighted fragment lengths; D.
cumulative density function of unweighted fragment lengths; E.
reversed cumulative density function of unweighted fragment
lengths; F. reversed cumulative density function of weighted
fragment lengths.
Figure S5. Basic statistics for L3. The distributions of A. number
of fragments per partition; B. sequencing depth per fragment; C.
probability density function of unweighted fragment lengths; D.
cumulative density function of unweighted fragment lengths; E.
reversed cumulative density function of unweighted fragment
lengths; F. reversed cumulative density function of weighted
fragment lengths.
Figure S6. Basic statistics for L4. The distributions of A. number
of fragments per partition; B. sequencing depth per fragment; C.
probability density function of unweighted fragment lengths; D.
cumulative density function of unweighted fragment lengths; E.
reversed cumulative density function of unweighted fragment
lengths; F. reversed cumulative density function of weighted
fragment lengths.
Figure S7. Basic statistics for L5. The distributions of A. number
of fragments per partition; B. sequencing depth per fragment; C.
probability density function of unweighted fragment lengths; D.
cumulative density function of unweighted fragment lengths; E.
reversed cumulative density function of unweighted fragment
lengths; F. reversed cumulative density function of weighted
fragment lengths.
Figure S8. Basic statistics for L6. The distributions of A. number
of fragments per partition; B. sequencing depth per fragment; C.
probability density function of unweighted fragment lengths; D.
cumulative density function of unweighted fragment lengths; E.
reversed cumulative density function of unweighted fragment
lengths; F. reversed cumulative density function of weighted
fragment lengths.
Figure S9. The workflow of LRTK-SIM to simulate Linked-Reads.
Figure S10. The effect of NF/P on human diploid assembly of chro-
mosome 19 by Supernova2, where C (C = 60×; CF = 300× and CR

= 0.2×) and μF L (μF L = 37 kb) are fixed.
Figure S11. Comparison of assembly qualities from 10x data
with and without SNVs by changing CF, CR, and μF L . CR was fixed
to 0.2× in A and B; CF was fixed to 300× in C and D; CR was fixed
to 0.2× and CF was fixed to 300× in E and F.
Figure S12. Comparison of assembly qualities from 10x data
with (1% uniform) and without sequencing error by changing CF,
CR, and μF L . CR was fixed to 0.2× in A and B; CF was fixed to 300×
in C and D; CR was fixed to 0.2× and CF was fixed to 300× in E
and F.
Figure S13. Overlaps of diploid regions for the 3 libraries from
the same sample. Diploid regions for NA12878 (A) and NA24385
(B). The percentages denote the proportion of genome that is
diploid.
Figure S14. Phase block N50s as a function of different pa-
rameter combinations. A. Simulated Linked-Reads with prede-
fined parameters (Table S5) by changing CF and CR; B. simu-
lated Linked-Reads with matched parameters of real Linked-
Read sets (Table S2) by changing CF and CR; C. real Linked-Read
sets (Table S2) by changing CF and CR; D. simulated Linked-
Read sets (Table S3) with different WμF L ; E. simulated Linked-
Read sets with matched parameters (Table S3) with real Linked-
Read sets as C = 56×; F. real Linked-Read sets with C = 56×
(Table S3).

http://mendel.stanford.edu/supplementarydata/zhang_SN2_2019
https://github.com/zhanglu295/Evaluate_diploid_assembly
https://github.com/zhanglu295/LRTK-SIM
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