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Abstract

Network analysis has driven key developments in research on animal behaviour by providing 

quantitative methods to study the social structures of animal groups and populations. A recent 

formalism, known as multilayer network analysis, has advanced the study of multifaceted 

networked systems in many disciplines. It offers novel ways to study and quantify animal 

behaviour through connected ‘layers’ of interactions. In this article, we review common questions 

in animal behaviour that can be studied using a multilayer approach, and we link these questions 

to specific analyses. We outline the types of behavioural data and questions that may be suitable to 

study using multilayer network analysis. We detail several multilayer methods, which can provide 

new insights into questions about animal sociality at individual, group, population and 

evolutionary levels of organization. We give examples for how to implement multilayer methods to 

demonstrate how taking a multilayer approach can alter inferences about social structure and the 

positions of individuals within such a structure. Finally, we discuss caveats to undertaking 

multilayer network analysis in the study of animal social networks, and we call attention to 

methodological challenges for the application of these approaches. Our aim is to instigate the 

study of new questions about animal sociality using the new toolbox of multilayer network 

analysis.
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‘MULTIDIMENSIONALITY’ OF ANIMAL SOCIAL BEHAVIOUR

Sociality is widespread in animals, and it has a pervasive impact on behavioural, 

evolutionary and ecological processes, such as social learning and disease spread (Allen, 
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Weinrich, Hoppitt, & Rendell, 2013; Aplin et al., 2014; Silk, Alberts, & Altmann, 2003; 

White, Forester, & Craft, 2017). The structure and dynamics of animal societies emerge 

from interactions between and among individuals (Hinde, 1976; Krause, Croft, & James, 

2007; Pinter-Wollman et al., 2014). These interactions are typically ‘multidimensional’, as 

they occur across different social contexts (e.g. affiliation, agonistic and feeding), connect 

different types of individuals (e.g. male—male, female—female or male—female 

interactions) and/or vary spatially and temporally. Considering such multidimensionality is 

crucial for thoroughly understanding the structure of animal social systems (Barrett, Henzi, 

& Lusseau, 2012).

Network approaches for studying the social behaviour of animals have been instrumental in 

quantifying how sociality influences ecological and evolutionary processes (Krause et al., 

2007; Krause, James, Franks, & Croft, 2015; Kurvers, Krause, Croft, Wilson, & Wolf, 2014; 

Pinter-Wollman et al., 2014; Sih, Hanser, & McHugh, 2009; Sueur, Jacobs, Amblard, Petit, 

& King, 2011; Webber & Vander Wal, 2018; Wey, Blumstein, Shen, & Jordán, 2008). In 

animal social networks, nodes (also called ‘vertices’) typically represent individual animals; 

and edges (also called ‘links’ or ‘ties’) often represent pairwise interactions (e.g. behaviours, 

such as grooming, in which two individuals engage) or associations (e.g. spatiotemporal 

proximity or shared group memberships) between these individuals. Such a network 

representation is a simplified depiction of a much more intricate, multifaceted system, A 

social system can include different types of interactions, with different biological meanings 

(e.g. cooperative or competitive), which standard network approaches often do not take into 

account, or they do so by analysing networks of different edge types separately (Gazda, Iyer, 

Killingback, Connor, & Brault, 2015b), Typical approaches ignore interdependencies that 

may exist between different types of interactions and between different subsystems (Barrett 

et al., 2012; Beisner, Jin, Fushing, & McCowan, 2015). Furthermore, networks are often 

studied as snapshots or aggregations of processes that change over time, but dynamics can 

play a major role in animal behaviour (Blonder, Wey, Dornhaus, James, & Sih, 2012; Farine, 

2018; Wey et al., 2008; Wilson et al., 2014). As we highlighted recently (Silk, Finn, Porter, 

& Pinter-Wollman, 2018), advances in multilayer network analysis provide opportunities to 

analyse the multifaceted nature of animal behaviour, to ask questions about links between 

social dynamics across biological scales, and to provide new views on broad ecological and 

evolutionary processes. In this paper, we introduce the new mathematical formalism of 

multilayer network analysis to researchers in animal behaviour. This formalism provides a 

common vocabulary to describe, compare and contrast multilayer network methodologies. 

Our goal is to review research areas and questions in animal behaviour that are amenable to 

multilayer network analysis, and we link specific analyses to these questions (see Table 1). 

We describe different types of multilayer networks and detail how they can encode animal 

data. We also review several questions and hypotheses, across social scales, that multilayer 

network analysis can help investigate. We summarize key questions and provide a guide to 

available methods and software for multilayer network analysis in Table 1. We present 

examples to illustrate our ideas, and we consider some of the requirements and caveats of 

multilayer network analysis as a tool to study animal social behaviour. We also discuss 

several directions for future work.
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What Are Multilayer Networks?

Multilayer networks are assemblages of distinct network ‘layers’ that are connected (and 

hence coupled) to each other via interlayer edges (Boccaletti et al., 2014; Kivelä et al., 

2014). A multilayer network can include more than one ‘stack’ of layers, and each such 

facet of layering is called an ‘aspect’. For instance, one aspect of a multilayer network can 

encode temporal dynamics and another aspect can represent types of social interactions (Fig. 

1, Supplementary Material 1).

The recent formalism of multilayer networks has opened up new ways to study multifaceted 

networked systems (Boccaletti et al., 2014; Kivelä et al., 2014). The application of 

multilayer networks to questions in animal behaviour is still in its infancy, but multilayer 

network analysis has facilitated substantial advances over monolayer (i.e. single-layer) 

network analysis in many other fields (Aleta & Moreno, 2019; Kivelä et al., 2014). For 

example, multilayer network approaches have made it possible to identify important nodes 

that are not considered central in a monolayer network (De Domenico, Solé-Ribalta, 

Omodei, Gómez, & Arenas, 2015). Multilayer approaches applied to studying information 

spread on Twitter (where, e.g. one can use different layers to represent ‘tweets’, ‘retweets’ 

and ‘mentions’) have uncovered information spreaders who have a disproportionate impact 

on social groups but were overlooked in prior monolayer investigations (Al-Garadi, 

Varathan, Ravana, Ahmed, & Chang, 2016). Multilayer modelling of transportation systems 

has improved investigations of congestion and efficiency of transportation. For example, 

each layer may be a different airline (Cardillo et al., 2013) or a different form of 

transportation in a city (Chodrow, al-Awwad, Jiang, & González, 2016; Gallotti & 

Barthelemy, 2015; Strano, Shai, Dobson, & Barthelemy, 2015). Modelling dynamical 

processes on multilayer networks can result in qualitatively different outcomes compared to 

modelling dynamics on aggregate representations of networks (for a discussion of 

aggregating networks, see Supplementary Material 2) or on snapshots of networks (De 

Domenico, Granell, Porter, & Arenas, 2016). For instance, the dynamics of disease and 

information spread can be coupled in a multilayer framework to reveal how different social 

processes can impact the onset of epidemics (Wang, Andrews, Wu, Wang, & Bauch, 2015). 

Historically, the usage of ‘multiplexity’ dates back many decades (Mitchell, 1969), and the 

new mathematical formalism (De Domenico et al., 2013; Kivelä et al., 2014; Newman, 

2018c; Porter, 2018) has produced a unified framework that makes it possible to consolidate 

analysis and terminology. For reviews of previous multilayer network studies and 

applications in other fields, see Aleta and Moreno (2019), Boccaletti et al. (2014), 

D’Agostino and Scala (2014), Kivelä et al. (2014) and Pilosof, Porter, Pascual, and Kéfi 

(2017).

Types of Multilayer Networks

The mathematical framework of multilayer networks was developed recently to create a 

unified formalism to study such networks (De Domenico et al., 2013; Kivelä et al., 2014; 

Mucha, Richardson, Macon, Porter, & Onnela, 2010; Porter, 2018). One can use this 

multilayer network framework, which we follow in this paper and detail in Supplementary 

Material 1, to represent a variety of network types and situations. In contrast to monolayer 

networks, which are traditional in network analysis and which consist of only a single 
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network ‘layer’. multilayer networks can include many different types of data that are 

commonly collected in studies of animal behaviour. For example, types of social 

interactions, spatial locations (with connections between them) and different measures of 

genetic relatedness can all constitute layers in a multilayer network. Node attributes can 

include behavioural or physical phenotypes, sex, age, personality, and more. Edge attributes, 

such as their weight or direction, can encode interaction frequencies, distances between 

locations, dominance, and so on. Commonly studied types of multilayer networks that can 

accommodate such data include the following.

1. Multiplex networks (i.e. edge-coloured networks) are multilayer networks in 

which interlayer edges connect nodes to themselves on different layers (Fig. 1, 

Supplementary Material 1). It is often assumed, for convenience, that all layers 

consist of the same set of nodes, but this is not necessary.

a. In multirelational networks, each layer represents a different type of 

interaction. For example, a network of aggressive interactions can be 

connected with a network of affiliative interactions through interlayer 

edges that link individuals to themselves if they appear in both layers 

(Fig. 1, horizontal dotted black lines).

b. In temporal networks, each layer encodes the same type of interactions 

during different time points or over different time windows. In the most 

common multiplex representation of a temporal network, consecutive 

layers are connected to each other through interlayer edges that link 

individuals to themselves at different times (Fig. 1, vertical dotted blue 

lines).

2. In interconnected networks (i.e. node-coloured networks), the nodes in different 

layers do not necessarily represent the same entities, and interlayer edges can 

exist between different types of nodes. See our discussion of the mathematical 

formalism and an example figure in Supplementary Material 1.

a. Networks of networks consist of subsystems, which themselves are 

networks that are linked to each other through interlayer edges between 

the subsystems’ nodes. For example, one can model intergroup 

interactions in a population-level network of interactions between social 

groups, which are themselves networks.

b. In intercontextual networks, one can construe each layer as representing 

a different type of node. For example, interactions between males can 

be in one layer, interactions between females can be in a second layer, 

and intersex interactions are interlayer edges. See Fig. 1 in Silk, Weber 

et al. (2018) and Fig. 1 in Silk et al. (2018).

c. Spatial networks, which we define here as networks of locations, can be 

linked with social networks of animals that move between these 

locations (Pilosof et al, 2017; Silk et al, 2018). Our use of the term 

‘spatial networks’ refers to networks that are embedded in space, rather 

than networks that are influenced by a latent space (Barthelemy, 2018).
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Throughout this paper, we use the term ‘multilayer networks’ to refer to any of the variants 

above, unless we specify that a method applies to only one or a subset of specific network 

types. For a review of other types of multilayer networks, see Kivelä et al. (2014).

NOVEL INSIGHTS INTO ANIMAL SOCIALITY: FROM INDIVIDUALS TO 

POPULATIONS

We propose that a multilayer network approach can advance the study of animal behaviour 

and expand the types of questions that one can investigate. Specifically, we discuss how a 

multilayer framework can enhance understanding of (1) an individual’s role (or roles) in a 

social network, (2) group-level structure and dynamics, (3) population structure and (4) 

evolutionary models of the emergence of sociality.

An Individual’s Role(s) in Society

Traditionally, the use of network analysis to examine the impact of individuals on their 

society has focused on the social positions of particular individuals using various centrality 

measures (such as degree, eigenvector centrality, betweenness centrality, and others; see 

Pinter-Wollman et al., 2014; Wasserman & Faust, 1994; Wey et al., 2008; Williams & 

Lusseau, 2006). It is common to construe individuals with disproportionally large centrality 

values as influential or important to a network in some way (but see Rosenthal, Twomey, 

Hartnett, Wu, & Couzin, 2015 for a different trend). The biological meaning of ‘importance’ 

and corresponding centrality measures differ among types of networks and is both system-

dependent and question-specific. Consequently, one has to be careful to avoid 

misinterpreting the results of centrality calculations. Centrality measures have been used to 

examine which individuals have the most influence on a group in relation to age, sex or 

personality (Sih et al., 2009; Wilson, Krause, Dingemanse, & Krause, 2013) and to study the 

fitness consequences of holding an influential position (Pinter-Wollman et al., 2014). A 

multilayer approach can advance understanding of roles that individuals play in a population 

or a social group, and it can potentially identify central individuals who may be overlooked 

when using monolayer approaches on ‘multidimensional’ data.

An individual’s role in a social group is not restricted to its behaviour in just one social or 

ecological situation. A multilayer approach creates an opportunity to consolidate analyses of 

a variety of social situations and simultaneously examine the importances of individuals 

across and within situations. Many centrality measures have been developed for multilayer 

networks, and different ones encompass different biological interpretations. For instance, 

eigenvector ‘versatility’ (see Supplementary Material 1 for its mathematical definition) is 

one way to quantify the overall importance of individuals across and within layers, because 

this measure takes into account multiple layers to identify individuals who increase group 

cohesion in multiple layers and bridge social situations (De Domenico, Solé-Ribalta et al., 

2015). In a multirelational network, an individual can have small degree (i.e. degree 

centrality) in each layer, where each layer represents a different social situation, but it may 

participate in many social situations, thereby potentially producing a larger impact on social 

dynamics than individuals with large degrees in just one or a few social situations. One can 

also account for the inter-relatedness of behaviours in different layers in a multilayer 
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network when combining interlayer centralities, if appropriate for the study system (De 

Domenico, Solé-Ribalta et al., 2015). For example, it is not possible for two individuals to 

engage in grooming interactions without also being in proximity. By accounting for inter-

relatedness between proximity and grooming when calculating multilayer centralities and 

versatilities, it may be possible to consider grooming interactions as explicitly constrained 

by proximity interactions and thereby incorporate potentially important nuances.

The appropriateness of a versatility measure differs across biological questions, just as 

distinct centrality measures on a monolayer network have different interpretations 

(Wasserman & Faust, 1994; Wey et al., 2008). Versatility measures that have been developed 

include shortest-path betweenness versatility, hub/authority versatility, Katz versatility and 

PageRank versatility (De Domenico, Solé-Ribalta et al., 2015). Experimental removal of 

versatile nodes, similar to the removal of central nodes in monolayer networks (Barrett et al., 

2012; Firth et al., 2017; Flack, Girvan, de Waal, & Krakauer, 2006; Pruitt & Pinter-

Wollman, 2015; Sumana & Sona, 2013), has the potential to uncover the effects of the 

removed nodes on group actions, group stability, and their impact on the social positions of 

other individuals. However, which versatility measure gives the most useful information 

about an individual’s importance may depend on the level of participation of an individual in 

the different types of behaviours that are encoded in a multilayer network. Furthermore, if 

layers have drastically dissimilar densities, one layer can easily dominate a versatility 

measure. For other nuances and caveats, see our discussion below in Considerations When 

Using Multilayer Network Analysis. In addition to calculating node versatility, one can 

examine versatility of edges to yield interesting insights into the importance of relationships 

with respect to group stability and cohesion. Such an approach can help reveal whether 

interlayer interactions are comparably important, more important, or less important than 

intralayer interactions for group cohesion. Examining edge versatility can also illuminate 

which interactions between particular individuals (within or across layers) have the largest 

impact on group activity and/or stability; and it may be helpful for conservation efforts, such 

as the identification of social groups that are vulnerable to fragmentation (Snijders, 

Blumstein, Stanley, & Franks, 2017).

A multilayer approach can help elucidate the relative importances of different individuals in 

various social or ecological situations. For example, a node’s ‘multidegree’ is a vector of the 

intralayer degrees (each calculated as on a monolayer network) of an individual in each 

layer. Differences in how the degrees of individuals are distributed across layers help 

indicate which individuals have influence over others in the different layers. For example, if 

each layer represents a different situation, individuals whose intralayer degree peaks in one 

situation may be more influential in that context than individuals whose intralayer degree is 

small in that situation but peaks in another one. Because multidegree does not account for 

interlayer connections, quantitatively comparing it with versatility or other multilayer 

centralities, which account explicitly for interlayer edges (Kivelä et al., 2014), can help 

elucidate the importance of interlayer edges and thereby highlight interdependencies 

between biological situations. Such behavioural interdependencies can help quantify the 

amount of behavioural carryover across situations (i.e. ‘behavioural syndromes’; Sih, Bell, 

& Johnson, 2004) if, for example, measures that account for interlayer edges explain 

observed data better than measures that do not take into account such interdependencies.
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As a final example, one can use a multilayer approach to examine temporal changes in an 

individual’s role (or roles) in a group. A multilayer network in which one aspect represents 

time and another aspect represents situation (Fig. 1) can reveal when individuals gain or lose 

central roles and whether roles are lost simultaneously in all situations or if changes in one 

situation precede changes in another. Comparing monolayer (e.g. time-aggregated) measures 

and multilayer measures has the potential to uncover the importance of temporal changes in 

an animal’s fitness.

Roles of individuals in a group: baboon versatility in a multiplex affiliation network

To demonstrate the potential insights from employing multilayer network analysis to 

examine the roles of individuals in a social group using multiple interaction types, we 

analysed published affiliative interactions from a baboon (Papio cynocephalus) group of 26 

individuals (Franz, Altmann, & Alberts, 2015a, 2015b) (Fig. 2). One can quantify affiliative 

relationships in primates in multiple ways, including grooming. body contact and proximity 

(Barrett & Henzi, 2002; Jack, 2003; Kasper & Voelkl, 2009; Pasquaretta et al., 2014). To 

characterize affiliative relationships, combinations of these behaviours have been 

investigated separately (Jack, 2003; Perry, Manson, Muniz, Gros-Louis, & Vigilant, 2008), 

pooled together (Kasper & Voelkl, 2009), or used interchangeably (Pasquaretta et al., 2014). 

These interaction types are often correlated with each other, but their networks typically do 

not coincide completely (Barrett & Henzi, 2002; Brent, MacLarnon, Platt, & Semple, 2013).

We analyse the baboon social data in four ways: (1) as a weighted grooming network with 

only grooming interactions (Fig. 2a), (2) as a weighted association network with only 

proximity-based associations (Fig. 2b), (3) as an aggregate monolayer network that we 

obtained by summing the weights of grooming and association interactions of the node pairs 

(Fig. 2c; see Supplementary Material 2 for more details on aggregating networks) and (4) as 

a multiplex network with two layers (one for grooming and one for associations). We then 

calculated measures of centrality (for the monolayer networks in (1)–(3)) and versatility (for 

the multilayer network (4)) using MuxViz (De Domenico, Porter, & Arenas, 2015). We 

ranked individuals according to their PageRank centralities and versatilities (De Domenico, 

Solé-Ribalta et al., 2015), which quantify the importance of an individual in a network 

recursively based on being adjacent to important neighbours (Fig. 3).

The most versatile baboon in the multilayer network (individual 3 in Fig. 3) is the fourth-

most central individual in the aggregated network, the second-most central individual in the 

grooming network and the 16th-most central individual in the association network (Fig. 3). 

These differences in results using the multilayer, aggregated and independent networks of 

the same data highlight the need to (1) carefully select which behaviours to encode in 

networks and (2) interpret the ensuing results based on the questions of interest (Carter, 

DeChurch, Braun, & Contractor, 2015; Krause, James, Franks, & Croft, 2015). When social 

relationships depend on multiple interaction types, it is helpful to use a multilayer network 

framework to reliably capture an individual’s social roles (see Table 1 for more questions 

and tools), because monolayer calculations may yield different results and centrality in one 

layer can differ substantially from versatility in an entire multilayer network (Fig. 3).
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Multilayer Structures in Animal Groups

Animal social groups are emergent structures that arise from local interactions (Sumpter, 

2010), making network analysis an effective approach for examining group-level behaviour. 

Networks provide useful representations of dominance hierarchies (Hobson, Avery, & 

Wright, 2013) and allow investigations of information transmission efficiency (Pasquaretta 

et al., 2014), group stability (Baird & Whitehead, 2000; McCowan et al., 2011), species 

comparisons (Pasquaretta et al., 2014; Rubenstein, Sundaresan, Fischhoff, 

Tantipathananandh, & Berger-Wolf, 2015) and collective behaviour (Rosenthal et al., 2015; 

Westley, Berdahl, Torney, & Biro, 2018). However, given that animals interact with each 

other in many different—and potentially interdependent—ways, a multilayer approach may 

help accurately capture a group’s structure and/or dynamics. In one recent example, Smith-

Aguilar, Aureli, Busia, Schaffner, and Ramos-Fernández (2018) studied a six-layer 

multiplex network of spider monkeys, with layers based on types of interactions. In this 

section, we detail how multilayer methodologies can advance the study of group stability, 

group composition and collective movement.

One can analyse changes in group stability and composition using various multilayer 

calculations or by examining changes in relationships across network layers (Beisner & 

McCowan, 2015). For instance, Barrett et al. (2012) examined changes in a baboon group 

following the loss of group members by calculating a measure from information theory 

called ‘joint entropy’ on a multiplex network—with grooming, proximity and aggression 

layers—both before and after a known perturbation. A decrease in joint entropy following 

individual deaths corresponded to individuals interacting in a more constrained and therefore 

more predictable manner. Using a different approach, Beisner et al. (2015) investigated co-

occurrences of directed aggression and status-signalling interactions between individuals in 

macaque behavioural networks. In their analysis, they employed a null model that 

incorporates constraints that encode interdependences between behaviour types. For 

example, perhaps there is an increased likelihood that animal B signals to animal A if animal 

A aggresses animal B. Incorporating such constraints was more effective at reproducing the 

joint probabilities (which they inferred from observations) of interactions in empirical data 

in stable macaque groups than in groups that were unstable and eventually collapsed (Chan, 

Fushing, Beisner, & McCowan, 2013). These findings illustrate how interdependencies 

between aggression and status-signalling network layers may be important for maintaining 

social stability in captive macaque groups. A potential implication of these findings is that 

analysing status signalling and aggression may be helpful for predicting social stability. 

Another approach that may be useful for uncovering temporal structures in multilayer 

networks is an extension of stochastic actor-oriented models (SAOMs) (Snijders, 2017). One 

can use SAOMs to examine traits and processes that influence changes in network ties over 

time, including in animal social networks (Fisher, Ilany, Silk, & Tregenza, 2017; Hunt et al., 

2018; Ilany. Booms, & Holekamp, 2015). SAOMs can use unweighted or weighted edges, 

with some restrictions in how weights are incorporated (Snijders, 2017). A multiple-network 

extension to an SAOM enables modelling of the co-dynamics of two sets of edges, while 

incorporating influences of other individual or network-based traits. Such an approach has 

the potential to provide interesting insights into how changes in one layer may cascade into 
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changes in other layers. It also provides a useful method to quantify links between group-

level structural changes and temporal dynamics of individual centralities.

Multilayer analysis of animal groups can go beyond monolayer network analysis when 

highlighting a group’s composition and substructures. For example, one measure of 

interdependence, the proportion of shortest paths between node pairs that span more than 

one layer (Morris & Barthelemy, 2012; Nicosia, Bianconi, Latora, & Barthelemy, 2013), can 

help describe a group’s interaction structure. In social insect colonies, layers can represent 

different tasks. As time progresses and individuals switch tasks, an individual can appear in 

more than one layer. The amount of overlap among layers (see Supplementary Material 1, 

Similarity of Layers: Example Measures for examples of overlap measures) can indicate the 

level of task specialization and whether or not there are task-generalist individuals (Pinter-

Wollman, Hubler, Holley, Franks, & Dornhaus, 2012). Consequently, the above 

interdependence measure may be useful as a way to quantify division of labour (Beshers & 

Fewell, 2001), because having a small proportion of shortest paths that traverse multiple 

layers may be an indication of pronounced division of labour. Such a new measure may 

reveal ways in which workers are allocated to tasks that are different from those that have 

been inferred by using other measures of division of labour. Comparing different types of 

measures may uncover new insights into the mechanisms that underlie division of labour.

Animal groups are often organized into substructures called ‘communities’ (Fortunato & 

Hric, 2016; Potter, Onnela, & Mucha, 2009; Shizuka et al., 2014; Wolf, Mawdsley, 

Trillmich, & James, 2007), which are sets of individuals who interact with each other more 

often (in absolute amount and/or as a rate) than they do with other individuals. Finding 

communities can aid in predicting how a group may split, which can be insightful for 

managing captive populations when it is necessary to remove individuals (Sueur, Jacobs et 

al., 2011). Community-detection algorithms distinguish sets of individuals who are 

connected more densely within a community than with individuals in other communities in a 

network. One example of a multilayer community-detection algorithm is maximization of 

‘multislice modularity’ (Mucha et al., 2010), which can account for different behaviours 

and/or time windows. A recent review includes a discussion of how multilayer modularity 

maximization can inform ecological questions, such as the ecological effects of 

interdependencies between herbivory and parasitism (Pilosof et al., 2017). In animal groups, 

individuals can be part of more than one community, depending on the types of interactions 

under consideration. For example, an individual may groom with one group of animals but 

fight with a different group. Because maximizing multislice modularity does not constrain 

an individual’s membership to a single community, it can yield communities of different 

functions with overlapping membership. It can also be used to examine changes in 

community structure over time. Additionally, sex, age and kinship are known to influence 

patterns of subgrouping in primates (Sueur, Jacobs et al., 2011), so investigating group 

structure while considering several of these characteristics at once can reveal influences of 

subgrouping (such as nepotism) that may not be clear when using monolayer clustering 

approaches. See Aleta and Moreno (2019) for references to various methods for studying 

multilayer community structure.
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Collective motion is another central focus in studies of animal groups (Berdahl, Biro, 

Westley, & Torney, 2018; Sumpter, 2010). Coordinated group movements emerge from 

group members following individual-based, local rules (e.g. in fish schools and bird flocks; 

Couzin, Krause, James, Ruxton, & Franks, 2002; Sumpter, 2010). Recent studies of 

collective motion have employed network analysis to examine relationships of individuals 

beyond the ones with their immediate neighbours. For instance, one can incorporate 

connections between individuals who are in line of sight of each other (Rosenthal et al., 

2015) or with whom there is a social relationship in other contexts (Bode, Wood, & Franks, 

2011; Farine et al., 2016). One can also combine multiple sensory modes into a multilayer 

network to analyse an individual’s movement decisions. Expanding the study of collective 

motion to incorporate multiple sensory modalities (e.g. sight, odour, vibrations, and so on) 

and social relationships (e.g. affiliative, agonistic, and so on) can benefit from a multilayer 

network approach, which may uncover synergies among sensory modes, social relationships 

and environmental constraints.

Multilayer groupings: dolphin communities emerge from multirelational interactions

To demonstrate the utility of multilayer network analysis for uncovering group dynamics, we 

analysed the social associations of 102 bottlenose dolphins (Tursiops truncatus) that were 

observed by Gazda et al. (2015b). They recorded dolphin associations during travel, 

socialization and feeding. They identified different communities when analysing the 

interactions as three independent networks and compared the results with an aggregated 

network, in which they treated all types of interactions equally (regardless of whether they 

occurred when animals were travelling, socializing or foraging). However, analysing these 

networks separately or as one aggregated network ignores interdependencies that may exist 

between the different behaviours (Kivelä et al., 2014). Therefore, we employed multiplex 

community detection, using the multilayer InfoMap method (De Domenico, Lancichinetti et 

al., 2015), to examine how interdependencies between layers influence which communities 

occur when the data are encoded as a multiplex network. We use multiplex community 

detection to assign each replicate of an individual (there is one for each layer in which an 

individual appears; Supplementary Material 1) to a community. Therefore, an individual can 

be assigned to one or several communities, where the maximum number corresponds to the 

number of layers in which the individual is present. The community assignments depend on 

how individuals are connected with each other in a multilayer network and on interactions 

between layers, which arise in this case from a parameter in the multilayer InfoMap method 

(see Supplementary Material 2 for details). The coupling between layers thus arises both 

from interlayer edges and their weights (Supplementary Material 1) and from a parameter in 

the community-detection method (Supplementary Material 2). With no coupling, the layers 

are distinct and communities cannot span more than one layer; for progressively larger 

coupling, communities span multiple layers increasingly often. For details on our parameter 

choices for community detection with the multilayer InfoMap method, see Supplementary 

Material 2.

To be consistent with Gazda et al. (2015b), our multiplex network (Fig. 4) includes only 

individuals who were seen at least three times, and we weight the edges using the half-

weight index (HWI) of association strength (Cairns & Schwager, 1987). Our community-
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detection computation yielded 12 communities. The largest community (Fig. 4, dark blue) 

consists of individuals from all three association layers, and several smaller communities 

consist of only foraging individuals, only travelling individuals, and both foraging and 

travelling individuals. For details on the specific implementation of the InfoMap method, see 

Supplementary Material 2.

In their investigation, Gazda et al. (2015b) revealed contextually-dependent association 

patterns, as indicated by different numbers of communities in the foraging (17), travel (8) 

and social (4) networks. Notably, when examining the three behavioural situations as a 

multiplex network, we found similar trends in the numbers of communities across 

behavioural situations: foraging individuals were in nine communities, travelling individuals 

were in six communities, and individuals who interact socially were in only one community. 

Thus, our analysis strengthens the finding that dolphins forage in more numerous, smaller 

groups and socialize in fewer, larger groups. Different methods for community detection 

yield different communities of nodes (Fortunato & Hric, 2016); therefore, it is not surprizing 

that we detected a different number of communities in the monolayer networks than the 

number in Gazda et al. (2015b). We used InfoMap, which has been implemented for both 

monolayer and multilayer networks. By contrast, Gazda et al. (2015b) used a community-

detection approach that has been implemented only for monolayer networks, Additionally, 

because we found one markedly large community that spans all layers, we note that it may 

also be useful to explore core—periphery structure in this network (Csermely, London, Wu, 

& Uzzi, 2013; Rombach, Porter, Fowler, &, Mucha, 2017).

We also analysed each layer independently and an aggregate of all layers using monolayer 

InfoMap (Rosvall & Bergstrom, 2007), which is implemented in MuxViz. Multiplex 

community detection produces somewhat different community assignments from monolayer 

community detection (Fig. 5). With a multiplex network, one can identify and label an 

individual’s membership in a community that spans one or several layers (Fig. 5a). However, 

in monolayer community detection, one examines individuals independently in different 

layers, thereby assigning their replicates in different layers to different communities (Fig. 

5b). Therefore, which individuals are grouped into communities can vary substantially. See 

Table 1 for more questions and tools in multilayer community detection in animal behaviour. 

As this example illustrates, depending on the research aims, the form of the data and 

knowledge of the study system, one or both of monolayer and multilayer investigations may 

provide valuable insights into the structure of a social system of interest.

Multilayer Processes at a Population Level

Network analysis has been fundamental in advancing understanding of social processes over 

a wide range of spatial scales and across multiple social groups (Silk, Croft, Tregenza, & 

Bearhop, 2014; Sueur, King et al., 2011). A multilayer approach is convenient for combining 

spatial and social networks (e.g. in a recent study of international human migration; 

Danchev & Porter, 2018), and it may contribute to improved understanding of fission—

fusion dynamics, transmission processes and dispersal. It also provides an integrative 

framework to merge social data from multiple species and extend understanding of the 
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drivers that underlie social dynamics of multispecies communities (Farine, Garroway, & 

Sheldon, 2012; Sridhar, Beauchamp, & Shanker, 2009).

Many animals possess complicated fission—fusion social dynamics, in which groups join 

one another or split into smaller social units (Couzin & Laidre, 2009; Silk et al., 2014; 

Sueur, King et al., 2011). It can be insightful to study such populations as networks of 

networks. Additionally, recent advances in quantifying temporal dynamics of networks have 

shed some light on fission—fusion social structures (Rubenstein et al., 2015). A multilayer 

approach applied to association data (collected at times that make it reasonable to treat 

group membership as independent across observations) can assist in detecting events and 

temporal scales of social transitions in fission—fusion societies. For example, if each layer 

in a multiplex network represents the social associations of animals at a certain time, a 

multiplex community-detection algorithm can uncover temporally cohesive groups, similar 

to the detection of temporal patterns of correlations between various financial assets (Bazzi 

et al., 2016). Further development of community detection and other clustering methods for 

general multilayer networks (e.g. stochastic block models; Peixoto, 2014, 2015) and 

methods based on random walks (De Domenico, Lancichinetti et al., 2015; Jeub, 

Balachandran, Porter, Mucha, & Mahoney, 2015; Jeub, Mahoney, Mucha, & Porter, 2017) 

may provide insights into the social and ecological processes that contribute to the temporal 

stability of social relationships in fission—fusion societies.

Ecological environments and connections between different locations have fundamental 

impacts on social dynamics (Barocas, Golden, Harrington, McDonald, & Ben-David, 2016; 

Firth & Sheldon, 2016; Leu, Farine, Wey, Sih, & Bull, 2016; Spiegel, Leu, Sih, & Bull, 

2016). A multilayer network representation can explicitly link spatial and social processes in 

one framework (Pilosof et al., 2017). One approach is to use interconnected networks of 

social interactions and spatial locations to combine layers that represent social networks 

with layers for animal movement and habitat connectivity. Data on social interactions can 

also have multiple layers, with different layers representing interactions in different locations 

or habitats. For example, in bison. Bison bison, it was observed that group formation is more 

likely in open-meadow habitats than in forests (Fortin et al., 2009). The same study also 

noted that larger groups are more likely than smaller groups to occur in meadow habitats. 

Multilayer network approaches, such as examining distributions of multilayer diagnostics, 

may be helpful for detecting fundamental differences in social relationships between 

habitats.

Important dynamical processes in animal societies, such as information and disease 

transmission, are intertwined with social network structures (Allen et al., 2013; Aplin et al., 

2014; Aplin, Farine, Morand-Ferron, & Sheldon, 2012; Hirsch, Reynolds, Gehrt, & Craft, 

2016; Weber et al., 2013). Research on networks has revealed that considering multilayer 

network structures can produce very different spreading dynamics than those detected when 

collapsing (e.g. by aggregating) multiple networks into one monolayer network (De 

Domenico et al., 2016). Multilayer approaches can uncover different impacts on 

transmission from different types of social interactions (Craft, 2015; White et al., 2017) or 

link the transmission of multiple types of information or disease across the same network. 

Compartmental models of disease spreading, which describe transitions of individuals 
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between infected and other states (e.g. susceptible—infected (SI) models, susceptible—

infected—recovered (SIR) models, and others; Kiss, Miller, & Simon, 2017) have been used 

to model transmission through multilayer networks (Aleta & Moreno, 2019; De Domenico 

et al., 2016; Kivelä et al., 2014). For example, several studies have incorporated a multilayer 

network structure into an SIR model for disease spreading coupled with information 

spreading about the disease, with the two spreading processes occurring on different network 

layers (Wang et al., 2015). This approach suggests that taking into account the spread of 

information about a disease can reduce the expected outbreak size, especially in strongly 

modular networks and when infection rates are low (Funk, Gilad, Watkins, & Jansen, 2009), 

Given the growing evidence for coupled infection and behaviour dynamics in animals (Croft, 

Edenbrow et al., 2011; Lopes, Block, & König, 2016; Poirotte et al., 2017), using multilayer 

network analysis to help understand interactions between information and disease spread is 

likely to be informative in studies of contagions in animals. Analogous arguments apply to 

the study of acquisition of social information, where learning one behaviour can influence 

the likelihood of social learning of other behaviours. For example, extending models of 

information spreading (Aleta & Moreno, 2019; De Domenico et al., 2016; Kivelä et al., 

2014) to two-aspect multilayer networks that include one layering aspect to represent 

different types of social interactions and another aspect to represent different time periods 

(Fig. 1) may provide valuable insights into how social dynamics influence cultural 

transmissions in a population.

The study of dispersal can also benefit from utilizing a multilayer framework. Networks 

have been used to uncover the role of spatial (Reichert, Fletcher, Cattau, &. Kitchens, 2016) 

and social (Blumstein, Wey, & Tang, 2009) connectivity in dispersal decisions. One can use 

a two-aspect multilayer approach to integrate spatial layers that encode habitat connectivity, 

or movements of individuals, with social layers that encode intragroup and intergroup social 

relationships. For example, integrating a multilayer framework with existing multistate 

models of dispersal (such as the ones in Borg et al., 2017; Polansky, Kilian, & Wittemyer, 

2015) can make it possible to relate the likelihood of transitioning between dispersive and 

sedentary states to the positions of individuals in a multilayer sociospatial network. Such 

integration of spatial and social contexts may provide new insights both into the relative 

roles of social and ecological environments in driving dispersal decisions and into the 

subsequent effects of dispersal on population structure.

Interspecific interactions as a multilayer network

Network approaches have been useful for studying the social dynamics of mixed-species 

assemblages (Farine et al., 2012). For example, in mixed-species groups of passerine birds, 

network analysis was used to show that social learning occurs both within and between 

species (Farine, Aplin, Sheldon, & Hoppitt, 2015b). Mixed-species assemblages have an 

inherent multilayer structure. Most simply, one can represent a mixed-species community as 

a node-coloured network in which each layer represents a different species (Fig. 6). To 

incorporate additional useful information in a mixed-species multilayer network, one can 

represent the type of behavioural interaction as an additional aspect of the network. For 

example, one aspect can encode competitive interactions and another can encode 

noncompetitive interactions.
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Considering multilayer measures, such as multidegree or versatility, may provide new 

insights into the role (s) of particular species or individuals in information sharing in mixed-

species groups. Furthermore, multilayer community detection has the potential to provide 

new insights into the structure of fission—fusion social systems that involve multiple 

species. The original study (Farine et al., 2015b) that generated the networks that we used in 

Fig. 6 investigated information transmission in both intraspecies and interspecies social 

networks (i.e. constituent interaction types of an interconnected network). The authors of the 

original study concluded that both networks help predict the spread of information, but that 

the likelihood of acquiring foraging information was higher through intraspecific 

associations than through interspecific associations, thereby providing a better understanding 

of information transmission in mixed-species communities than would be possible using 

monolayer network analysis. This highlights the potential of taking explicitly multilayer 

approaches to better understand how information can spread within and between species in 

mixed-species groups.

Evolutionary Models

Understanding the evolution of sociality is a central focus in evolutionary biology (Krause & 

Ruxton, 2002). Research approaches include agent-based simulations, game-theoretic 

models, comparative studies, and others. Evolutionary models have been expanded to 

incorporate interactions between agents, resulting in different evolutionary processes than 

those in models without interactions (Nowak, Tarnita, & Antal, 2010). However, social 

behaviours evolve and persist in conjunction with other behaviours and with ecological 

changes. Therefore, incorporating multiple types of interactions—social, physiological, and 

with an environment—as part of a multilayer framework can provide novel insights about 

the pressures on fitness and evolutionary processes. For example, incorporating interactions 

between molecules at the cellular level, organs at the organismal level, individuals at the 

group level and groups at the population level into a network of networks can facilitate 

multilevel analysis of social evolution. In the following paragraphs, we discuss how the 

expansion of evolutionary modelling approaches to include multilayer network analysis may 

enhance the study of (1) evolution of social phenomena (such as cooperation) and (2) 

covariation in behavioural structures across species.

Incorporating ideas from network theory into evolutionary models has made it possible to 

account for long-term relationships, nonrandom interactions and infrequent interactions 

(Lieberman, Hauert, & Nowak, 2005). These considerations can alter the outcomes of game-

theoretic models of social evolution and facilitate the emergence or persistence of 

interactions, such as cooperation, by enabling assortativity of cooperative individuals 

(Aktipis, 2004, 2006; Allen et al., 2017; Croft, Edenbrow, & Darden, 2015; Fletcher & 

Doebeli, 2009; Nowak et al., 2010; Rand, Arbesman, & Christakis, 2011). Given the effects 

that group structure can have on the selection and stability of cooperative strategies, 

multilayer structures can significantly alter the dynamics (both outcomes and transient 

behaviour) of evolutionary games. Indeed, it has been demonstrated, using a multilayer 

network in which agents play games on multiple interconnected layers, that cooperation can 

persist under conditions in which it would not in a monolayer network (Gómez-Gardeñes, 

Reinares, Arenas, & Floría, 2012; Wang, Szolnoki, & Perc, 2012; Wang, Wang, Szolnoki, & 
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Perc, 2015). Furthermore, the level of interdependence, in the form of coupling payoffs 

between layers or by strategy transfer across layers, can influence the persistence of 

cooperation (Wang, Szolnoki, & Perc, 2013; Xia, Miao, Wang, & Ding, 2014). Therefore, in 

comparison to monolayer network analysis, using a multilayer network approach can 

improve the realism of models by better reflecting the ‘multidimensional’ nature of sociality 

and allowing a larger space of possible evolutionary strategies and outcomes. Certain 

behaviours that may not be evolutionarily stable when considering only one realm of social 

interactions may be able to evolve and/or persist when considering a multilayer structure of 

an agent’s possible interactions. For example, expanding game-theoretic models to include 

multiple types of coupled interactions may facilitate the inclusion of both competition and 

mutualism, as well as both intraspecific and interspecific interactions.

Comparative approaches offer another powerful method to examine the evolution of 

different social systems across similar species (Thierry, 2004; West-Eberhard, 1969). In 

socially complex species, such comparisons can benefit greatly from a multilayer approach. 

For instance, the macaque genus consists of over 20 species that exhibit a variety of social 

structures, each with covarying behavioural traits, such as those related to connectivity 

and/or individual behaviours (Balasubramaniam et al., 2012, 2017; Sueur, Petit et al., 2011; 

Thierry, 2004). A multilayer network analysis of such covarying interactions—e.g. with 

layers as connectivity types or time periods—may offer an effective way to reveal 

differences in social structure. For example, using matrix-correlation methods to measure 

similarities between layers in a multilayer network offers a way to compare how behaviours 

covary across different species using a multiple regression quadratic assignment procedure 

(MRQAP) (Croft, Madden, Franks, & James, 2011). For multilayer networks, global overlap 
(Bianconi, 2013) and global interclustering coefficient (Parshani, Rozenblat, letri, Ducruet, 

& Havlin, 2010) are two measures that can quantify the overlap in edges between two layers. 

See Supplementary Material 1 for a brief discussion of layer similarity measures. One can, 

for instance, use global overlap between an affiliative network and a kinship network to 

examine the extent to which nepotism plays a role in social structure across species (Thierry, 

2004). In such an analysis, it may also be useful to account for spatial dependencies.

Researchers continue to develop new approaches for measuring heterogeneous structures in 

multilayer networks (Aleta & Moreno, 2019; Kivelä et al., 2014) that can aid in testing 

specific evolutionary hypotheses. For example, the ‘social brain hypothesis’ (Dunbar, 1998) 

posits that the evolution of cognition is driven by sociality, which is cognitively challenging. 

Recently, there have been several propositions for how to define sociality to test the social 

brain hypothesis; all of these include the idea that relationships between animals arise from 

different types of interactions (Bergman & Beehner, 2015; Fischer, Farnworth, Sennhenn-

Reulen, & Hammerschmidt, 2017). Multilayer network analysis can aid in developing 

objective measures of social structures that include the nuances of the various proposed 

definitions. Another evolutionary hypothesis, the ‘covariation hypothesis’ (Thierry, 2004), 

posits that changes in a single trait or behaviour can lead to changes in global social 

organization. Simulations of agent-based models (ABMs) on multilayer networks can test 

this hypothesis by exploring how different behavioural parameters along with coupling 

between layers influence group-level structure (Hemelrijk, 2002). For example, an ABM of 

macaque societies (called ‘Groofi world’) linked grooming and fighting behaviour through a 
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single trait (termed ‘anxiety’) (Hemelrijk & Puga-Gonzalez, 2012; Puga-Gonzalez, 

Hildenbrandt, & Hemelrijk, 2009). This model has an implicitly multilayer network 

structure, as it includes multiple interaction ‘layers’ that are coupled by a parameter. By 

incorporating such structure, the model illustrated that patterns of reciprocation and 

exchange (Hemelrijk & Puga-Gonzalez, 2012) and aggressive interventions (Puga-Gonzalez, 

Cooper, & Hemelrijk, 2016) can emerge from the presence of a few interconnected 

interaction types along with spatial positions.

CONSIDERATIONS WHEN USING MULTILAYER NETWORK ANALYSIS

We have outlined many opportunities for multilayer network approaches to be useful for the 

study of animal behaviour. However, the application of multilayer network analysis to 

animal behaviour data is in its infancy, with many exciting directions for future work. 

Multilayer network analysis may not always be appropriate for a given study, and there are 

several important considerations about both the applicability of the tools and the types of 

data on which to use them. Most importantly, practical implementation of these new tools 

will vary across study systems, and it will differ based on the questions asked. Therefore, 

researchers should not blindly implement these new techniques; instead, as with any other 

approach, they should be driven by their research questions and ensure that the tools and 

data are appropriate for answering those questions.

When and How to Use Multilayer Network Analysis

Multilayer network analysis adds complexity to the representation, analysis and 

interpretation of data. Therefore, it should be applied only when incorporating a system’s 

multifaceted nature can contribute to answering a research question, without adding needless 

complexity to data interpretation. Different types of social relationships may differ in the 

‘units’ of their measurement, and it can be challenging to interpret a multilayer network 

analysis of such integrated data. For example, if one layer represents genetic relatedness and 

another represents a social interaction, a multilayer similarity measure can reveal one or 

more relationships between these layers, but a versatility measure that uses both layers may 

be impractical or confusing to interpret, because they encode different types of connectivity 

data (i.e. relatedness and behaviour). In a similar vein, intralayer and interlayer edges can 

have entirely different meanings from each other, and it can thus be difficult to interpret the 

results of considering them jointly (Kivelä et ah, 2014; Supplementary Material 1).

Therefore, while the strength of using a multilayer network formalism is that it includes 

more information about interactions than a monolayer network, it is imperative to consider 

carefully which interactions to include in each layer, based on the study question. It is also 

important to be careful about which calculations are most appropriate for the different layers 

in a multilayer network, based on the functions of those layers, especially when they 

represent different behaviours.

Data Requirements

Just as in monolayer network analysis (or in any study that samples a population), a key 

challenge is collecting sufficient and/or appropriately sampled data that provide a realistic 
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depiction of the study system (Newman, 2018a, 2018b; Whitehead, 2008). Breaking data 

into multiple layers can result in sparse layers that do not provide an appropriate sample of 

the relationships in each layer. Furthermore, if data sampling or sparsity varies across 

different layers or if the frequency of behaviours differs drastically, one layer may 

disproportionally dominate the outcome of a multilayer calculation. To avoid domination of 

one data type, one can threshold the associations, normalize edge weights, adjust interlayer 

edge weights (Supplementary Material 1) or aggregate layers (Supplementary Material 2) 

that include redundant information (De Domenico, Nicosia, Arenas, & Latora, 2015).

It is also important to compare computations on a multilayer network to those on suitable 

randomizations (Kivelä et al., 2014). Just as in monolayer network analysis (Farine, 2017; 

Fosdick, Larremore, Nishimura, & Ugander, 2018; Newman, 2018c), it is vital to tailor the 

use of null models in multilayer networks in a context-specific and question-specific way. 

For example, some network features may arise from external factors or hold for a large set of 

networks (e.g. all networks with the same intralayer degree distributions), rather than arising 

as distinctive attributes of a focal system.

Practical Availability and Further Development of Multilayer Methodology

In practice, there are many ways for researchers in animal behaviour to implement 

multilayer network analysis. Existing software packages for examining multilayer networks 

include MuxViz (De Domenico, Porter et al., 2015), Pymnet (Kivelä) and the R package 

Multinet (Magnani & Dubik, 2018). In Table 1, we summarize available tools for 

implementing various measures. Multilayer network analysis is a rapidly growing field of 

research in network science, and new measures and tools continue to emerge rapidly. 

Because this is a new, developing field of research, many monolayer network methods have 

not yet been generalized for multilayer networks; and many of the existing generalizations 

have not yet been implemented in publicly available code. Additionally, many multilayer 

approaches have been published predominantly as proofs of concept in theoretically oriented 

research or have been implemented only for multiplex networks, but not for other multilayer 

network structures (such as interconnected networks). Furthermore, multilayer networks 

with multiple aspects (e.g. time and behaviour type) have rarely been analysed in practice, 

and the potential utility of incorporating multiple aspects to investigate questions about 

social behaviour may propel the development of tools to do so. The ongoing development of 

user-friendly software and modules is increasing the accessibility and practical usability of 

multilayer network analysis. Multilayer network analysis is very promising, but there is also 

a lot more work to do, as detailed above. Interdisciplinary collaborations between applied 

mathematicians, computer scientists, social scientists, behavioural ecologists, and others will 

be crucial for moving this exciting new field forward.

CONCLUSIONS

In this article, we have discussed multilayer network analysis and outlined potential avenues 

for using it to provide insights into social behaviour in animals. Multilayer networks provide 

a useful framework for considering many extensions of animal social network analysis. For 

example, they make it possible to incorporate temporal and spatial processes alongside 
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multiple types of behavioural interactions in an integrated way. We have highlighted 

examples in which multilayer methods have been used previously to study animal behaviour, 

illustrated them with several case studies, proposed ideas for future work in this area and 

provided practical guidance on some suitable available methodologies and software (Table 

1). Using multilayer network analysis offers significant potential for uncovering eco-

evolutionary dynamics of animal social behaviour. Multilayer approaches provide new tools 

to advance research on the evolution of sociality, group and population dynamics, and the 

roles of individuals in interconnected social and ecological systems. The incorporation of 

multilayer methods into studies of animal behaviour will facilitate efforts to improve 

understanding of what links social dynamics across behaviours and contexts, and it provides 

an explicit framework to link social behaviour with broader ecological and evolutionary 

processes (Silk et al., 2018).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A hypothetical multilayer network. Four ants interact at different time points and in two 

different ways. Each diamond represents a layer. The stack of three layers on the left 

represents aggressive interactions, and the slack of three layers on the right represents 

trophalactic interactions. Each colour represents a different lime point (blue is t=1. green is 

t=2, and yellow is t=3). Solid lines represent intralayer (i.e. within-layer) interactions, dotted 

blue lines represent interlayer (i.e. across-layer) edges in the temporal aspect, and dotted 

black lines represent interlayer edges in the behavioural aspect. Each interlayer edge 

connects replicates of the same individual across different layers. See Supplementary 

Material 1 for further discussion and for a presentation of the mathematical formalism of 

multilayer networks
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Figure 2. 
Social networks of a baboon group based oil (a) grooming interactions, (b) proximity-based 

association relations and (c) an aggregate or both interaction types. We created die network 

visualization using MuxViz (De Domenico, Porter. & Arenas, 2015). To construct a 

multilayer network, we joined die grooming and association monolayer networks as two 

layers in a multiplex network by connecting nodes that represent die same individual using 

interlayer edges. The sizes of the nodes are based on multilayer PageRank versatility (with 

larger nodes indicating larger versatilities). We colour die nodes based on monolayer 

PageRank centrality (with darker shades or green indicating larger values). A given 

individual in these two layers has die same size, but it can have different colours in the two 

layers. In the aggregate layer, we determine both the node sizes and their colours from 

PageRank centrality values in the aggregate network. We position the nodes in the same 
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spatial location in die two layers and the aggregate network. The data (Franz el al., 2015a) 

are from Franz et al. (2015b).
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Figure 3. 
A circular heat map illustrates variation among individuals in PageRank centralities and 

versatilities. Darker colours indicate larger values of PageRank centralities and versatilities. 

A given angular wedge in the rings indicates the values for one individual, whose identity 

(ID) we list outside the ring. The rings are PageRank centrality values from the monolayer 

grooming network (innermost ring), association network (second ring), aggregate network in 

which we sum the grooming and association ties (third ring) and PageRank versatility Tor 

the multiplex network (outermost ring). Using a blue outline, we highlight individual 3. who 

we discuss in the main text. We indicate the PageRank centrality and versatility values of 

individual 3 on the rings. We created this visualization using MuxViz (De Domenico, Porter 

et al., 2015). The data (Franz et al., 2013a) are From Franz et al. (2015b).
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Figure 4. 
Multiplex network or dolphin proximity-based associations during (1) travelling. (2) 

socializing and (3) foraging. There are 102 distinct individuals, and each layer layer a node 

for each individual. Individuals who were never seen interacting in a specific layer 

(behavioural context) are the small white nodes. Individuals who interacted in at least one 

layer are die large nodes, which we colour based on their community assignment from 

multilayer InfoMap (De Domenico, Lancichinetti el at, 2015). We created the network 

visualization with MuxViz (De Domenico, Porter el at, 2015). The data (Gazda, Iyer, 

Killingback, Connor, & Branll, 2015a) are from Gazda el al. (2015b).
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Figure 5. 
Community structures or individuals from (a) multilayer InfoMap community detection and 

(b) monolayer InfoMap community detection. Each row represents an individual dolphin, 

and each column represents a behavioural situation. In the multiplex community detection 

(a), communities can span all three columns of behaviours, and individuals who are the same 

colour in one or more columns belong to the same community. Community colours are the 

same as those in Fig. 4. Note that an individual who appears in all three layers can be 

assigned to the same community in all three situations (and therefore have the same colour 

in all three columns). An individual can also be part of three different communities and it 

then has different colours in each layer. It can also be assigned twice to one community and 

once to another, In monolayer InfoMap (b), each behavioural situation (as well as the 

aggregate monolayer network in the last column) yields a separate set or communities, so we 

use a different colour palette in each column. Individuals in the same column and the same 

colour are assigned to the same community. In both panels, white represents individuals who 

were not observed in the associated behavioural situation.
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Figure 6. 
A multilayer network of mixed-species interactions between blue tits Cyanistes caeruleus 
(bottom layer: blue nodes), and great tits, Parus major (top layer; orange nodes), in Wytham 

Woods, UK. (in the Cammoor–Stimpsons area) using data from Farine, Aplin. Sheldon, and 

Hoppitt (2015a, 2015b). Each node represents an individual bird. Blue and orange edges 

connect individuals within layers (i.e. intraspecific associations), and grey edges connect 

individuals across layers (i.e. interspecific associations). To aid clarity, we only show edges 

with a simple ratio index (Cairns &. Schwager 1987; Ginsberg & Young. 1992) of 0.03 or 

larger. Photographs by Keith Silk.
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