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Abstract

Many clinical or prevention studies involve missing or censored outcomes. Maximum likelihood 

(ML) methods provide a conceptually straightforward approach to estimation when the outcome is 

partially missing. Methods of implementing ML methods range from the simple to the complex, 

depending on the type of data and the missing-data mechanism. Simple ML methods for ignorable 

missing-data mechanisms (when data are missing at random) include complete-case analysis, 

complete-case analysis with covariate adjustment, survival analysis with covariate adjustment, and 

analysis via propensity-to-be-missing scores. More complex ML methods for ignorable missing-

data mechanisms include the analysis of longitudinal dropouts via a marginal model for 

continuous data or a conditional model for categorical data. A moderately complex ML method 

for categorical data with a saturated model and either ignorable or nonignorable missing-data 

mechanisms is a perfect fit analysis, an algebraic method involving closed-form estimates and 

variances. A complex and flexible ML method with categorical data and either ignorable or 

nonignorable missing-data mechanisms is the method of composite linear models, a matrix 

method requiring specialized software. Except for the method of composite linear models, which 

can involve challenging matrix specifications, the implementation of these ML methods ranges in 

difficulty from easy to moderate.
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1. INTRODUCTION

In many clinical or prevention studies the outcome is missing or censored. Maximum 

likelihood (ML) methods are a conceptually simple approach for estimation in this setting. 

The landmark 1976 paper by Rubin1 made several key innovations for ML estimation with 

missing data: a missing-data indicator as a random variable, a comprehensive likelihood 

framework, and the concept of ignorable and nonignorable missing-data mechanisms. Wu 
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and Carroll,2 Heitjan and Rubin,3 and Little and Rubin,4 extended this approach to censoring 

mechanisms.

The basic set-up follows. The goal of the analysis is to estimate parameters in an outcome 

model, a model for the effect of treatment or covariates on outcome. Coupled with the 

outcome model is a missing-data mechanism, a model for the probability that the outcome is 

missing or censored. The sets of parameters for the outcome model and the missing-data 

mechanism do not overlap and do not constrain each other.

In the context of likelihood-based inference, an ignorable missing-data mechanism is a 

missing-data mechanism whose parameters factor from the likelihood and hence do not 

contribute to likelihood-based inference for the outcome model. Rubin1 showed that an 

ignorable missing-data mechanism depends only on completely observed variables, in which 

case the data are said to be Missing at Random (MAR). A special case of MAR is Missing 

Completely at Random (MCAR), corresponding to a constant probability the data are 

missing.

A nonignorable missing-data mechanism is simply a missing-data mechanism that is not 

ignorable. This tutorial introduces the terminology of directly and indirectly nonignorable 

missing-data mechanisms. A directly nonignorable missing-data mechanism is a 

nonignorable missing-data mechanism in which the probability of missing a variable 

depends on that variable and possibly on other variables. An indirectly ignorable missing-

data mechanism is a missing-data mechanism in which the probability of missing a variable 

does not depend on that variable but depends on at least one other variable that is partially 

missing. Table 1 summarizes this missing-data taxonomy in the context of missing 

outcomes.

Implementation of ML methods with missing outcomes can range from simple computations 

to complex modeling with specialized software. Because ML methods are often tailored to 

specific missing-data scenarios and there are numerous missing-data scenarios, it is not 

possible to cover all ML methods here. Table 2 lists the ML methods discussed in this 

tutorial.

2. COMPLETE-CASE ANALYSIS

Consider a randomized trial in which missing in univariate outcome Y depends on 

randomization group Z. As an example, missing in outcome depends on side effects of the 

experimental treatment. Complete cases are participants who are not missing the outcome. 

For this scenario, the ML method is a complete case analysis, an analysis involving only 

complete cases. Separate derivations involve continuous and binary outcomes.

2.1 Continuous outcomes

Let subscript i index trial participant. Let Yi denote the outcome with realization yi. Let 

MissYi denote the missing-data indicator, where MissYi = 1 if yi is missing and 0 otherwise. 

Let {MissY} and {ObsY}denote the set of persons with missing and observed outcomes, 

respectively. Let Zi denote the randomly assigned group with realization zi. The outcome 
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model, pr(yi | zi; θ ), is the distribution of outcome yi given randomization to group zi, which 

is modeled by parameter set θ. The missing-data mechanism, pr(MissY i = 1| zi; β ), is the 

probability of missing outcome Yi given randomization to group zi, which is modeled by 

parameter set β. By definition, pr(MissY i = 0| zi; β ) = 1 − pr(MissY i = 1| zi; β ). An example 

of this missing-data mechanism is pr(MissY i = 1|Zi = 0; β ) = β0 = 1/2 for participants 

randomized to group 0, and pr(MissY i = 1|Zi = 1; β ) = β1 = 1/3 for participants randomized 

to group 1, where β = {β0 β1}. The parameter sets θ and β do not overlap and do not 

constrain one another.

The likelihood is the product of a factor for participants missing outcome, LMissY, and a 

factor for participants with observed outcome, LObsY,

LikCC( θ , β )   = LMissY × LObsY, where

LMissY = ∏i ∈ MissY ∫ pr(MissY i = 1| zi; β ) × pr(yi | zi; θ )dyi

= ∏i ∈ MissY pr(MissY i = 1| zi; β ),

LObsY = ∏i ∈ ObsY pr(MissY i = 0| zi; β ) × pr(yi | zi; θ )

(1)

The factor LMissY integrates over the missing continuous outcome. Rewriting the likelihood 

in equation (1) by defining fCC(β) as a function of parameters involving only β and defining 

LikCC:Ign(θ) as a function of parameters involving only θ yields

LikCC( θ , β ) = f CC( β )LikCC: Ign( θ ), where
f CC( β ) = ∏i ∈ MissY pr(MissY i = 1| zi; β ) × ∏i ∈ ObsY pr(MissY i = 0| zi;
β ),

LikCC: Ign( θ ) = ∏i ∈ ObsY pr(yi | zi; θ ) .

(2)

Because fCC(β) factors from the likelihood in equation (2), the missing-data mechanism is 

ignorable, so ML estimation for θ involves only LikCC: Ign( θ ). Moreover, because 

LikCC: Ign( θ ) involves only observed values of outcome, ML estimation for θ involves only 

complete cases.

2.2 Example 1

A hypothetical trial randomizes participants to dietary supplement or placebo. The outcome 

is a continuous biomarker. Missing in outcome depends only on randomization group. If the 

biomarker is normally distributed with a different mean for each randomization group, a 

simple ML estimate for the effect of treatment on outcome is the difference in mean 

biomarkers levels between randomization groups among the complete cases.
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2.3 Binary outcomes

A similar derivation applies to binary outcomes. Let nzy denote the number of persons 

randomized to group z =0, 1, with observed outcome y=0, 1. Let wz denote the number of 

persons randomized to group z =0, 1, with a missing outcome. See Table 3. The outcome 

model, pr(Y = 1| z; θ ) = θz, is the probability of outcome 1 given randomization to group z. 

The missing-data mechanism, pr(MissY = 1| z; β ) = βz, is the probability of missing 

outcome y given randomization group z. The likelihood with β = {β0, β1} and θ = {θ0, θ1} 

is

LikCC( θ , β )   = LMissY × LObsY, where

LMissY = ∏z βz (1 − θz ) + βz θz
w

= ∏z βz
wz

LObsY = ∏z (1 − βz )(1 − θz )
nz0 × (1 − βz ) θz

nz1 .

(3)

The factor LMissY sums over the missing binary outcomes. Let “+” in a subscript denote 

summation over the index in the subscript, so nz+ = nz0 + nz1. Rewriting the likelihood in 

equation (3) yields

LikCC( θ , β ) = f CC( β )LikCC: Ign( θ ), where

f CC( β ) = ∏z βz
wz × (1 − βz )

nz +,

LikCC: Ign( θ ) = ∏z (1 − θz )
nz0 × θz

nz1 .

(4)

ML estimation for θ comes from LikCC: Ign( θ ), which involves only the complete cases 

{nzy}.

2.4 Example 2

A hypothetical trial randomizes participants to dietary supplement or placebo. The outcome 

is a binary biomarker. Missing in outcome depends only on randomization group. For this 

scenario, a simple ML estimate of treatment effect is d = θ(EST)1 − θ(EST)0, where 

θ(EST)z = nz0/nz +. The estimated standard error is se = v, where 

v = ∑z θ(EST)z (1 − θ(EST)z )/nz +. For the hypothetical counts in Table 3, d= 0.150 with 

standard error 0.022.

3. COMPLETE-CASE ANALYSIS WITH COVARIATE ADJUSTMENT

Consider a randomized trial in which missing in outcome Y depends on randomization 

group Z and baseline covariate X. If the covariate X is not included in the outcome model, 

the missing-data mechanism is nonignorable leading to challenging ML estimation. The 

simple expedient of conditioning on the baseline covariate X in the outcome model yields an 
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ignorable likelihood and simple ML estimation based on complete cases with covariate 

adjustment. Separate derivations involve continuous and binary outcomes.

3.1 Continuous outcomes

Let Xi with realization xi denote the covariate for person i. The outcome model, 

pr(yi | zi, xi; θ ), is the distribution of outcome yi given randomization to group zi, and 

covariate xi. The missing-data mechanism, pr(MissY = 1| zi, xi; β ), is the probability of 

missing outcome yi given covariate xi and randomization to group zi. For example, suppose 

the probability of missing outcome due to a side effect of treatment is highest among 

participants in randomization group 1 who are age 60 or older at randomization. Let Xi =0 if 

age at randomization is less 60, and 0 otherwise. An example of this missing-data 

mechanism is 

pr(MissY i = 1|Zi = 0, Xi = 0, β ) = β00 = 1/5, pr(MissY i = 1|Zi = 0, Xi = 1, β ) = β01 = 1/5, pr
(MissY i = 1|Zi = 1, Xi = 0, β ) = β10 = 1/5, pr(MissY i = 1|Zi = 1, Xi = 1, β ) = β11 = 1/2

, where β = {β00 β01 β10 β11}. The parameter sets θ and β do not overlap and do not 

constrain one another. The likelihood is

LikCCX( θ , β ) = LMissY × LObsY, where

LMissY = ∏i ∈ MissY ∫ pr(MissY i = 1| zi, xi; β ) × pr(yi | zi, xi; θ )dyi

= ∏i ∈ MissY pr(MissY i = 1| zi, xi; β ),

LObsY = ∏i ∈ ObsY pr(MissY i = 0| zi, xi; β ) × pr(yi | zi, xi; θ ) .

(5)

Rewriting the likelihood in equation (5) by defining fCCX(β) as a function of parameters 

involving only β and defining LikCCX : Ign( θ ) as a function of parameters involving only θ 

yields

LikCCX( θ , β ) = f CCX( β ) × LikCCX : Ign( θ ), where
f CCX( β ) = ∏i ∈ MissY pr(MissY i = 1| zi, xi; β )∏i ∈ ObsY pr(MissY i = 0
| zi, xi; β )
LikCCX : Ign( θ ) = ∏i ∈ ObsY pr(yi | xi, zi; θ ) .

(6)

Because fCCX(β) factors from the likelihood, the missing-data mechanism is ignorable. 

Moreover, because LikCCX : Ign( θ ) involves only observed values of outcome, ML estimation 

of θ involves only complete case with covariates.

If X is partially MCAR, the likelihood based on all the data is indirectly nonignorable, 

leading to challenging ML estimation. However, the simple of expedient of considering only 

the random subset of the data with the observed covariate X yields a likelihood factor 

involving only θ, a result related to the formulation of Little et al.5. Moreover, this likelihood 

factor involves only complete cases with observed values of covariate X. See Appendix A.
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3.2 Example 1

A hypothetical trial randomizes participants to dietary supplement or placebo. The outcome 

is a continuous biomarker. Missing in outcome depends only on randomization group and 

age. Under this scenario, ML estimation can involve fitting to the complete cases a linear 

regression for the biomarker as a function of randomization group and age. The estimated 

treatment effect is the estimated coefficient for randomization group in the linear regression.

3.3 Binary outcomes

Consider a binary outcome and categorical baseline covariate. Suppose that missing in 

outcome depends only on treatment group and covariate. Let nzxy denote the number of 

persons randomized to group z =0, 1 with baseline covariate x = 0, 1 and observed outcome 

y=0, 1. Let wzx denote the number of persons with randomized to group z =0, 1 with 

baseline covariate x=0, 1 who had a missing outcome. See Table 4. . Let 

pr(Y = 1| z,   x; θ ) = θzx denote the probability of outcome 1 given randomization to group 

z. Let pr(MissY = 1| z, x; β ) = βzx denote the probability of missing outcome given 

randomization group z. The likelihood with β = {β00, β01, β10, β11} and θ = {θ00, θ00, θ10, 

θ11} is

LikCCX( θ , β ) = LMissY × LObsY, where

LMissY = ∏z ∏x βzx (1 – θzx )   + βzx θzx
wzx

= ∏z ∏x βzx
wzx ,

LObsY = ∏z ∏x (1 – βzx )(1 – θzx )
nzx0 × (1 – βzx ) θzx

nzx1 .

(7)

Rewriting the likelihood in equation (7) yields

LikCCX( θ , β ) = f CCX( β )LikCCX : Ign( θ ), where

f CCX( β ) = ∏z ∏x (1 – βzx )
wzx × βzx

nzx +,

LikCCX : Ign( θ ) = ∏z ∏x (1 – θzx )
nzx0 × θzx

nzx1 .

(8)

Because LikCCX : Ign( θ ) involves only observed values of Y, ML estimation of θ involves 

only complete case with covariates.

3.4 Example 2

A hypothetical trial randomizes participants to dietary supplement or placebo. The outcome 

is a continuous biomarker. Missing in outcome depends only on randomization group and a 

categorical covariate. Let πx denote the known probability the covariate takes value x in a 

target population. An ML estimate of treatment effect in the target population is 

d = ∑x ( θ(EST)1x – θ(EST)0x) πx, where θzx(EST) = nzx0
/nzx +

. The estimated standard error is 
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se = v, where v = ∑z ∑x θ(EST)zx (1 – θ(EST)zx )/nzx + πx
2 For the counts in Table 4 with 

πx = 0.5, d= 0.114 and standard error 0.023.

4. SURVIVAL ANALYSIS WITH COVARIATE ADJUSTMENT

Consider a randomized trial where outcomes are survival times and censoring depends on 

randomization group Z and baseline covariate X. Let F denote the failure time in the absence 

of censoring, and let C denote censoring time in the absence of failure. Censoring at time c 
implies F occurs at time c or later, and failure at time f implies C occurs after time f. Let 

pr(Fi = f i | zi, xi; θ ) denote the probability of failure (in the absence of censoring) at time fi , 

given randomization group zi and covariate xi. Let pr(Ci = ci | zi, xi; β ) denote the probability 

of censoring (in the absence of failure) at time ti , given randomization group zi and 

covariate xi. The parameter sets θ and β do not overlap and do not constrain one another.

If the covariate X is not included in the outcome model, the censoring mechanism is 

nonignorable. The simple expedient of including X in the outcome model leads to an 

ignorable censoring mechanism. The likelihood is

LikSurvX( θ , β ) = LCens × LFail,   where

LCens = ∏i ∈ Cens ∫
ci

∞
pr(Ci = ci | zi, xi; β) × pr(Fi = f i | zi, xi; θ )d f i

= ∏i ∈ Cens pr(Ci = ci | zi, xi; β ) × pr(F ≥ ci | zi, xi; θ ),

LFail = ∏i ∈ Fail ∫
f i

∞
pr(Ci = ci | zi, xi; β ) × pr(Fi = f i | zi, xi; θ )dci

= ∏i ∈ Fail pr(Ci > f i | zi, xi; β )   × pr(Fi = f i | zi, xi; θ ) .

(9)

The factor LCens integrates over the unobserved failure times. The factor LFail integrates over 

the unobserved censoring times. Rewriting the likelihood in equation (9) by defining 

fSurvX(β) as a function of parameters involving only β and defining LikSurvX : Ign( θ ) as a 

function of parameters involving only θ yields

LikSurvX( θ , β ) = f SurvX( β ) × LikSurvX : Ign( θ ),   where
f SurvX( β ) = ∏i ∈ Cens pr(Ci = ci | zi, xi; β )

× ∏i ∈ Fail pr(Ci > f i | zi, xi; β ),
LikSurvX : Ign( θ ) = ∏i ∈ Cens pr(F ≥ ci | zi, xi; θ )

× ∏i ∈ Fail pr(F = f i | zi, xi; θ ) .

(10)
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Because fSurvX(β) factors from the likelihood in equation (10), the censoring mechanism is 

ignorable, and ML estimation of θ involves only LikSurvX : Ign( θ ).

If X is partially MCAR, the likelihood based on all the data is indirectly nonignorable, 

making ML estimation difficult. However, the simple of expedient of considering only a 

random subset of the data with the observed covariate X leads to a likelihood with the 

covariate that involves only θ. See Appendix B.

4.2 Example

A hypothetical trial randomizes participants negative on a biomarker to dietary supplement 

or placebo. The outcome is time until the biomarker is positive. Loss-to-follow-up depends 

only on randomization group and age. ML estimation can involve fitting a proportional 

hazards model in which the hazard for failure depends on randomization group and age. The 

estimated treatment effect is the estimated coefficient for randomization group in the model.

5. PROPENSITY-TO-BE-MISSING SCORES

The method of propensity-to-be-missing scores6 simplifies a complete-case analysis or a 

survival analysis when adjusting for multiple baseline covariates. It also avoids having to 

specify a function for incorporating multiple covariates into the outcome model and yields 

an easily interpretable difference estimate. The method of propensity-to-be-missing scores 

involves the following three steps.

Step 1. Fit a separate model to the missing-data mechanism in each randomization group. 
For a univariate outcome with randomization group z, fit a model for the missing-data 

mechanism, pr(MissY i = 1|Zi =   z, xi; βz ). For a survival outcome with randomization group 

z, fit a model for the censoring mechanism, pr(Ci = ci |Zi = z, xi; βz ). For a proportional 

hazards model for the censoring mechanism in randomization group z, let c*(z, xi; βz) 

denote the proportionality component of the model, where the other component is the 

baseline hazard for censoring. Let β(EST)z denotes the estimate of βz

Step 2. Compute propensity-to-be-missing scores. For a univariate outcome, let 

scorezi = pr(MissY i = 1| zi, xi; β(EST)z ). For a survival outcome with a proportional hazards 

model for censoring, let scorezi =c*(zi, xi; β(EST)z).

Step 3. Compute estimated treatment effect and its standard error based on estimates in each 
quintile of scores. Divide the set of scores for each randomization group z, {scorezi}, into 

quintiles. For randomization group z and quintile j, let fzj denote the estimated probability of 

outcome or the probability of survival to a pre-specified time. Let sezj denote the estimated 

standard error of fzj. Let Nz denote the number in randomization group z. The estimated 

treatment effect is the treatment effect averaged over the quintiles,

d = ∑ j ( f 1 j − f 0 j)/5 = (∑ j f 1 j − ∑ j f 0 j)/5 . (11)

The estimated standard error of d is se = v, where
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v = ∑z se
z j2

/25 + ∑ j ( f z j − f z5)24/(25Nz) − ∑ j > k 2( f z j − f z5)/(25Nz) . (12)

5.1 Example

The AIDS Clinical Trials Group randomized patients to dual therapy (z=0) versus triple 

therapy (z=1) into groups of equal size of Nz= 328.7 Let d denote the estimated difference in 

survival to 18 months with triple instead of dual therapy. Approximately 20% of subjects 

were missing outcomes due to refusal to continue the study or loss-to-follow-up. Two 

baseline covariates, age and CD4 count, are likely related to both survival and dropout. 

Following Baker et al.,6 let fzj denote the Kaplan-Meier estimate of the probability of 

surviving 18 months among participants in quintile j of the scores in randomization group z. 

Let sezj denote the estimated standard error of fzj. Substituting the values fzj and sezj from 

Table 5 into the equations (11) and (12) gives d = 0.72 with standard error 0.34.

6. LONGITUDINAL DROPOUTS

Consider a randomized trial involving longitudinal outcomes in which dropout depends on 

previously observed outcomes and possibly randomization group and covariates. For 

example, participants with an unfavorable outcome at a previous time may be more likely to 

drop out than those with a favorable outcome at a previous time. ML estimation involving 

this ignorable missing-data mechanism is discussed separately for continuous and binary 

outcomes

6.1 Continuous outcome

Without loss of generalizability, consider outcomes at three times, denoted Y1, Y2, and Y3, 

with Y1 always observed. The outcome model, pr(y1i, y2i, y3i | zi, xi; θ ), is the joint 

distribution of outcomes y1i, y2i, and y3i given randomization to group zi with covariate xi. 

The covariate xi could be a baseline covariate or covariate that varies over time in a 

predetermined manner, such as time of observation. The missing-data mechanism 

pr(MissY2i = 1| y1i, zi, xi; β ), is the probability of missing outcome Y2i given outcome y1i, 

randomization to group zi, and covariate xi. The missing-data mechanism, 

pr(MissY3i = 1| MissY2i = 0, y1i, y2i; β ), is the probability of missing outcome Y3i given not 

missing outcome Y2i, outcome y2i, outcome y1i, randomization to group zi, and covariate xi. 

The parameter sets θ and β do not overlap and do not constrain one another. The 

probabilities of dropout at time 2, dropout at time 3, and no dropout are, respectively,

f drop2(y1i, zi, xi; β ) = pr(MissY2i = 1| y1i, zi, xi; β ),
f drop3(y1i, y2i, zi, xi; β ) = pr(MissY3i = 1| MissY2i = 0, y1i, y2i, zi, xi; β ) × pr
(MissY2i = 0| y1i, zi, xi; β ),
f nodrop(y1i, y2i, zi, xi; β ) = pr(MissY3i = 0| MissY2i = 0, y1i, y2i, zi, xi; β )

× pr(MissY2i = 0| y1i, zi, xi; β ) .

(13)
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The likelihood is the product of three factors corresponding to the three subsets of 

participants defined by dropouts, {DropOutTime2}, {DropOutTime3}, and {NoDropOut},

LLD( θ , β ) = LDropOutTime2 × LDropoutTime3 × LNoDropOut,   where

LDropOutTime2 = ∏i ∈ DropOutTime2 ∫ ∫ f drop2(y1i, zi, xi; β ) × pr

(y1i, y2i, y3i | zi, xi; θ )dy3idy2i,

LDropOutTime3 = ∏i ∈ DropOutTime3 ∫ ∫ f drop3(y1i, y2i, zi, xi; β )

× pr(y1i, y2i, y3i | zi, xi; θ )dy3i,

LNoDropOut = ∏i ∈ NoDropOut f nodrop(y1i, y2i, zi, xi; β ) × pr(y1i, y2i,

y3i | zi, xi; θ ) .

(14)

Rewriting the likelihood in equation (14) by defining f LD( β ) as a function of parameters 

involving only β and defining LLD: Ign( θ ) as a function of parameters involving only θ 

yields

LLD( θ , β ) = f LD( β )LLD: Ign( θ ),   where

f LD( β ) = ∏i ∈ DropOutTime2 f drop2(y1i | zi, xi; β )

× ∏i ∈ DropOutTime3 f drop3(y1i, y2i | zi, xi; β )

× ∏i ∈ NoDropOut f nodrop(y1i, y2i | zi, xi; β ),

LLD: Ign( θ ) = ∏i ∈ DropOutTime2 ∫ ∫ pr(y1i, y2i, y3i | zi, xi; θ )dy3idy2i

× ∏i ∈ DropOutTime3 ∫ pr(y1i, y2i, y3i | zi, xi; θ )dy3i

× ∏i ∈ NoDropOut pr(y1i, y2i, y3i | zi, xi; θ ) .

(15)

ML estimation of θ in LLD: Ign( θ ) in equation (15) typically involves a marginal outcome 

model in which outcome at each time is a function of time, treatment, and covariates, but not 

previous outcomes.

6.2 Example 1

A standard marginal outcome model assumes a multivariate normal distribution with a 

model for the mean outcome at each time and a structured variance covariance matrix 

arising from random effects or temporal correlations.8 Using the commercial software SAS 

Proc Mixed,9 Allison10 fit a multivariate normal model marginal model to continuous 

longitudinal outcomes with dropout. In Allison’s model, the longitudinal outcome was the 

logarithm of hourly wage and covariates were sex and year.
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6.3 Binary outcomes

With longitudinal binary outcomes, a conditional model is often easier to implement than a 

marginal model. Without loss of generality consider 3 times. For simplicity of notation, 

covariates are implicit. Let yj denote the binary outcome at time j. Let n1(y1) denote the 

number of participants who dropped out after outcome yI. Let n2(y1, y2) denote the number 

of participants who dropped out after outcomes yI and y2. Let n3(y1, y2, y3) denote the 

number of participants with observed outcomes y1, y2, and y3. The conditional model factors 

the joint distribution of outcomes as pr(y1, y2, y3; θ) = pr(y1; θ) × pr(y2| y1;θ) × pr(y3| y2, 
y1; θ). With obvious extension of notation from the continuous outcome scenario, the 

likelihood is

LLD( θ , β ) = LDropOutTime2 × LDropoutTime3 × LNoDropOut,   where

LDropOutTime2 = ∏y1{ f drop2(y1; β )   × pr(y1; θ )}
n1(y1)

,

LDropoutTime3 = ∏y1 ∏y2{ f drop3(y1, y2; β ) × pr(y1; θ ) × pr(y2 | y1; θ

)}
n2(y1,  y2)

,

LNoDropOut = ∏y1 ∏y2 ∏y3{ f nodrop(y1,   y2; β ) × pr(y1; θ ) × pr(y2 | y1;

θ )

× pr(y3 | y2,   y1; θ)}
n3(y1,  y2,  y3)

.

(16)

Rewriting the likelihood in equation (16) gives

LLD( θ , β ) = f LD( β )LLD: Ign( θ ),   where

f LD( β ) = ∏y1 ∏y2 ∏y3 f drop2(y1; β )
n1(y1)

× f drop3(y1,   y2; β )
n2(y1,  y2)

× f nodrop(y1,   y2; β )
n3(y1,  y2, + )

,

LLD: Ign( θ ) = ∏y1 pr(y1; θ )
n1(y1)  + n2(y1, + )  + n3(y1, + , + )

× ∏y1 ∏y2 pr(y2 | y1; θ )
n2(y1,  y2) + n3(y1,  y2, + )

× ∏y1 ∏y2 ∏y3 pr(y3 | y2, y1; θ )
n3(y1, y2,  y3)

.

(17)

ML estimation can involve fitting a logit model to the various factors and then combining 

estimates. A more parsimonious outcome model that conditions only on the previous 

outcome for times after the first would have a likelihood, with θ = {θ1, θ2},

LLD: Ign *( θ ) = ∏y1 pr(y1; θ1 )
n1(y1)  + n2(y1, + )  + n3(y1, + , + )

× ∏y1 ∏y2 pr(y2 | y1; θ2 )
n2(y1,  y2)  + n3(y1,  y2, + )

× ∏y2 ∏y3 pr(y3 | y2; θ2 )
n3( + , y2, y3)

.

(18)
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6.4 Example 2

A false positive (FP) on cancer screening is a positive screening test followed by a negative 

work-up or biopsy. The goal is to estimate the probability of least one FP in a program of 

screens when the number of screens received varies among participants. A convenient 

simplification uses screen number instead of time as the longitudinal metric, so all missing 

FP’s are dropouts. For example, receiving screens at times 1 and 3 and missing the screen at 

time 2 corresponds to receiving screens 1 and 2 and then dropping out. Following Baker et 

al.,11 let outcome Yj denote FP status (0 for no FP or 1 for FP) if screen j were received, 

which is missing when screen j is missing. Missing a screen likely depends on the FP status 

of the previous screens and possibly observed covariates, so the missing-data mechanism is 

ignorable.

Consider the count data in Table 6 from Baker et al.11, which corresponds to ages 50 to 54 at 

first screen. As will become apparent, for the goal of estimating the probability of at least 

one FP in a screening program, it is only necessary to consider participants with no FP on 

the previous screen. One covariate is time interval xj since last screen, with xj = 1 (9–12 

months), 2 (13–15 months), or 3 (16–18 months). A second covariate is screen number j. Let 

my denote the number of participants with outcome y on screen 1. For j>1, let njxy denote 

the number of participants with outcome y on screen j among participants with outcome 

Y=0= no FP on screen j–1 and for whom screen j occurred at time interval xj since screen j–
1. See Table 6. Based on an extension of equation (18), the likelihood factor involving θ = 

{θ1, θ2}is

LLD: Ign( θ ) = ∏y pr(Y1 =   y; θ1 )
my

× ∏ j > 1 ∏y pr(Y j = y |Y( j − 1) = 0, x, j; θ2 )
n jxy .

(19)

ML estimation can include fitting a logit model, 

pr(Y j = 1|Y( j − 1) = 0, x, j; θ2 ) = expit( θ20 + θ21 j + θ22 x j). The resulting estimates, 

θ(EST)21= 0.23 with standard error 0.15 and θ(EST)22 =   0.017 with standard error of 0.15, 

suggest a more parsimonious model, pr(Y j = 1|Y( j − 1) = 0; θ2 ) = θ2. Let 

pr(Y1 = 1; θ1 ) = θ1. The ML estimates are θ(EST)1 = m1/m+ and θ(EST)2 = n+ + 1/n+ + +. 

The estimated probability of at least one false positive in 5 screens is 

r = 1 – (1 – θ(EST)1)(1 – θ(EST)2)4 with standard error se = v, where 

v = (∂r / θ(EST)1)2 θ(EST)1 (1 − θ(EST)1 )/m+ + (∂r / θ(EST)2)2 θ(EST)2 (1 − θ(EST)2 )/n+ + +. 

Based on the counts in Table 6. θ(EST)1 =   0.0179, θ(EST)2 =   0.0069, and r = 0.045 with 

standard error 0.004.

7. PERFECT FIT ANALYSIS

A perfect fit analysis is an algebraic method of ML estimation with partially observed 

categorical data and a saturated model. In a saturated model the number of independent 

parameters equals number of independent cell counts. The advantage of using a saturated 
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model is that it makes as few assumptions as possible. A perfect fit analysis involves the 

following steps:

1. Set observed counts equal to expect counts and solve for closed-form parameter 

estimates.

2. Compute the statistic of interest from the parameter estimates.

3. Compute the standard error using the Multinomial-Poisson (MP) transformation.

The MP transformation12 changes a complicated multinomial likelihood into a simpler 

likelihood for Poisson random variables with the same the ML estimates and variances. 

Let{nu} denote the set of observed counts, indexed by u. Let d denote the statistic from the 

perfect fit analysis, which is closed-form function of {nu}. With a saturated model, the MP 

transformation treats nu as a Poisson random variable with mean and variance equal to nu. 

Applying the delta method, the estimated variance of d is

varMP(d) = ∑u (∂d / ∂nu)2nu, (20)

a quantity easily calculated using symbolic computing. A caveat of the perfect fit analysis is 

that the parameter estimates are ML only if the parameter estimates lie in the interior of the 

parameter space.

7.1 Example 1

The Prostate Cancer Prevention Trial randomized participants to placebo (z=0) or finasteride 

(z=1). 13 One outcome of interest was prostate cancer status determined on biopsy (y = 0 = 

n0, y = 1 = yes), which is missing if there is no biopsy. An auxiliary variable is a variable 

observed after randomization that is related to outcome. Biopsy recommendation based on a 

test for prostate specific antigen (a= 0 = no or a = 1 = yes) is an auxiliary variable which is 

strongly related to the probability of missing the outcome. Incorporating this auxiliary 

variable into the model improves the adjustment for missing outcomes. Let nzay denote the 

number of participants in randomization group z with auxiliary variable a and observed 

outcome y. Let wza denote the number of participants in randomization group z with 

observed auxiliary variable a and missing outcome. See Table 7.

The outcome model is pr(Y = y | z) = θy | z. The auxiliary variable model, 

pr(A = a | y, z) = λa | zy, is the probability of auxiliary variable a given outcome y and 

randomization group z. The missing-data mechanism is pr(MissY = 1|a, z) = βza. The model 

is saturated because there are 10 independent parameters (2 for θ1|z, 4 for λ1|zy, and 4 for 

βza) and 10 independent cell counts (8 for {nzay}and 4 for {wza} minus 2 because nz++ + 
wz+ is fixed). The likelihood is
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Lik( θ , β ) = LMissY × LObsY,   where

LMissY = ∏z ∏a (∑y θy | z λa | zy βza )
wza,

LObsY = ∏z ∏a ∏y θy | z λa | zy(1 – βza )
nzay .

(21)

The perfect fit analysis yields ML estimates without numerical maximization of the 

likelihood in equation (21). It involves the following steps.

Step 1. Set observed counts equal to expect counts and solve for closed-form parameter 
estimates. Let Nz = nz + + + wz +. The relevant equations are

Nz∑y θy | z λa | zy βza = wza . (22)

Nz θy | z λa | zy(1 – βza ) = nzay, (23)

Summing equation (22) over y and adding it to equation (23) yields

Nz∑y θy | z λa | zy = nza + + wza . (24)

Substituting equation (24) into equation (22) and solving for βza gives 

β(EST)za = wza/(nza + + wza). Substituting β(EST)za for βza in equation (23) and simplifying 

gives

θy | z λa | zy = (nzay + wzanzay/nza +)/Nz (25)

Summing both sides of equation (25) over a and solving for θy|z gives

θ(EST)y | z = mzy/mz +, where mzy = nz + y + ∑awzanzay/nza + . (26)

Step 2. Compute the statistic of interest from the parameter estimates.

The statistic of interest is d = θ(EST)1 |1 – θ(EST)1 |0.

Step 3. Compute the standard error using the MP transformation. The estimated standard 

error is se = v, where v = varMP(d) = ∑z ∑a ∑y (∂d / ∂nzay)2nzay + ∑z ∑a (∂d / ∂wza)2wza. 

Based on the counts in Table 7, which come from Baker14, d= −0.10 with standard error 

0.007, indicating that finasteride decreases prostate cancer on biopsy.

Baker15 extended this perfect fit analysis to include lza participants randomized to group z 
with auxiliary variable a who are missing outcome, yielding θ(EST)y | z = mzy/mz +, where 

mzy = nz + y + ∑awzanzay/nza + lza. For the Prostate Cancer Prevention Trial, Baker et al.14 
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implemented a more complicated perfect fit analysis involving biopsy recommendation, 

biopsy result, and surgery result.

7.2 Example 2

A hypothetical trial randomizes smokers to a behavioral intervention or no intervention to 

stop smoking. The binary outcome is self-report of smoking cessation. Missing in outcome 

depends only on the unobserved outcome. See Appendix C for a perfect fit analysis based on 

Baker and Laird.16 Under this scenario, for the hypothetical data in Table 3, the estimated 

risk difference between the two randomization groups is d=0.677 with standard error 0.10.

7.5 Example 3

A hypothetical diagnostic testing study involves two samples cross-classifying binary test 

results: (i) a reference test versus a new test and (ii) a gold standard versus a reference test. 

The goal is to estimate the sensitivity and specificity of the new test versus the gold 

standard. The assumptions are an ignorable missing mechanism, the same sensitivity and 

specificity of both new and reference test (relative to the gold standard) in both samples, and 

conditional independence of reference and new test results given the gold standard. See 

Appendix D for a perfect fit analysis based on Baker.17 For the hypothetical data in Table 8, 

the estimated sensitivity of the new test relative to the gold standard is 0.80 with standard 

error 0.17. The estimated specificity of the new test relative to the gold standard is 0.60 with 

standard error 0.10.

7.4. Example 4

Some randomized trials involve all-or-none compliance, the switching of treatments 

immediately at randomization. For all-or-none compliance (or related all-or-none availability 

in before-and-after studies), Baker and Lindeman18 and Imbens and Angrist19 (followed by 

Angrist, Imbens, and Rubin20) independently developed a method, later called latent class 

instrumental variables,21 that uses potential outcomes with reasonable assumptions to 

estimate the causal effect of treatment among the latent class of compliers (participants who 

would receive the assigned treatment regardless of randomization group to which they are 

actually assigned). Baker22 used a perfect fit analysis for ML estimation involving a 

randomized cancer screening trial, discrete-time survival data, all-or-none compliance, and 

latent class instrumental variables. Baker and Kramer23 formulated a perfect fit analysis for 

ML estimation involving a randomized trial, a partially observed binary endpoint, all-or-

none compliance, and latent class instrumental variables. See Appendix E. For the 

hypothetical data in Table 9 under the latter scenario, the estimated treatment effect based on 

the perfect fit analysis is 0.4 with standard error 0.095.

8. COMPOSITE LINEAR MODELS

Composite linear models24 provide a flexible approach to ML estimation with complex 

missing data patterns involving categorical data and either ignorable or nonignorable 

missing-data mechanisms. Let Uobs denote a vector of expected values for observed counts. 

Let U denote a vector of expected counts if there were no missing data. Let C denote a 
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matrix of 0’s and 1’s that indicates the unobserved expected counts summed to yield 

observed expected counts. A composite linear model has the form,

Uobs = C U, where
U = Nexp ∑k Q(k) ,
Q(k) = q(k)(W(k), G(k)H(k)),
H(k) = h(k)(Z(k), X(k)ϕ(k)),

(27)

W(k), G(k)
, H(k)

, Z(k), and X(k) are matrices, h(k)( ) and q(k) ( ) are functions, k indexes model 

components, and the parameter vector ϕ(k) involves either the outcome model parameters θ 
or the missing-data mechanism parameters β. The parameter sets θ and β do not overlap and 

do not constrain one another. See Appendix F for an illustration of the matrices involved 

with discrete-time hazard models.

Once the matrices and function are specified, maximization is automatic, beginning with an 

EM algorithm, which is insensitive to poor starting values, and then switching to a Newton-

Raphson algorithm, which converges faster and yields standard errors. Examples include 

two-phase surveys25, regression analysis of grouped survival data with missing covariate26, 

and misclassification.27 Software for fitting composite linear models, written in 

Mathematica28, is available at https://prevention.cancer.gov/about-dcp/staff-search/stuart-g-

baker-scd/composite-linear-models. The user needs to specify the matrices and functions, a 

task simplified by using a previous example as a template, but nevertheless challenging.

8.1 Example 1

Investigators were interested in the effect of drain, a tube for removing fluid from a wound, 

on wound infection following surgery. Because of the expense and difficulty of following all 

patients after hospital discharge to determine wound infection status, investigators 

implemented the following double sampling design. For a random partial follow-up sample, 

investigators followed 1,236 patients after surgery until wound infection, hospital release, or 

the end of the study at 30 days after surgery, whichever occurred first. For a random full 

follow-up sample, investigators followed 194 patients after surgery until wound infection 

(either in the hospital or after release from the hospital) or the end of the study at 30 days 

after surgery, whichever occurred first. Time since surgery involves 4 intervals: 1 (0–4 days), 

2 (5–7) days, 3 (8–30 days), and 4 (more than 30 days). See Table 10.

Baker et al.29 formulated the following model to analyze these data. Let hf|x denote the 

hazard function for wound infection (in the absence of censoring) in time interval f =1, 2, 3 

given drain status x = 0 = no drain or x = 1=drain. The outcome model is

logit(h f | x) = θ0 + θ2 (if f = 2) + θ3 (if f = 3) + θX (if x = 1) . (28)

Let ct|yd denote the hazard function for hospital discharge at the start of time interval t given 

wound infection occurs in time interval f (for t≥ f). The missing-data mechanism is
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logit(ct | f x) = β0 + β2 (if t = 2) + β3 (if t = 3) + βX (if x = 1) + βRL (if t = f )
. (29)

The parameter βRL, where the subscript denote response-linked, makes the missing-data 

mechanism directly nonignorable. Using the method of composite linear models, Baker et al.
29 estimated βRL as β(EST)RL = −7.12 with standard error of 1.44. The estimated effect of 

drain on wound infection was θ(EST)X = 1.40 with standard error 0.24.

8.2 Example 2

The Muscatine Coronary Risk Factor Study collected data on obesity outcome (yes or no) in 

girls and boys at three times (initially and 2 and 4 year later).30 Missing outcomes occurred 

at one or more times, yielding 7 patterns of missing data. Baker31 used composite linear 

models to fit a marginal outcome model in which the probability of obesity at each time 

depends on age at that time and gender. The outcome model coupled with a nonignorable 

missing-data mechanism fit substantially better than the outcome model coupled with an 

ignorable missing-data mechanism nested within the nonignorable missing-data mechanism. 

The estimated coefficient for sex in the logistic outcome model was 0.15 with standard error 

0.08, indicating higher obesity levels for girls than boys.

9. DISCUSSION

An often-overlooked consideration with missing-data analyses is the need for missing-data 

adjustments to make sense. One criterion for sensible missing-data adjustment is that the 

unobserved data exist or could be ascertained. For example, if a biopsy result is missing 

because an eligible person did not arrive at the clinic, there exists an unobserved biopsy 

result that could have been ascertained if the person had arrived at the clinic. However, if the 

biopsy result is missing because of death, there does not exist an unobserved biopsy result 

that could have been ascertained. A less stringent criterion for sensible missing-data 

adjustment is that the unobserved result could be observed in a relevant target population 

where the missingness could be prevented, as might apply if missing in biopsy was due to 

accidental death and the target population specified no accidental deaths.

An important component of many missing-data analyses is a sensitivity analysis to 

determine how assumptions about the missing-data mechanisms affect estimates of 

treatment effect in the outcome model. A model-based sensitivity analysis computes 

estimated treatment effect under multiple missing-data mechanisms, as when fitting 

composite linear models. If an outcome model coupled with non-ignorable missing-data 

mechanism fits substantially better than the same outcome model coupled with a nested 

ignorable missing-data mechanism, reported estimates should be based on the former model. 

A parameter-based sensitivity analysis computes estimated treatment effect when varying a 

parameter measuring the association between missing outcome and outcome.36 A data-based 
sensitivity analysis computes estimated treatment effect when imputing values for the 

missing outcome.37, 38 A randomization-based sensitivity analysis using the randomization 

distribution to bound the estimated treatment effect if missing in outcome depends on an 

Baker Page 17

Stat Med. Author manuscript; available in PMC 2020 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unobserved binary variable.39 When implementing a sensitivity analyses, prior knowledge 

helps to limit the range of possible values.

In summary, the ML methods discussed here range from the simple to the complex. The 

simplest methods are complete-case analysis and complete-case analysis adjusted for 

covariates Survival analyses adjusted for covariates are easy to implement using standard 

software. For missing in univariate or survival outcome based on multiple covariates, the 

propensity-to-be-missing score is preferable and easy to implement. More complicated ML 

methods are needed for fitting models with longitudinal dropouts. Commercial software is 

available with continuous outcomes. With binary longitudinal outcomes, a conditional model 

is easy to fit but extra work is needed to combine parameter estimates to estimate the 

quantity of interest. The perfect fit analysis is an underappreciated approach to obtain to 

obtain closed form ML estimates and variances for complicated likelihoods involving 

saturated models fit to categorical data. Some work is needed in the algebraic derivation, but 

it is generally simpler to implement than iterative numerical fitting. The most complex 

method discussed is the method of composite linear models, which is a flexible approach 

involving categorical data. Except for composite linear models, which awaits the 

development of more user-friendly software, all the above methods can contribute to the 

toolkit of statisticians for analyzing clinical and prevention studies with missing outcomes.
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APPENDIX A

This Appendix discusses ML estimation for a randomized trial in which missing in outcome 

Y depends on randomization group Z and baseline covariate X in which the baseline 

covariate is MCAR among some participants. Four subsets of participants defined by the 

pattern of missing data are missing both Y and X, {MissY:MissX}; missing Y with observed 

X, {MissY:ObsX}; observed Y with missing X,{ObsY:MissX}; and observed Y and 

observed X, {ObsY:ObsX}. Let β = (β1, β2). Let pr(xi; λ) denote the distribution of xi, 

which is modeled by parameter set λ. Let MissX denote the missing-data indicator for X. 

The probability of missing X is constant, as denoted by pr(MissXi = 1; β2). The likelihood is
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LikCCX = LMissY : MissX × LMissY :ObsX × LObsY : MissX × LObsY :ObsX,   where

LMissY : MissX = ∏i ∈ MissY : MissX ∫ ∫ pr(MissY i = 1| MissXi = 1, zi, xi; β1)

× pr(MissXi = 1; β2)

× pr(yi | xi, zi; θ ) × pr(xi; λ )dxidyi,

LMissY :ObsX = ∏i ∈ MissY :ObsX ∫ pr(MissY i = 1| MissXi = 0, zi, xi; β1) × pr

(MissXi = 0; β2)

× pr(yi | xi, zi; θ ) × pr(xi; λ )dxidyi,

LObsY : MissX = ∏i ∈ ObsY : MissX ∫ pr(MissY i = 0| MissXi = 1, zi, xi; β1 )

× pr(MissXi = 1; β2 )

× pr(yi | xi, zi; θ ) × pr(xi; λ )dxi,

LObsY : MissX = ∏i ∈ ObsY :ObsX pr(MissY i = 0| MissXi = 0, zi, xi; β1 ) × pr

(MissXi = 0; β2 )

× pr(yi | xi, zi; θ )pr(xi; λ ) .

(A.1)

The likelihood in equation (A.1) is indirectly nonignorable. There is no factor of the 

likelihood involving θ without β because β linked to λ in LMissY : MissX and λ is linked to θ 

in LObsY : MissX. To simplify ML estimation, a simple expedient is to consider the likelihood 

for the random sample of participants with observed values of covariate,

LikCCX :ObsX = LMissY :ObsX × LObsY :ObsX
= f CCX( β , λ ) × LikCCX :ObsX : Ign( θ ), where
f CCX( β , λ ) = ∏i MissY :ObsX pr(MissY i = 1| MissXi = 0, zi, xi; β1) × pr
(MissXi = 0; β2) × pr(xi; λ )

× ∏i ObsY :ObsX pr(MissY i = 0| MissXi = 0, zi, xi; β1 ) × pr
(MissXi = 0; β2 ) × pr(xi; λ ),
LikCCX :ObsX : Ign( θ ) = ∏i ∈ ObsY :Ob pr(yi | xi, zi; θ ) .

(A.2)

ML estimation for θ in equation (A.2) involves only LikCCX :ObsX : Ign( θ ), which translates 

into complete case analysis adjusted for observed values of covariate X.

APPENDIX B

This Appendix discusses ML estimation in a randomized trial with survival times in which 

the probability of censoring depends on randomization group Z and a partially observed 
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baseline covariate X. Four subsets of participants defined by the pattern of missing data are 

censored with missing X,{CensMissX}, censored with observed X, {CensObsX}, failure 

with missing X, {FailMissX}, and failure with observed X, {FailObsX}. Let β = (β1, β2). 

The probability of missing X is constant, as denoted by pr(MissXi = 1; β2). The missing data 

patterns give rise to the following likelihood,

LikSurvX( θ , β ) = LCensMissX × LCensObsX × LFailMissX × LFailObsX,   where

LCens; MissX = ∏i ∈ CensMissX ∫
ci

∞∫ pr(Ci = ci | MissXi = 1, zi, xi; β1 )

× pr(MissXi = 1; β2 ) × pr(Fi = f i | zi, xi; θ ) × pr(xi; λ

)dxid f i,

LCens:ObsX = ∏i ∈ CensObsX ∫
ci

∞
pr(Ci = ci | MissXi =   0, zi, xi; β1 )

× pr(MissXi = 0; β2 ) × pr(Fi = f i | zi, xi; θ ) × pr(xi; λ )d f i,

LFail: MissX = ∏i ∈ FailMisX ∫
f i

∞∫ pr(Ci = ci | MissXi = 1, zi, xi; β1 )

× pr(MissXi = 1; β2 ) × pr(Fi = f i | zi, xi; θ )   pr(xi; λ

)dxidci,

LFail:ObsX = ∏i ∈ FailObsX ∫
f i

∞
pr(Ci = ci | MissXi = 0, zi, xi; β1 )

× pr(MissXi = 0; β2 ) × pr(Fi = f i | zi, xi; θ ) × pr(xi; λ )dci .

(B.1)

The likelihood in equation (B.1) is indirectly nonignorable. There is no factor of the 

likelihood involving θ without β because β is linked to λ in LCens: MissX and λ is linked to θ 

in LFail: MissX. To simplify ML estimation, a simple expedient is to consider the likelihood 

for the random sample of participants with observed values of covariate,
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LikSurvX :ObsX( θ , β ) = LCensObsX × LFailObsX

= f SurvX( β , λ ) × LikSurvX :ObsX : Ign( θ ),   where

f SurvX( β , λ ) = ∏i ∈ CensObsX pr(Ci = ci | MissXi = 0, zi, xi; β1 ) × pr

(MissXi = 0; β2 ) × pr(xi; λ )

∏i ∈ FailObsX ∫
f i

∞
pr(Ci = ci | MissXi =   0, zi, xi; β1 ) × pr(MissXi

= 0; β2 ) × pr(xi; λ )dci .

LikSurvX :ObsX : Ign( θ ) = ∏i ∈ CensObsX pr(Fi ≥ ci | zi, xi; θ )

× ∏i ∈ FailObsX pr(Fi = f i | zi, xi; θ ) .

(B.2)

ML estimation of θ equation (B.2) involves only LikSurvX :ObsX : Ign( θ ), which translates into 

a survival analysis for the random sample of cases with observed values of covariate X.

APPENDIX C

This Appendix derives the perfect fit estimates for a randomized trial with a binary outcome 

Y in which missing in outcome depends on the outcome Y but not on the randomization 

group Z Let nzy denote the number of participants randomized to group z =0, 1, with 

outcome y=0, 1. Let wz denote the number of participants randomized to group z =0, 1 who 

are missing the outcome. See Table 3. The outcome model, pr(Y = 1| z; θ ) = θz, is the 

probability of outcome 1 given randomization to group z. The directly nonignorable 

missing-data mechanism, pr(MissY = 1| y; β ) = βy, is the probability of missing outcome y 

given outcome y. The model is saturated because there are 4 independent parameters (2 for 

θ1|z and 2 for βy) and 4 independent cell counts (4 for {nzy} and 2 for {wz} minus 2 because 

nz++ wz is fixed). The perfect fit analysis follows.

Step 1. Set expected counts equal to observed counts and solve for parameter estimates. Let 

ϕy = βy /(1 − βy ) and μzy = nz + θy | z (1 − βy ). The relevant equations are

μzy = nzy (C.1)

∑y μzyϕy . = wz . (C.2)

Simultaneously solving equations (C.1) and (C.2) yields
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ϕ(EST)0 = (n11w0 – n01w1)/(n11n00 – n01n10), (C.3)

ϕ(EST)1 = (n00w1 – n10w0)/(n11n00 – n01n10) . (C.4)

If ϕ(EST)y ≥ 0, ϕ(EST)y is the ML estimate. If ϕ(EST)0 or ϕ(EST)1 is negative, the ML estimates 

are on the boundary of the parameter space.

Step 2. Compute the statistic of interest. The estimated risk difference is d = p1 −p0, where 

pz = nz1(1 + ϕ(EST)1) /∑ynzy(ϕ(EST)y).

Step 3. Compute the standard error using the MP transformation. The standard error is 

se = v, where v = varMP(d).

APPENDIX D

This Appendix presents a perfect fit analysis for the diagnostic testing data in Table 8. Data 

set 1 involves {zij}, the number of persons with reference test result i = 0, 1 and new test 

result j = 0, 1. Data set 2 involves {wjk}, the number of persons with reference test result 

i=0, 1 and gold standard result k = 0, 1. The model assumes independence of the test results 

given the gold standard result and an ignorable missing-data mechanism. Let ψi|k denote the 

probability of reference test result i given gold standard result k. Let θj|k denote the 

probability of new test result j given gold standard result k. Let πk denote the probability of 

gold standard result k in data set 1 and let ρk denote the probability of gold standard k in 

data set 2. The outcome model is saturated with 6 independent parameters (2 for ψ1|k , 2 for 

θj|k , 1 for πk, and 1 for ρk ) and 6 independent cell counts (3 for {zik} and 3 for {wik}).

Step 1. Set observed counts equal to expect counts and solve for closed-form parameter 
estimates. The relevant equations ignore the missing-data mechanism,

z+ +∑k ψ i |kθ j |kπk = zi j, (D.1)

w+ +yi |kρk = wik . (D.2)

Summing both sides of equation (D.2) over i and solving for ρk gives ρ(EST)k = w+k /w+ +. 

Substituting ρ(EST)k into equation (D.2) and solving for ψ i |k gives ψ (EST)i |k = wik /w+k. 

Substituting ψ (EST)i |k into equation (D.1) gives

z+ +∑k (wik /w+k)θ j |kπk = zi j . (D.3)

Rewriting equation (D.3) as separate equations for i=0 and i=1gives
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(w00/w+0) (θ j |0π0) + (w01/w+1) (θ j |1π1) = z0 j/z+ +, (D.4)

(w10/w+0) (θ j |0π0) + (w11/w+1) (θ j |1π1) = z1 j/z+ + . (D.5)

Simultaneously solving equations (D.4) and (D.5) gives

θ j |0π0 = w+0(w00 z1 j – w10 z0 j)/ (w00 w11 – w10 w01)z+ + ,  (D.6)

θ j |1π1 = w+1(w01 z1 j – w11 z0 j)/ (w00 w11 – w10 w01)z+ + ,  (D.7)

Summing both sides of equation (D.6) and (D.7) over j and solving for π0 and π1 yields

π(EST)0 = w+0(w00 z1 + – w10 z0 +)/ (w00 w11 – w10w01)z+ + . (D.8)

π(EST)1 = w+1(w01 z1 + – w11 z0 +)/ (w00 w11 – w10w01)z+ + . (D.9)

Substituting π(EST)0 into equation (D.6) and π(EST)1 into equation (D.7) and solving for θj|0 

and θj|1 yields

θ(EST)( j | 0) = (w00 z1 j – w10 z0 j)/(w00 z1 + – w10 z0 +), (D.10)

θ(EST)( j | 1) = (w11 z0 j – w01 z1 j)/(w11 z0 + – z01 z1 +) . (D.11)

Step 2. Compute the statistic of interest. Specificity is θ(EST)0 |0. Sensitivity is θ(EST)1 |1.

Step 3. Compute the standard error using the MP transformation. The standard error is 

se = v, where v = varMP(d) and d = θ(EST)0 |0 or θ(EST)1 |1.

APPENDIX E

This Appendix derives perfect fit analysis for estimating treatment effect in a randomized 

trial with all-or-none compliance and binary outcome in which missing depends on outcome 

and randomization group. Let nzby denote the number of participants randomized to 

treatment z who receive treatment b immediately after randomization and experience 

outcome y. Let wzb denote the number of persons randomized to treatment z who receive 

treatment b immediately after randomization and are missing the outcome. See Table 9.

Let s index latent classes defined by potential outcomes of treatment received. Under the 

monotonicity assumption s takes three possible values: A = always-takers, who would 

receive the new treatment regardless of which randomization group to which they might be 

assigned, N = never-takers who would receive the old treatment regardless of which 
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randomization to which they might be assigned, and C = compliers who receive the assigned 

treatment regardless of which randomization group to which they might be assigned.

The outcome model, pr(Y = y | z, s; θ ) = θszy, is the probability of outcome y given 

randomization group z and latent class s. The missing-data mechanism, 

pr(MissY = 1| z, s; β) = βzs, is the probability of missing outcome given randomization group z 

and latent class s. Let pr(S = s) = πs denote the probability of being in latent class s. Under 

the compound exclusion restriction assumption, the probabilities of outcome and missing in 

outcome do not depend on randomization group for always-takers and never-takers, namely 

θt|zs = θt|z and βzs = βz for s = A and N. The model is saturated because there 10 

independent parameters (θ1|A θ1|0C , θ1|1C ,θ1|N , βA, β0C, β1C, βN, πA, and πC ) and 10 

independent cells counts (8 for {nzby}and 4 for {wzb} minus 2 because nz+++ + wz++ is 

fixed). The perfect fit analysis follows.

Step 1. Set expected counts equal to observed counts and solve for parameter estimates.

Let Nz = nz+++ + wz++. The relevant equations based on the definitions of the latent classes 

A, C, and N, are

N0 θy | N (1 – βN)πN + θy |0C (1 – β0C)πC = n00y, (E.1)

N0 θy | A (1 – βA)πA = n01y, (E2)

N1 θy | N (1 – βN)πN = n10y, (E.3)

N1 θy |1C (1 – β1C)πC + θy | A (1 – βA)πA = n11y, (E.4)

N0(βNπN + β0CπC) = w00, (E.5)

N0βAπA = w01, (E.6)

N1βNπN = w10, (E.7)

N1(β1Cπ1C + βAπA) = w11 . (E.8)

Summing equation (E.2) over y and adding to equation (E.6) yields

N0πA = n01 + w01 . (E.9)

Summing equation (E.4) over y and adding to equation (E.8) yields
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N1(π1C + πA) = n11 + w11 . (E.10)

Subtracting equation (E.9) from equation (E.10) and solving for π1C gives

π(EST)C = p1 – p0, where
p1 = (n11 + + w11)/N1and p0 = (n01 + + w01)/N0 . (E.11)

Subtracting equation (E.6) from equation (E.8) and solving gives

β(EST)1Cπ(EST)C = q11 – q01, where
q11 = w11/N1 and q01 = w01/N0 . (E.12)

Subtracting equation (E.7) from equation (E.5) and solving gives

β(EST)0Cπ(EST)C = q00 – q10, where
q00 = w00/N0 and q10 = w10/N1 . (E.13)

Subtracting equation (E.2) from equation (E.4) and solving for θy|1C based on equations (E.

11) and (E.12) gives

θ(EST)y |1C = (n11y/N1 − n01y/N0)/[ (1 − β(EST)1C) π(EST)C]
= (n11y/N1 − n01y/N0)/ (p1 − p0) − (q11 − q01) . (E.14)

Subtracting equation (E.3) from (E.1) and solving for θy|0C based on equations (E.11) and 

(E.13) gives

θ(EST)y |0C = (n00y/N0 − n10y/N1)/[ (1 − β(EST)0C) π(EST)C] .
= (n00y/N0 − n10y/N1)/ (p1 − p0) − (q00 − q10) . (E.15)

Step 2. Compute the statistic of interest. The perfect fit ML estimate of the treatment effect 

in compliers is d = θ(EST)1 |1C − θ(EST)1 |0C ..

Step 3. Compute the standard error using the MP transformation. The standard error is 

se = v, where v = varMP(d).

Appendix F

This Appendix presents some of the matrix components in a composite linear model for 

discrete-time survival. Let h f | x( θ ) denote the hazard for failure (in the absence of 

censoring) at time f =1, 2 for covariate x =0, 1. Let ct | x( β ) denote the hazard for censoring 

(in the absence of failure) at time t =1 for covariate x = 0, 1, where censoring in an interval 

implies failure is not observed in the interval. Consider two simple models: 

logit h f | x( θ ) = θ f 0 + θ f 1 x and logit ct | x( β ) = βt0 + βt1 x. Let N denote the sample 

size. Let uFtx denote the expected number of persons who fail in interval t with covariate at 
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level x. Let uCtx denote the expected number of persons censored in interval t with covariate 

at level x. The 8×1 column vector of expected counts with no missing data are U8×1 = (uF10, 

uF20, uC10, uC20, uF11, uF21, uC11, uC21)T, where, for covariate x,

uF1x = N   log h1 | x( θ ) , (F.1)

uF2x = N 1 – h1 | x( θ ) × h2 | x( θ ) × 1 − c1 | x( β ) , (F.2)

uC1x = N 1 – h1 | x( θ ) × c1 | x( β ), (F.3)

uC2x = N 1 – h1 | x( θ ) × 1 – h2 | x( θ ) × 1 − c1 | x( β ) . (F.4)

In matrix notation for composite linear models, the expected counts with no missing data are

U = Nexp ∑k Q(k) ,   where

Q(k) = q(k)(W(k), G(k)H(k)),

h(k)(Z(k), X(k) θ(k) ) for the outcome model,

H(k) =

h(k)(Z(k), X(k) β(k) ) for k = 2, for the missing − data mechanism .

Outcome model.

The H-component for the outcome model expresses in matrix form 

log ht | x( θ ) = ( θt0 + θt1 x) − log 1 + (exp θt0 + θt1 x)  and 

log 1 − ht | x( θ ) = − log 1 + (exp θt0 + θt1 x)  The H-component is 

H8 × 1 = log(h1 |0, 1 − h1 |0, h2 |0, 1 − h2 |0, h1 |1, 1 − h1 |1, h2 |1, 1 − h2 |1)T. In matrix notation, 

H8×1
(1) = Z8×1

(1) ° (X8×4 (1) θ4×1) – log{1+ exp(X8×4 (1) θ4×1)}, where Z8×1 (1) = (1, 0, 1, 0, 

1, 0, 1, 0) T, X8×4 (1) = ((X4×2*, 04×2), (X4×2*, X4×2*)), X4×2* = ((1, 0), (1, 0), (0, 1), (0, 1)), 

and 04×2 is a 4 × 2 matrix of 0’s , θ4×1 = (θ10, θ20, θ11, θ21)T, and the symbol “°” denotes 

element-by-element multiplication instead of matrix multiplication. The top half of X8×2
(1) 

corresponds to x=0 and the bottom half to x=1.
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The Q-component of the outcome model is Q8×1
(1) = log(h1|0, (1–h1|0) h2|0, (1–h1|0), (1–h1|0) 

(1–h2|0), h1|1, (1–h1|1) h2|1, (1–h1|1), (1–h1|1) (1–h2|1))T. In matrix notation, Q8×1
(1) = W8×1 

(1) + G8×8
(1) H8×1 (1), where W8×1 (1) = 08×1, G8×8

(1) = ((G4×4*, 04×4), (04×4, G4×4*)), and 

G4×4 *= ((1, 0, 0, 0), (0, 1, 1, 0), (0, 1, 0, 0), (0, 1, 0, 1)). The top half of G8×8
(1) corresponds 

to x=0 and the bottom half to x=1.

Missing-data mechanism.

The H-component for the censoring model is H4×1 (2) = log(c1|0, 1–c1|0, c1|1, 1–c1|1) T. In 

matrix notation, H4×1 (2) = Z4×1
(2) ° (X4×2 (2) β2×1) – log{1+ exp(X4×2 (2) β)}, where Z4×1

(2) 

= (0, 1, 0, 1)T, X4×2 (2) = ((1, 0), (1, 0), (1, 1), (1, 1)) and β2×1 = (β10, β11) T.

The Q-component for the censoring model is Q8×1 (2) = log(1, (1–c1|0), c1|0, (1–c1|0), 1, (1–

c1|1), c1|1, (1–c1|1))T. In matrix notation, Q8×1 (2) = W8×1 (2) + G8×4 (2) H4×1 (2), where W8×1 
(2) = 08×1 and G8×4 (2) = ((G4×2**, 04×2), (04×2, G4×2**)), where G4×2 **= ((0, 0), (0, 1),(1, 

0), (0, 1)). The top half of G8×4 (2) corresponds to x=0 and the bottom half to x=1.
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Table 1.

Missing-data taxonomy applied to missing outcomes

Missing-data mechanism

Ignorable Non-ignorable

Definition Likelihood-based inference for the outcome model does 
not involve parameters modeling the missing-data 

mechanism*

Not ignorable

Implication Missing in outcome depends only observed variables Missing in outcome depends on at least one unobserved 
variable

Outcome is said to 
be

Missing at random (MAR) Missing not at random (MNAR)

Special cases Missing completely at random (MCAR)
Missing in outcome occurs with constant probability

Directly non-ignorable
Missing in outcome depends only on outcome
Indirectly non-ignorable
Missing in outcome does not depend on outcome and 
depends on other partially missing variables

*
The sets of parameters for the outcome model and missing-data mechanism do not overlap and do not constrain one other
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Table 2.

Overview of ML estimation methods

Method Indications for Use Missing-Data 
Mechanism

Implementation

Complete case 
analysis

Missing in outcome depends on 
randomization group

Ignorable Compute simple statistics for complete cases 
(participants not missing the outcome).

Complete case 
analysis with covariate 
adjustment

Missing in outcome depends on 
randomization group and 
covariate

Ignorable after 
covariate adjustment

Fit the outcome model (as a function of randomization 
group and covariates) to complete cases with the 
covariate.

Survival analysis with 
covariate adjustment

Censoring depends on 
randomization group and 
covariate

Ignorable after 
covariate adjustment

Fit the outcome model (as a function of randomization 
group and covariates) to survival data.

Analysis via 
propensity-to-be-
missing scores

Missing in outcome or censoring 
depends on randomization group 
and many covariates

Ignorable after 
covariate adjustment

(1) Fit a model for the missing-data mechanism.
(2) Use the fitted model to compute scores.
(3) Compute overall estimate based on quintiles of 
scores.

Longitudinal dropout 
analysis

Dropout depends on previous 
observed outcome and possibly 
randomization group and 
covariate

Ignorable For a continuous longitudinal outcome, fit a marginal 
model using commercial software.
For a longitudinal binary outcome, fit a conditional 
model.

Perfect fit analysis Saturated models with categorical 
data

Ignorable or 
nonignorable

(1) Set expected counts equal to observed counts and 
solve for parameter estimates.
(2) Compute statistic from parameter estimates.
(3) Compute estimated variance using MP 
transformation.

Composite linear 
models

Flexible models with categorical 
data

Ignorable or 
nonignorable

Fit using specialized software.
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Table 3.

Hypothetical counts for complete-case analysis

Randomization group Outcome

Y=0 Y =1 Missing

Z=0 n00 (400) n01 (600) w0 (200)

Z=1 n10 (200) n11 (600) w1 (400)
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Table 4.

Hypothetical counts for complete-case analysis with covariate adjustment

Randomization group Covariate Outcome

Y=0 Y =1 Missing

Z=0 X=0 n000 (100) n001 (200) w00 (100)

X=1 n010 (300) n011 (400) w01 (100)

Z=1 X=0 n100 (100) n101 (200) w10 (100)

X=1 n110 (100) n111 (400) w11 (300)
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Table 5.

Estimate and standard errors with propensity-to-be-missing score

Randomization group Z=0 (Dual therapy) Randomization group Z=1 (Triple Therapy)

Quintile Estimate* Standard Error Quintile Estimate* Standard Error

1 0.539 0.041 1 0.584 0.070

2 0.619 0.040 2 0.736 0.062

3 0.592 0.041 3 0.792 0.057

4 0.695 0.038 4 0.658 0.071

5 0.793 0.034 5 0.828 0.054

*
Estimated probability of surviving to 18 months in each quntile.
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Table 6.

Counts for false positive status given screen and time since late screen

Screen Time interval since last screen No false positive False positive

1 Not applicable n10 (4509) n11 (82)

2 1 n210 (1662) n211 (7)

2 n220 (1634) n221 (13)

3 n230 (291) n231 (1)

4 n240 (406) n241 (2)

3 1 n310 (1589) n311 (9)

2 n320 (1488) n321 (10)

3 n330 (218) n331 (2)

4 n340 (204) n341 (2)

4 1 n410 (1087) n411 (13)

2 n420 (1467) n421 (10)

3 n430 (193) n431 (2)

4 n440 (48) n441 (0)
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Table 7.

Counts for Prostate Cancer Prevention Trial

Randomization group Auxiliary variable (biopsy recommendation) Outcome (prostate cancer on biopsy)

Y=0 (No) Y =1 (Yes) Missing

Z=0 (Placebo) A=0 (No) n000 (618) n001 (3675) w00 (3955)

A=1 (Yes) n010 (524) n011 (479) w01 (215)

Z=1 (Finasteride) A=0 (No) n100 (381) n101 (3791) w10 (4169)

A=1 (Yes) n110 (409) n111 (458) w11 (214)
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Table 8.

Hypothetical counts for diagnostic testing example

Data Set New test

1 Reference test 0 (negative) 1 (positive)

0 (negative) z00 (84) z01 (46)

1 (positive) z10 (26) z11 (44)

Gold standard

2 Reference test 0 (negative) 1 (positive)

0 (negative) w00 (18) w01 (4)

1 (positive) w10 (2) w11 (6)
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Table 9.

Hypothetical counts for latent class instrumental variables with missing outcome

Randomization group Treatment received Outcome

Y=0 Y =1 Missing

Z=0 T=0 n000 (100) n001 (200) w00 (100)

T=1 n010 (400) n011 (300) w01 (100)

Z=1 T=0 n100 (300) n101 (200) w10 (200)

T=1 n110 (100) n111 (100) w11 (300)
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Table 10.

Counts for double sampling study of wound infection

Sample Drain Interval of hospital 
discharge with no prior 
infection

Interval of infection No infection by 
day 30

Hospital 
discharge 
without 
follow-up

0–4 days 5–7 days 8–30 days

Partial follow-up sample No None 6 10 7 1

0–4 days -- -- -- -- 180

5–7 days 0 -- -- -- 544

8–30 days 0 0 -- -- 232

Yes None 7 15 11 0

0–4 days -- -- -- -- 8

5–7 days 0 -- -- -- 87

8–30 days 0 0 -- -- 128

Full follow-up sample No None 2 1 1 0

0–4 days 0 0 3 39

5–7 days 0 0 3 89

8–30 days 0 0 0 30

Yes None 3 3 0 0

0–4 days 0 0 0 2

5–7 days 0 0 0 10

8–30 days 0 0 1 7
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