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Abstract

Labeling training data is one of the most costly bottlenecks in developing machine learning-based 

applications. We present a first-of-its-kind study showing how existing knowledge resources from 

across an organization can be used as weak supervision in order to bring development time and 

cost down by an order of magnitude, and introduce Snorkel DryBell, a new weak supervision 

management system for this setting. Snorkel DryBell builds on the Snorkel framework, extending 

it in three critical aspects: flexible, template-based ingestion of diverse organizational knowledge, 

cross-feature production serving, and scalable, sampling-free execution. On three classification 

tasks at Google, we find that Snorkel DryBell creates classifiers of comparable quality to ones 

trained with tens of thousands of hand-labeled examples, converts non-servable organizational 

resources to servable models for an average 52% performance improvement, and executes over 

millions of data points in tens of minutes.
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1 INTRODUCTION

One of the most significant bottlenecks in developing machine learning applications is the 

need for hand-labeled training data sets. In industrial and other organizational deployments, 

the cost of labeling training sets has quickly become a significant capital expense: collecting 

labels at scale requires carefully developing labeling instructions that cover a wide range of 

edge cases; training subject matter experts to carry out those instructions; waiting sometimes 

months or longer for the full results; and dealing with the rapid depreciation of training sets 

as applications shift and evolve.

As a result, in industry and other domains there has been a major movement towards 

programmatic or otherwise more efficient but noisier ways of generating training labels, 
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often referred to as weak supervision. Given the increasing commoditization of standard 

machine learning model architectures, the supervision strategy used is increasingly the key 

differentiator for end model performance, and recently has been a key element in state-of-

the-art results [8, 20]. Many prior weak supervision approaches rely on a single source of 

labels, a small number of carefully chosen, manually combined sources [23, 40], or on 

sources that make uncorrelated errors such as independent crowd workers [9, 10]. Recent 

work has explored building end-to-end systems for programmatic supervision, e.g., simple 

heuristic rules and pattern matching scripts written from scratch by users, which may have 

diverse accuracies and correlations [3, 29, 30].

In this work, we present a first-of-its-kind study showing how existing organizational 

knowledge can be used as weak supervision to have significant impact even in some of the 

most heavily-engineered, high-value industrial ML applications. We introduce Snorkel 

DryBell, a production-scale weak supervision management system which extends the 

Snorkel framework [29] to handle three novel aspects we find to be critical: flexible 

template-based ingestion of organizational knowledge, cross-feature production serving, and 

scalable, sampling-free modeling. We evaluate Snorkel DryBell on three content and real-

time event classification applications at Google (Figure 1), where we move beyond using 

simple pattern matchers over text as weak supervision for small-scale, first-cut applications 

(as in initial work on Snorkel [29]), and demonstrate the value of using existing 

organizational knowledge resources, measured against baselines with person-decades of 

development.

Based on our experience at Google, we outline three core principles that are central to 

deploying weak supervision at organizational scale, and highlight how these are 

implemented in Snorkel DryBell:

• Flexible Ingestion of Organizational Knowledge: In large organizations, a 

wide range of resources—such as models, knowledge bases, heuristics, and more

—are often available; a weak supervision system should support rapid and 

flexible integration of as many of these resources as possible for quickly training 

models to the highest possible quality. We highlight the importance of this 

approach with three case studies involving content and event classification tasks. 

Engineers at Google are responsible for hundreds of separate classifiers, which 

often rely on hand-labeled training data. They must be responsive to everything 

from shifting business objectives to changes in products; updating these 

classifiers is often the critical blocker to core product and feature launches. We 

describe how a single engineer can use weak supervision to rapidly develop new 

classifiers, leading to average, relative quality improvements of 11.5% (measured 

in F1 points) over classifiers trained on small ~15K-example development sets, 

and reaching the quality equivalent of using 80K labels.

• Cross-Feature Production Serving: Organizational knowledge is often present 

in non-servable form factors, i.e., too slow, expensive, or private to be used in 

production; instead, a weak supervision system can provide a way to use these to 

quickly train servable models suitable for deployment. For example, internal 

models or heuristics are often defined over features like monthly aggregate 
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statistics, expensive internal models, etc., whereas Snorkel DryBell can allow 

users to quickly transfer this knowledge to models defined over servable features, 

e.g., inexpensive, real-time signals. We demonstrate how Snorkel DryBell allows 

users to quickly and flexibly transfer organizational knowledge from non-

servable forms to new servable deployment models focused on the classification 

task of interest. We view this as a practical, flexible form of transfer learning, 

and show that incorporating these resources leads to 52% average gains in 

performance.

• Scalable, Sampling-Free Execution: A weak supervision system should cleanly 

decouple subject matter experts (SMEs), who should be able to rapidly and 

iteratively specify weak supervision, from the details of execution and model 

training over industrial scale datasets. We describe how the architecture of 

Snorkel DryBell cleanly decouples the interface by which SMEs across an 

organization can contribute labeling strategies, and the system for executing 

these at massive scale while supporting rapid human-in-the-loop iteration—for 

example, implementing weak supervision over 6M+ data points with sub-30min. 

execution time—including a new TensorFlow compute graph-based generative 

modeling approach that avoids expensive sampling, and a MapReduce-based 

pipeline.

We achieve these principles in Snorkel DryBell by adopting the three main stages of the 

Snorkel pipeline: first, users write labeling functions, which are simply black-box functions 

that take in unlabeled data points and output a label or abstain, and can be used to express a 

wide variety of weak supervision strategies; next, a generative modeling approach is used to 

estimate the accuracies of the different labeling functions based on their observed 

agreements and disagreements; and finally, these accuracies are used to re-weight and 

combine the labels output by the labeling functions, producing probabilistic (confidence-

weighted) training labels.

We start in Section 2 with a brief description of existing work on weak supervision, and of 

the approach taken by Snorkel, the framework that Snorkel DryBell extends. In Section 3, 

we present three case studies of content and event classification applications at Google, 

where we survey the categories of weak supervision strategies that can be employed within 

Snorkel DryBell. We discuss these case studies at a high level due to the proprietary nature 

of the applications. In Section 4, we highlight a particularly critical cross-feature form of 

production model serving supported in Snorkel DryBell, in which non-servable supervision 

resources that are expensive to run, private, or otherwise not servable in production are used 

to train servable deployment models. In Section 5, we then present the architecture of 

Snorkel DryBell, emphasizing a new sampling-free generative modeling approach, and a 

MapReduce-based pipeline and template library. In Section 6, we describe experimental 

results on benchmark data sets using Google data representative of production tasks. We 

show that Snorkel DryBell can replace hand-labeling tens of thousands of training examples. 

Finally, we conclude with lessons learned on how weakly supervised machine learning can 

be integrated into the development processes of production machine learning applications, 

and discuss how these lessons can be applied at many different kinds of organizations.
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2 BACKGROUND

In recent years, modern machine learning models have achieved new state-of-the-art 

accuracies on a range of traditionally challenging tasks. However, these models generally 

require massive hand-labeled training sets [37]. In response, many machine learning 

developers have increasingly turned to weaker methods of supervision, in which a larger 

volume of cheaper, noisier labels is used [6, 9, 10, 23, 24, 29, 40].

We build on top of Snorkel, a recently proposed framework for weakly supervised machine 

learning [29], which allows users to generically specify multiple sources of programmatic 

weak supervision—such as rules and pattern matchers over text—that can vary in accuracy, 

coverage, and that may be arbitrarily correlated. The Snorkel pipeline follows three main 

stages, which we also adopt in Snorkel DryBell: first, users write labeling functions, which 

are simply black-box functions that take in unlabeled data points and output a label or 

abstain; next, a generative model is used to estimate the accuracies of the different labeling 

functions, and then to re-weight and combine their labels to produce a set of probabilistic 
training labels, effectively solving a novel data cleaning and integration problem; and finally, 

these labels are use to train an arbitrary end discriminative model, which is used as the final 

classifier in production.

This setup can be formalized as follows. Let X = (X1, …, Xm) be a collection of unlabeled 

data points, Xi ∈ 𝒳, with associated unobserved labels Y = (Y1,…, Ym). For simplicity, we 

focus on binary classification, Yi ∈ {−1, 1}, however Snorkel DryBell can handle arbitrary 

categorical targets as well, e.g. Yi ∈ {1,…,k}.

In our weak supervision setting, we do not have access to these ground-truth labels Yi, and 

our goal is to estimate them to use as training labels. Instead, we have access to n labeling 

functions λ = (λ1,…, λn), where λ j:𝒳 { − 1, 0, 1}, with 0 corresponding to an abstain 

vote. We use a generative model wherein we model each labeling function as abstaining or 

not with some probability, and labeling a data point correctly with some probability. Let Λ 
be the matrix of labels output by the n labeling functions over the m unlabeled data points, 

such that Λi, j= λj(Xi). We then estimate the parameters w of this generative labeling model 

Pw(Λ, Y) by maximizing the log marginal likelihood of the observed labels Λ:

w = arg max
w

log ∑
Y ∈ { − 1, 1}m

Pw(Λ, Y) .

Note that we are marginalizing out Y, i.e. we are not using any ground truth training labels 

in our learning procedure; instead, we are learning solely from the information about 

agreements and disagreements between the labeling functions, as contained in the observed 

label matrix Λ. We discuss the choice of the structure of Pw(Λ, Y) and the unsupervised 

approach to estimating w further in Section 5.2.

Given the estimated generative model, we use its predicted label distributions, 

Y i = Pw(Y i ∣ Λ), as probabilistic training labels for the end discriminative classifier that we 
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aim to train. We train this discriminative classifier hθ on our weakly labeled training set, (X, 

Y ), by minimizing a noise-aware variant of a standard loss function, l, i.e. we minimize the 

expected loss with respect to Y :

θ = arg min
θ

∑
i = 1

m
𝔼

y~Y i
[l(hθ(Xi), y)]

A formal analysis shows that as the number of unlabeled data, i.e. m, is increased, the 

generalization error of the discriminative classifier should decrease at the same asymptotic 

rate as it would if supervised with traditional hand-labeled data [30]. More generally, we 

expect the discriminative classifier to provide performance gains over the generative model 

(i.e. the reweighted combination of the labeling function outputs) that it is trained on, both 

by applying to data types that the labeling functions cannot be applied to, e.g. servable 

versus non-servable features (see Section 4), and by learning to generalize beyond them. For 

example, the discriminative classifier can learn to put weight on more subtle or synonymous 

features that the labeling functions (and thus, the generative model) do not cover. For 

empirical evidence of this generalization, and further details of the actual discriminative 

models used, see Section 6.

Inbuilding Snorkel DryBell, we sought to extend Snorkel to study weak supervision in the 

context of an organizational-scale deployment, focusing on three key aspects. First, while 

Snorkel was designed to handle “de novo” weak supervision applications built with a 

handful of simple pattern-matching rules, written from scratch by domain experts, we design 

a template-based interface for ingesting existing organizational knowledge resources like 

internal models, taggers, legacy code, and more (Section 3). Second, we implement support 

for cross-feature production serving, where weak supervision defined over features not 

servable for application deployment—such as aggregate statistics or expensive results of 

model inference—can be transferred to deployable models defined over servable features 

(Section 4). Finally, our design of the Snorkel DryBell architecture focuses on handling 

massive scale (e.g. 6.5M data points in one application), and thus we focus on speeding up 

both labeling function execution and generative model training, in particular using a new 

sampling-free modeling approach (Section 5).

3 CASE STUDIES: WEAK SUPERVISION FOR RAPID DEVELOPMENT

We start by exploring three case studies of weak supervision applied to classification 

problems at Google: two on content classification related to topics and commercial product 

categories, and one for classifying real-time events across several serving platforms. In this 

section, we focus on highlighting the diversity of weak supervision signals from across the 

organization that developers were able to express as labeling functions (LFs) in Snorkel 

DryBell. We broadly categorize the weak supervision sources into several coarse-grained 

buckets, representing different types of organizational knowledge and resources (Figure 2):

• Source Heuristics: Labeling functions expressing heuristics (pattern or 

otherwise) about the source of the content or event, or aggregate statistics of this.
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• Content Heuristics: Labeling functions expressing heuristics about the content 

or event.

• Model-Based: Labeling functions that use the predictions of internal models 

which were developed for some related or component problem. Examples 

include topic models and named entity recognizers applied to content.

• Graph-Based: Labeling functions that use a knowledge or entity graph to derive 

labels.

We now describe the applications, giving examples of the above weak supervision source 

types used in each.

3.1 Topic Classification

In the first task, an engineering team for a Google product needed to develop a new classifier 

to detect a topic of interest in its content. The team oversees well over 100 such classifiers, 

each with its own set of training data, so there is strong motivation for finding faster and 

more agile ways to develop or modify these models. Currently, however, the default 

procedure for developing a new classifier such as this one requires substantial manual data 

labeling effort.

In our study, we instead used Snorkel DryBell to weakly supervise 684,000 unlabeled data 

points, selected by a coarse-grained initial keyword-filtering step. A developer then spent a 

short time writing ten labeling functions that both expressed basic heuristics, and pulled on 

organizational resources such as existing models at Google. Specific examples of labeling 

functions included:

• URL-based: Heuristics based on the linked URL;

• NER tagger-based: Heuristics over entities tagged within the content, using 

custom named entity recognition (NER) models maintained internally at Google;

• Topic model-based: Heuristics based on a topic model maintained internally at 

Google. This topic model output semantic categorizations far too coarse-grained 

for the targeted task at hand, but which nonetheless could be used as effective 

negative labeling heuristics.

These weak supervision strategies pulled on diverse types of signal from across Google’s 

organization, but were simple to write within the Snorkel DryBell framework. With these 

strategies, we matched the performance of 80K hand-labeled training labels, and get within 

4.6 F1 points of a model trained on 175K hand-labeled training data points (see Section 6).

3.2 Product Classification

In a second case study with the same engineering team at Google, a strategic decision 

necessitated a modification of an existing classifier for detecting content references to 

products in a category of interest. The category of interest was expanded to include many 

types of accessories and parts—meaning that all previously negative class labels (i.e., “not in 

the category of interest”) needed to be relabeled, or else discarded. In fact, our post-hoc 

experiments revealed that even using the previously positive labels resulted in a slight 
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reduction in end model F1 score, highlighting the near-instantaneous depreciation of a 

significant labeling investment given a change in strategy.

Instead, in a similar process to the content classification scenario described above, one 

developer was able to write eight labeling functions, leveraging diverse weak supervision 

resources from across the organization. These labeling functions included:

• Keyword-based: Keywords in the content indicated either products and 

accessories in the category of interest, or other accessories not of interest;

• Knowledge Graph-based: In order to increase coverage across the many 

languages for which this classifier is used, we queried Google’s Knowledge 

Graph for translations of keywords in ten languages;

• Model-based: We again used the semantic topic model to identify content 

obviously unrelated to the category of products of interest.

A classifier trained with these labeling functions matched the performance of 12K hand-

labeled training examples, and got within 5.1 F1 points of classifier model trained on 50K 

hand-labeled training examples (see Section 6).

3.3 Real-Time Event Classification

Finally, we applied Snorkel DryBell to a real-time events classification problem over two of 

Google’s platforms. In this setting, a common approach is to classify events based on offline 

(or non-servable) features such as aggregate statistics and relationship graphs. However, this 

approach induces latency between when an event occurs and when it is identified. An 

alternative approach is to use a machine learning model to classify events directly from real-

time, event-level features. However, getting hand-labeled training data in this setting is 

challenging due to the shifting environment, as well as the cost of trained expert annotators. 

Instead, we used Snorkel DryBell to train models over the event-level features using weak 

supervision sources (n=140) defined over the non-servable features, spanning three broad 

categories:

• Model-based: Several smaller models that had previously been developed over 

various feature sets were also used as weak labelers in this setting.

• Graph-based: A set of models over graphs of entity and destination relationships 

provided higher recall but generally lower-precision signals than the heuristic 

classifiers.

• Other heuristics: A large set of existing heuristic classifiers that had previously 

been developed.

These sources were combined in Snorkel DryBell and used to train a deep neural network 

over real-time event-level features. Compared to the same network trained on an unweighted 

combination of the labeling functions, Snorkel DryBell identifies 58% more events of 

interest, with a quality improvement of 4.5% according to an internal metric.

One of the aspects that we found critical in this setting was the ability of Snorkel DryBell to 

estimate the accuracies of different labeling functions. Given the large number of weak 
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supervision sources in play, determining the quality or utility of each source, and tuning 

their combinations accordingly, would have itself been an onerous engineering task. Using 

Snorkel DryBell, these weak supervision signals could simply all be integrated as labeling 

functions, and the resulting estimated accuracies were found to be independently useful for 

identifying previously unknown low-quality sources (which were then either fixed or 

removed).

4 CROSS-FEATURE MODEL SERVING

One significant advantage of a weakly supervised approach, as implemented in Snorkel 

DryBell, is the ability to easily and flexibly transfer knowledge contained in non-servable 
feature sets that are too slow, expensive, or private to use in production, to servable feature 

sets such as real-time event-level signals or cheap edge-computable features, as in the real-

time event application (Figure 3). Formally, this goal of transferring knowledge from a 

model defined over one feature set to a new model trained over another feature set can be 

viewed as a type of transfer learning [27], or as similar to a transductive form of model 

distillation [15]. However, most commonly used transfer learning techniques today apply to 

models with similar or identical architectures defined over the same basic feature set. 

Instead, with Snorkel DryBell we can quickly use models over one set of features—for 

example, aggregate statistics, results of expensive crawlers, internal models or graphs—and 

use these to supervise a new model over external, cheap, or otherwise servable features.

In the applications we survey at Google, this is an essential element. In the real-time events 

case study, as outlined in the preceding section, none of the weak supervision sources are 

directly applicable to the event-level, real-time, servable features of interest; instead, with 

Snorkel DryBell we use them to train a new model that is defined over these servable 

features. For the two content applications, while some of the labeling functions could be 

applied at test time over servable features, others—specifically, those comprising internal 

models that are expensive to run, or features obtained with high-latency such as the result of 

web crawlers—are effectively non-servable. By incorporating the signal from these non-

servable sources in Snorkel DryBell, we get average gains of 52% in final F1 score 

performance according to an ablation. We find that this ability to bridge the gap between 

non-servable organizational resources and servable models is one of the major advantages of 

a weak supervision approach like the one implemented in Snorkel DryBell.

5 SYSTEM ARCHITECTURE

Deploying the Snorkel framework proposed by Ratner et. al. [29] required redesigning its 

implementation for an industrial, distributed computing environment, where the scale of 

examples (millions) is at least an order of magnitude larger than any reported data set for 

which Snorkel has been used. This required decoupling and redesigning the labeling 

function execution and generative modeling components of the pipeline around a template 

library and distributed compute environment, which we detail next.
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5.1 Labeling Function Template Library

We implement support for user-defined labeling functions as a library of templated C++ 

classes. Our goal is to abstract away the repeated development of code for reading and 

writing to Google’s distributed filesystem, and for executing MapReduce pipelines. We 

achieve this by implementing an AbstractLabelingFunction class that handles all input and 

output to Google’s distributed filesystem. Each subclass defines a MapReduce pipeline, with 

class template slots for functions to be executed within the pipeline. We initially developed 

two labeling function pipelines.

The first pipeline is a default pipeline that does not launch any additional services; it simply 

executes a user-defined function written in C++ (LabelingFunction). This class meets the 

needs of many use cases, such as content heuristics, model-based heuristics for models that 

are executed offline as part of data collection such as semantic categorization, and graph-

based heuristics that can query a knowledge graph offline (e.g., categories of products in 

top-ten languages).

The second pipeline integrates with Google’s general-purpose natural language processing 

(NLP) models (NLPLabelingFunction). Such integration is necessary because these NLP 

models are too computationally expensive to run for all content submitted to Google. 

Snorkel DryBell therefore needs to enable labeling-function writers to execute additional 

models in a manner that scales to the millions of examples to be labeled. To achieve this 

goal, Snorkel DryBell uses Google’s MapReduce framework to launch a model server on 

each compute node. Other model servers besides the NLP models can be supported by 

creating new subclasses of AbstractLabelingFunction.

Engineers using this library need to write only simple main files that define the function(s) 

that computes the labeling function’s vote for an individual example. These functions 

capture the engineer’s knowledge about how to use existing resources at Google as 

heuristics for weak supervision. As an example that is analogous to a labeling function in 

our content classification application, suppose our goal is to identify content related to 

celebrities. A developer can implement a heuristic that uses a named-entity recognition 

model for this task as an instance of NLPLabelingFunction. The labeling function labels any 

content that does not contain a person as not related to celebrities. The first template 

argument is a pointer to a function that takes an example object as input and selects the text 

to be provided to the NLP model server. The second template argument is a pointer to a 

function that takes the same example object and the output of the NLP models as its inputs, 

and checks whether the named-entity recognition model found any proper names of people. 

We illustrate this example in code:

string GetText(const Example& x) {

    return StrCat(x.title, " ", x.body);

}

LFVote GetValue(const Example& x,

                const NLPResult& nlp) {

    if (nlp.entities.people.size() == 0) {
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        return NEGATIVE;

    }

    else { return ABSTAIN; }

}

int main(int argc, char *argv[]) {

    Init ( argc , argv) ;

    NLPLabelingFunction<&GetText, &GetValue> lf;

    lf.Run () ;

}

This short bit of code captures a logical relationship between an existing model and the 

target task, speeding development.

5.2 Sampling-Free Generative Model

The critical task in Snorkel DryBell is to combine the noisy votes of the various labeling 

functions into estimates of the true labels for training. In Snorkel DryBell, we use a new 

sampling-free modeling approach which is far less CPU intensive and far simpler to 

distribute across compute nodes. We focus on a conditionally independent generative model, 

which we write as:

Pw(Λ, Y) = ∏
i = 1

m
Pw(Yi) ∏

j = 1

n
Pw(λ j(Xi) ∣ Yi),

Following prior work [29], we assume each labeling function has an accuracy given that it 

did not abstain, and a propensity to not abstain, i.e., we share parameters across the 

conditional distributions. For simplicity, here we assume that Pw(Yi) is uniform, but we can 

also learn this distribution.

The learning objective of the generative model is to minimize the negative marginal log-

likelihood of the observed labeling function outputs – log P(Λ). The open-source Snorkel 

implementation1 uses a Gibbs sampler to compute the gradient of this likelihood, but 

sampling is relatively CPU intensive and complicated to distribute across compute nodes. 

Instead, we design a new TensorFlow-based [1] implementation for sampling-free 

optimization. For numeric stability, we represent the model parameters in log space. Let αj 

be the unnormalized log probability that labeling function j is correct given that it did not 

abstain, and let βj be the unnormalized log probability that it did not abstain. Then, to define 

a static compute graph, as required by TensorFlow, we use 0-1 indicator functions for each 

possible label value and multiply by the corresponding log likelihood:

−log P(Λ) = − ∑
i = 1

m
log(P(Λi, Yi = 1) + P(Λi, (Yi = − 1)),

1http://snorkel.stanford.edu
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where

log P(Λi, Yi = 1) = ∑
j = 1

n
(1[λ j(Xi) = 1](α j + β j − Z j)

+ 1[λ j(Xi) = − 1]( − α j + β j − Z j)

− 1[λ j(Xi) = 0]Z j),

log P(Λi, Yi = − 1) = ∑
j = 1

n
(1[λ j(Xi) = 1]( − α j + β j − Z j)

+ 1[λ j(Xi) = − 1](α j + β j − Z j)

− 1[λ j(Xi) = 0]Z j),

Z j = log(exp(α j + β j) + exp( − α j + β j) + 1) .

The result is a fast implementation that can take hundreds of gradient steps per second on a 

single compute node. For example, in our product classification application, in which there 

are ten labeling functions, the optimizer takes an average >100 steps per second with a batch 

size of 64. With ten labeling functions and a batch size of 64, a Gibbs sampler averages < 50 

examples per second, so Snorkel DryBell provides a 2× speedup. Implementing the 

generative model as a static compute graph in TensorFlow has another advantage over a 

Gibbs sampler. It is easy to parallelize across multiple compute nodes using TensorFlow’s 

API. (Here we report timing using a single process for a fair comparison.)

It is also possible to relax the conditional independence assumption by defining model 

functions in TensorFlow that capture specific, low-tree-width graphical model structures, 

which we leave for future work. It is also possible to directly plug-in matrix factorization 

models of the kind recently used for denoising labeling functions [31] as TensorFlow model 

functions.

5.3 Discriminative Model Serving

To create discriminative models that are servable in production, we integrated Snorkel 

DryBell with TFX [4], Google’s platform for end-to-end production-scale machine learning. 

The probabilistic training labels estimated by Snorkel DryBell are passed to TFX, where 

users can configure a model to train with a noise-aware loss function. Once trained, we use 

TFX to automatically stage it for serving.

As described in Section 4, the discriminative model acts on a more compact feature 

representation than the labeling functions, enabling a cross-feature transfer of knowledge 
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from non-servable resources used in labeling functions to a servable model. TFX supports 

both logistic regression and deep neural network models, which can operate on user-

specified features that are available in production, or on the “raw” content, e.g., an LSTM 

[16] that embeds each token of text in a vector space.

5.4 Comparison with Snorkel Architecture

There are several other key differences between Snorkel DryBell and Snorkel’s existing 

open-source implementation beyond the changes detailed above. Snorkel is designed to run 

on a single, shared-memory compute node. In contrast, Google, like many large 

organizations, uses a distributed job scheduling and accounting system for large-scale 

computing. It therefore was necessary to integrate Snorkel DryBell with Google’s 

MapReduce framework.

Further, Snorkel is designed to be accessible to novice programmers with limited machine 

learning experience. It uses a Jupyter notebook interface and enforces a strict context 
hierarchy data model for representing training data. This rigid approach is not appropriate 

for the wide range of tasks that arise in a large organization. Snorkel also uses a relational 

database backend for storing data, which does not easily integrate with Google’s existing 

data-storage systems. We therefore developed the more loosely coupled system described 

above, in which labeling functions are independent executables that use a distributed 

filesystem to share data.

6 EXPERIMENTS

To evaluate the performance of Snorkel DryBell, we created benchmark data sets using 

Google data representative of the production tasks described in Section 3. We first show 

results on the content classification applications, and use them to illustrate trade-offs 

between weak supervision and collecting hand-labeled data, as well as the benefits of using 

non-servable features for weak supervision. We then show results on the real-time events 

application. Due to the sensitive nature of these applications, we report relative improvement 

to our baselines for the content classification applications. We are unable to describe the 

details of internal metrics used to evaluate real-time events, but include a high-level 

description as corroborating evidence that Snorkel DryBell is widely applicable.

6.1 Topic and Product Classification

To evaluate on the topic and product classification applications, we used the probabilistic 

training labels estimated by Snorkel DryBell to train logistic regression discriminative 

classifiers with servable features similar to those used in production. We have access to 

hundreds of thousands to millions of unlabeled examples for these tasks. We also create a 

small, hand-labeled development set (nDev in Table 1) which is used by the developer while 

formulating labeling functions, for hyperparameter tuning of the end discriminative 

classifier, and as a supervised learning baseline in our experiments.

We use a logistic regression model in TFX. We train using the FTLR optimization algorithm 

[22], a variant of stochastic gradient descent that tunes per-coordinate learning rates, with an 

initial step size of 0.2. We train for 10K iterations for the topic classification task and 100K 
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iterations for the product classification task, in order to have a similar training time to 

production classifiers. (The topic classification task has an order-of-magnitude more features 

than the product classification task.) All experiments use a batch size of 64.

Table 2 shows the results of applying the Snorkel DryBell system on the product and topic 

classification tasks. We report all results relative to the baseline approach of training the 

discriminative classifier directly on the hand-labeled development set.

We also report the predictive accuracy of Snorkel DryBell’s generative model, i.e., using the 

weighted combination of labeling functions directly to make predictions. We do so to 

demonstrate that the discriminative classifier learns to generalize beyond the information 

contained in the labeling functions. Note that the generative model is not actually viable for 

production tasks, because labeling functions often depend on non-servable features of the 

data.

The results show that on both tasks, the discriminative classifiers trained on Snorkel 

DryBell-produced training data has higher predictive accuracy in F1 score on the test sets 

than classifiers trained directly on the development set. The weakly supervised classifiers 

also have higher predictive accuracy than the corresponding generative models. This result 

demonstrates that Snorkel DryBell effectively transfers the knowledge contained in the non-

servable resources to classifiers that only depend on servable features.

6.2 Trade-Off Between Weak Supervision Hand-Labeled Data

We next investigate the trade-off between using weak supervision and collecting hand-

labeled training examples. We train the discriminative classifier for each content 

classification task on increasingly large hand-labeled training sets. Figure 5 shows the 

predictive performance in relative F1 score of the the classifiers versus the number of hand-

labeled training examples. On the topic classification task, we find that it takes roughly 80K 

hand-labeled examples to match the predictive accuracy of the weakly supervised classifier. 

On the product classification task, we find that it takes roughly 12K hand-labeled examples. 

This result shows that weak supervision can significantly reduce the need for hand-labeled 

training data in content classification applications.

6.3 Ablation Study

We measured the importance of including non-servable organizational supervision resources 

by removing all labeling functions that depend on them from the topic and product 

classification applications. The only labeling functions that remained were pattern-based 

rules. Table 2 shows the results. We find that incorporating non-servable Google resources in 

labeling functions leads to a 52% average performance improvement for the end 

discriminative classifier. This result shows that the non-servable resources contain valuable 

information that are effectively transferred.

We also measured the importance of using the generative model to estimate the weights of 

the labeling function votes by training an identical logistic regression classifier giving equal 

weight to all the labeling functions for the topic and product classification applications. In 

other words, the probabilistic training labels were an unweighted average of the labeling 
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function votes. Table 4 shows the results. We find that using the generative model to weight 

labeling functions leads to a 4.8% average performance improvement for the end 

discriminative classifier. This result shows that the generative model is an effective 

component of the Snorkel DryBell pipeline.

6.4 Real-Time Events

We evaluate the application of Snorkel DryBell to the real-time events application as 

compared to a baseline weak supervision approach of training the same deep neural network 

architecture on a simpler combination of the same set of labeling functions. Specifically, we 

compare:

• Logical-OR Weak Supervision: Here, the weak supervision sources, defined over 

the non-servable features, are combined using a logical OR. The resulting labels 

are then used to train a deep neural network (DNN) discriminative classifier over 

the servable features.

• Snorkel DryBell: Here, we use Snorkel DryBell to combine the weak supervision 

sources, and then use the resulting probabilistic training labels to train a DNN 

over the servable features.

We observed that Snorkel DryBell identifies an additional 58% of events of interest as 

compared to what the baseline Logical-OR approach captures, and the quality of the events 

identified by Snorkel DryBell offer a 4.5% improvement according to an internal metric.

Finally, we note that Snorkel DryBell leads to an end discriminative classifier that produces 

a more reasonable distribution of scores, i.e. predicted probabilities of a certain event label, 

as compared to the Logical-OR weak supervision baseline (Figure 6). Whereas the DNN 

trained using the latter approach ends up predicting labels with nearly absolute confidence, 

the distribution produced by Snorkel DryBell is far more nuanced and consistent with the 

expected distribution—resulting not only in better quality, but more interpretable and usable 

end predictions.

7 DISCUSSION

The experimental results above demonstrate the importance of Snorkel DryBell’s design 

principles to deploying weakly supervised machine learning in an industrial setting. First, 

the ability to incorporate diverse organizational resources was critical to both the content and 

real-time event applications. In both cases, Google has a variety of tools from which we 

constructed weak supervision sources, from existing machine learning classifiers, to 

structured background knowledge, to previously developed heuristic functions. These tools 

are heterogeneous, not just in the information they contain, but how they are maintained and 

executed within Google. Some, like semantic categorization, are maintained by one team 

and applied generally to incoming content. Others, like the natural language processing 

models, are maintained by another team and must be executed as part of the weak 

supervision development process because they are too expensive to run on all incoming 

content. We find that labeling functions are an effective abstraction for encapsulating all 

these types of heterogeneity.

Bach et al. Page 14

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Second, we find that the mechanism of denoising labeling functions to produce training data 

and train new classifiers used in Snorkel DryBell effectively transfers knowledge from non-

servable resources to servable models. This is crucial in an industrial environment in which 

products are composed of many services that are connected via latency agreements. When 

engineers have to ensure that classifiers make predictions within allotted times, they have to 

be very selective about what features to use. In contrast, writing labeling functions affords 

developers flexibility because they are executed as part of an offline training process.

Third, we find that the labeling function abstraction is user friendly, in the sense that 

developers in the organization can write new labeling functions to capture domain 

knowledge. Snorkel DryBell’s architecture is designed for high throughput, enabling rapid 

human-in-the-loop development of labeling functions. For example, developing each content 

classification application was possible because of the ability to rapidly iterate on labeling 

functions. In contrast, waiting for human annotators to hand-label training data can cause 

lengthy delays.

We anticipate that this low-latency development of machine learning classifiers will be 

increasingly important as businesses and other large organizations increasingly depend on 

machine learning. This is because machine learning teams are now responsible for 

implementing business strategies. For example, if a company like Google decides to add a 

feature to a product that requires identifying content on a specific topic, the machine 

learning team currently must respond by curating training examples for this topic. If the 

strategy changes, then the training examples must change too. Weakly supervised machine 

learning systems like Snorkel DryBell enable these teams to respond by writing code, rather 

than pushing high-latency tasks to data annotators. When launch schedules for products that 

depend on machine learning are short, time spent curating training data is costly.

This code-as-supervision paradigm also has the potential to meet additional challenges that 

modern machine learning teams face. A single team in a large organization is often now 

responsible for hundreds or more different classifiers. Each one currently needs its own 

hand-labeled set of training examples. We have demonstrated that Snorkel DryBell enables 

Google to leverage existing resources—including other machine learning classifiers—to 

create new classifiers. We anticipate that the problem of managing these large networks of 

classifiers that share knowledge will be a significant area of future work in the near future.

Finally, we believe weakly supervised machine learning has the potential to affect 

organizational structures. Google is beginning to experiment with reorganizing machine 

learning development around the separation between subject matter expertise and 

infrastructure enabled by weak supervision. Dedicated teams could potentially focus on 

writing labeling functions while others stay focused on serving the resulting classifiers in 

production.

7.1 Lessons for Other Organizations

As the code-as-supervision paradigm grows in use, we anticipate that several lessons learned 

from our work are adoptable beyond Google. First, resources that can be used for weak 

supervision are abundant, and our findings demonstrate that labeling functions combined via 

Bach et al. Page 15

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a generative model are a new way to extract value from them. In our work, access to broad-

purpose natural language processing models saved significant developer time, even though 

these models were not designed specifically for our tasks. We observe other organizations 

already developing broad-purpose models for domains such as language modeling [13, 14], 

object recognition [20], and object detection [39]. In addition, cloud-service providers are 

making pre-trained, broad-purpose models for language and vision available to consumers 

[12, 35]. Further, many open-source, broad-purpose models for tasks like named entity 

recognition [17], sentiment analysis [21], and object detection [25] are freely available and 

could be incorporated into labeling functions for more specific tasks. While our study 

focused on existing resources, our results also indicate that further investment in broad-

purpose models and knowledge graphs that provide background knowledge for weak 

supervision will be increasingly worthwhile.

Second, cross-feature transfer to servable models was critical in our applications, and 

represents a new perspective on model serving strategies which we believe may be of 

general applicability. In this approach, developers use a set of features not servable in 

production—for example, expensive internal models or private entity network graphs—to 

create training data for models that are defined over production-servable features. We 

learned that having multiple representations of the same data is an effective way to weakly 

supervise models with service-level agreements. This technique can potentially benefit the 

many applications where efficient model serving is needed.

Third, the design choices made in the original Snorkel implementation can be improved for 

many use cases. Some changes are applicable to both systems for novice users and experts. 

We found that implementing the generative model in an optimization framework with 

automatic differentiation was faster to develop, easier to distribute, and faster to execute than 

an MCMC sampling approach. Other lessons came from the different needs of advanced 

machine learning engineers versus novice users. We found that advanced users want 

maximum flexibility in implementing labeling functions, including being able to launch 

additional services and call remote procedures during execution. This approach is in contrast 

to Snorkel’s focus on novice users, in which data to be labeled is represented with a 

prescribed class hierarchy. The tradeoff is that while Snorkel DryBell offers fewer higher-

level helper functions for labeling function writers, it was easy to apply to a wider range of 

data, from online content to events. We anticipate that other implementations of weak 

supervision for advanced users will want to follow Snorkel DryBell’s approach.

8 RELATED WORK

Weakly supervised machine learning as implemented in Snorkel DryBell—using multiple 

noisy but inexpensive sources of labels as an alternative to hand-labeled training data—is 

related to other areas of research in machine learning and data systems that also seek to learn 

and make inferences with limited labeled data.

In machine learning, semi-supervised learning [7] combines labeled data with unlabeled 

data. It is a broad category of methods that generally seek to use the unlabeled data to 

discover structure in the data, such as dense clusters or low-dimensional manifolds, that 
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enables better extrapolation from the limited labeled examples. Transfer learning [26] 

exploits labeled data available for one or more tasks to reduce the need for labeled data for a 

new task. Methods in which a learner labels additional data for itself to train on include self-
training [2, 34], co-training [5], and pseudo-labeling [18]. Zero-shot learning [38] attempts 

to learn a sufficiently general mapping between class descriptions and labeled examples that 

new classes can be identified at test time from just a description, without any additional 

training examples. Active learning [36] methods select data points for human annotators to 

label. They aim to minimize the amount of labeling needed by interleaving learning and 

requests for new labels.

Related problems in data systems include data fusion [11, 33] and truth discovery [19]. Here 

the goal is to estimate the accuracy of possibly conflicting records in different data sources 

and integrate them into the most likely set of correct records. A similar problem is data 
cleaning [28], which aims to identify and correct errors in data sets. Recently, Rekatsinas et. 

al. [32] proposed HoloClean, which uses weakly supervised machine learning to learn to 

correct errors. Many methods for these problems, e.g., the latent truth model [41], use 

generative models similar to the one in Snorkel DryBell in that they represent the 

unobserved truth as a latent variable. Snorkel DryBell’s generative model differs in that it 

models the output of labeling functions executed on input data, and these functions can 

provide any class label or abstain.

9 CONCLUSION

In this paper we presented the first results from deploying the Snorkel DryBell framework 

for weakly supervised machine learning in a large-scale, industrial setting. We find that 

weak supervision can train classifiers that would otherwise require tens of thousands of 

hand-labeled examples to obtain, and that Snorkel DryBell’s design enables developers to 

effectively connect a wide range of organizational resources to new machine learning 

problems in order to improve predictive accuracy. These results indicate that weak 

supervision has the potential to play a significant role in industrial development of machine 

learning applications in the near future.
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Figure 1: 
Rather than using hand-labeled training data, Snorkel DryBell uses diverse organizational 

resources as weak supervision to train content and event classifiers on Google’s platform.
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Figure 2: 
We plot the distribution of high-level categories of weak supervision types, counted by 

number of labeling functions (LFs), for the three applications.
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Figure 3: 
In Snorkel DryBell, developers can use non-servable development features for weak 

supervision, to train classifiers that operate over separate servable features in production.
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Figure 4: 
An overview of the Snorkel DryBell system. (1) Snorkel DryBell provides a library of 

templated C++ classes, each of which defines a MapReduce pipeline for executing a labeling 

function with the necessary services, such as natural language processing (NLP). (2) 

Engineers write methods for the MapReduce pipeline to determine a vote for each example’s 

label, using Google resources. (3) Snorkel DryBell executes the labeling function binary on 

Google’s distributed compute environment. (4) Snorkel DryBell loads the labeling 

functions’ output into its generative model, which combines them into probabilistic training 

labels for use by production systems.
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Figure 5: 
Relative difference in predictive accuracy measured in F1 of supervised classifiers trained on 

increasing numbers of hand-labeled training examples for the topic and product 

classification tasks. The dashed line shows the normalized F1 score of the weakly supervised 

classifier trained on Snorkel DryBell-inferred labels.
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Figure 6: 
We compare a histogram of the predicted probabilities (“scores”) of an event using a model 

trained with a baseline Logical-OR approach to combining weak supervision sources (left), 

and trained using Snorkel DryBell’s output (right). We see that the baseline approach results 

in greatly over-estimating the score of events, whereas the model trained using Snorkel 

DryBell produces a smoother distribution. This results in better performance, and offers 

more useful output to those monitoring the system.
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Table 1:

Number of unlabeled examples used during training n, number of labeled examples in the development set 

nDev and test set nTest, fraction of positive labels in nTest, and number of labeling functions used for each task, 

for the content classification applications.

Task n nDev nTest % Pos. # LFs

Topic Classification 684K 11K 11K 0.86 10

Product Classification 6.5M 14K 13K 1.48 8
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Table 3:

An ablation study of Snorkel DryBell using only labeling functions that depend on servable features 

(“Servable LFs”) compared with all labeling functions, including non-servable resources. All scores are 

normalized to the precision, recall, and F1 of the logistic regression classifier trained directly on the 

development set. Lift is reported relative to Servable LFs.

Relative: P R F1 Lift

Topic Classification

Servable LFs 50.9% 159.2% 86.1%

+ Non-Servable LFs 100.6% 132.1% 117.5% +36.4%

Product Classification

Servable LFs 38.0% 119.2% 62.5%

+ Non-Servable LFs 99.2% 110.1% 105.2% +68.2%
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Table 4:

An ablation study of Snorkel DryBell using equal weights for all labeling functions to label training data 

(“Equal Weights”) compared with using the weights estimated by the generative model. All scores are 

normalized to the precision, recall, and F1 of the logistic regression classifier trained directly on the 

development set. Lift is reported relative to Equal Weights.

Relative: P R F1 Lift

Topic Classification

Equal Weights 54.1% 163.7% 109.0%

+ Generative Model 100.6% 132.1% 117.5% +7.7%

Product Classification

Equal Weights 94.3% 110.9% 103.24%

+ Generative Model 99.2% 110.1% 105.2% +1.9%
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