
Snorkel DryBell: A Case Study in Deploying Weak Supervision at
Industrial Scale

Stephen H. Bach†, Daniel Rodriguez‡, Yintao Liu‡, Chong Luo‡, Haidong Shao‡, Cassandra
Xia‡, Souvik Sen‡, Alex Ratner§, Braden Hancock§, Houman Alborzi‡, Rahul Kuchhal‡,
Chris Ré§, Rob Malkin‡

†Brown University

‡Google

§Stanford University

Abstract

Labeling training data is one of the most costly bottlenecks in developing machine learning-based

applications. We present a first-of-its-kind study showing how existing knowledge resources from

across an organization can be used as weak supervision in order to bring development time and

cost down by an order of magnitude, and introduce Snorkel DryBell, a new weak supervision

management system for this setting. Snorkel DryBell builds on the Snorkel framework, extending

it in three critical aspects: flexible, template-based ingestion of diverse organizational knowledge,

cross-feature production serving, and scalable, sampling-free execution. On three classification

tasks at Google, we find that Snorkel DryBell creates classifiers of comparable quality to ones

trained with tens of thousands of hand-labeled examples, converts non-servable organizational

resources to servable models for an average 52% performance improvement, and executes over

millions of data points in tens of minutes.

Keywords

Systems for machine learning; weak supervision

1 INTRODUCTION

One of the most significant bottlenecks in developing machine learning applications is the

need for hand-labeled training data sets. In industrial and other organizational deployments,

the cost of labeling training sets has quickly become a significant capital expense: collecting

labels at scale requires carefully developing labeling instructions that cover a wide range of

edge cases; training subject matter experts to carry out those instructions; waiting sometimes

months or longer for the full results; and dealing with the rapid depreciation of training sets

as applications shift and evolve.

As a result, in industry and other domains there has been a major movement towards

programmatic or otherwise more efficient but noisier ways of generating training labels,

HHS Public Access
Author manuscript
Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019
November 27.

Published in final edited form as:
Proc ACM SIGMOD Int Conf Manag Data. 2019 ; 2019: 362–375. doi:10.1145/3299869.3314036.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

often referred to as weak supervision. Given the increasing commoditization of standard

machine learning model architectures, the supervision strategy used is increasingly the key

differentiator for end model performance, and recently has been a key element in state-of-

the-art results [8, 20]. Many prior weak supervision approaches rely on a single source of

labels, a small number of carefully chosen, manually combined sources [23, 40], or on

sources that make uncorrelated errors such as independent crowd workers [9, 10]. Recent

work has explored building end-to-end systems for programmatic supervision, e.g., simple

heuristic rules and pattern matching scripts written from scratch by users, which may have

diverse accuracies and correlations [3, 29, 30].

In this work, we present a first-of-its-kind study showing how existing organizational

knowledge can be used as weak supervision to have significant impact even in some of the

most heavily-engineered, high-value industrial ML applications. We introduce Snorkel

DryBell, a production-scale weak supervision management system which extends the

Snorkel framework [29] to handle three novel aspects we find to be critical: flexible

template-based ingestion of organizational knowledge, cross-feature production serving, and

scalable, sampling-free modeling. We evaluate Snorkel DryBell on three content and real-

time event classification applications at Google (Figure 1), where we move beyond using

simple pattern matchers over text as weak supervision for small-scale, first-cut applications

(as in initial work on Snorkel [29]), and demonstrate the value of using existing

organizational knowledge resources, measured against baselines with person-decades of

development.

Based on our experience at Google, we outline three core principles that are central to

deploying weak supervision at organizational scale, and highlight how these are

implemented in Snorkel DryBell:

• Flexible Ingestion of Organizational Knowledge: In large organizations, a

wide range of resources—such as models, knowledge bases, heuristics, and more

—are often available; a weak supervision system should support rapid and

flexible integration of as many of these resources as possible for quickly training

models to the highest possible quality. We highlight the importance of this

approach with three case studies involving content and event classification tasks.

Engineers at Google are responsible for hundreds of separate classifiers, which

often rely on hand-labeled training data. They must be responsive to everything

from shifting business objectives to changes in products; updating these

classifiers is often the critical blocker to core product and feature launches. We

describe how a single engineer can use weak supervision to rapidly develop new

classifiers, leading to average, relative quality improvements of 11.5% (measured

in F1 points) over classifiers trained on small ~15K-example development sets,

and reaching the quality equivalent of using 80K labels.

• Cross-Feature Production Serving: Organizational knowledge is often present

in non-servable form factors, i.e., too slow, expensive, or private to be used in

production; instead, a weak supervision system can provide a way to use these to

quickly train servable models suitable for deployment. For example, internal

models or heuristics are often defined over features like monthly aggregate

Bach et al. Page 2

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

statistics, expensive internal models, etc., whereas Snorkel DryBell can allow

users to quickly transfer this knowledge to models defined over servable features,

e.g., inexpensive, real-time signals. We demonstrate how Snorkel DryBell allows

users to quickly and flexibly transfer organizational knowledge from non-

servable forms to new servable deployment models focused on the classification

task of interest. We view this as a practical, flexible form of transfer learning,

and show that incorporating these resources leads to 52% average gains in

performance.

• Scalable, Sampling-Free Execution: A weak supervision system should cleanly

decouple subject matter experts (SMEs), who should be able to rapidly and

iteratively specify weak supervision, from the details of execution and model

training over industrial scale datasets. We describe how the architecture of

Snorkel DryBell cleanly decouples the interface by which SMEs across an

organization can contribute labeling strategies, and the system for executing

these at massive scale while supporting rapid human-in-the-loop iteration—for

example, implementing weak supervision over 6M+ data points with sub-30min.

execution time—including a new TensorFlow compute graph-based generative

modeling approach that avoids expensive sampling, and a MapReduce-based

pipeline.

We achieve these principles in Snorkel DryBell by adopting the three main stages of the

Snorkel pipeline: first, users write labeling functions, which are simply black-box functions

that take in unlabeled data points and output a label or abstain, and can be used to express a

wide variety of weak supervision strategies; next, a generative modeling approach is used to

estimate the accuracies of the different labeling functions based on their observed

agreements and disagreements; and finally, these accuracies are used to re-weight and

combine the labels output by the labeling functions, producing probabilistic (confidence-

weighted) training labels.

We start in Section 2 with a brief description of existing work on weak supervision, and of

the approach taken by Snorkel, the framework that Snorkel DryBell extends. In Section 3,

we present three case studies of content and event classification applications at Google,

where we survey the categories of weak supervision strategies that can be employed within

Snorkel DryBell. We discuss these case studies at a high level due to the proprietary nature

of the applications. In Section 4, we highlight a particularly critical cross-feature form of

production model serving supported in Snorkel DryBell, in which non-servable supervision

resources that are expensive to run, private, or otherwise not servable in production are used

to train servable deployment models. In Section 5, we then present the architecture of

Snorkel DryBell, emphasizing a new sampling-free generative modeling approach, and a

MapReduce-based pipeline and template library. In Section 6, we describe experimental

results on benchmark data sets using Google data representative of production tasks. We

show that Snorkel DryBell can replace hand-labeling tens of thousands of training examples.

Finally, we conclude with lessons learned on how weakly supervised machine learning can

be integrated into the development processes of production machine learning applications,

and discuss how these lessons can be applied at many different kinds of organizations.

Bach et al. Page 3

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2 BACKGROUND

In recent years, modern machine learning models have achieved new state-of-the-art

accuracies on a range of traditionally challenging tasks. However, these models generally

require massive hand-labeled training sets [37]. In response, many machine learning

developers have increasingly turned to weaker methods of supervision, in which a larger

volume of cheaper, noisier labels is used [6, 9, 10, 23, 24, 29, 40].

We build on top of Snorkel, a recently proposed framework for weakly supervised machine

learning [29], which allows users to generically specify multiple sources of programmatic

weak supervision—such as rules and pattern matchers over text—that can vary in accuracy,

coverage, and that may be arbitrarily correlated. The Snorkel pipeline follows three main

stages, which we also adopt in Snorkel DryBell: first, users write labeling functions, which

are simply black-box functions that take in unlabeled data points and output a label or

abstain; next, a generative model is used to estimate the accuracies of the different labeling

functions, and then to re-weight and combine their labels to produce a set of probabilistic
training labels, effectively solving a novel data cleaning and integration problem; and finally,

these labels are use to train an arbitrary end discriminative model, which is used as the final

classifier in production.

This setup can be formalized as follows. Let X = (X1, …, Xm) be a collection of unlabeled

data points, Xi ∈ 𝒳, with associated unobserved labels Y = (Y1,…, Ym). For simplicity, we

focus on binary classification, Yi ∈ {−1, 1}, however Snorkel DryBell can handle arbitrary

categorical targets as well, e.g. Yi ∈ {1,…,k}.

In our weak supervision setting, we do not have access to these ground-truth labels Yi, and

our goal is to estimate them to use as training labels. Instead, we have access to n labeling

functions λ = (λ1,…, λn), where λ j:𝒳 { − 1, 0, 1}, with 0 corresponding to an abstain

vote. We use a generative model wherein we model each labeling function as abstaining or

not with some probability, and labeling a data point correctly with some probability. Let Λ
be the matrix of labels output by the n labeling functions over the m unlabeled data points,

such that Λi, j= λj(Xi). We then estimate the parameters w of this generative labeling model

Pw(Λ, Y) by maximizing the log marginal likelihood of the observed labels Λ:

w = arg max
w

log ∑
Y ∈ { − 1, 1}m

Pw(Λ, Y) .

Note that we are marginalizing out Y, i.e. we are not using any ground truth training labels

in our learning procedure; instead, we are learning solely from the information about

agreements and disagreements between the labeling functions, as contained in the observed

label matrix Λ. We discuss the choice of the structure of Pw(Λ, Y) and the unsupervised

approach to estimating w further in Section 5.2.

Given the estimated generative model, we use its predicted label distributions,

Y i = Pw(Y i ∣ Λ), as probabilistic training labels for the end discriminative classifier that we

Bach et al. Page 4

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

aim to train. We train this discriminative classifier hθ on our weakly labeled training set, (X,

Y), by minimizing a noise-aware variant of a standard loss function, l, i.e. we minimize the

expected loss with respect to Y :

θ = arg min
θ

∑
i = 1

m
𝔼

y~Y i
[l(hθ(Xi), y)]

A formal analysis shows that as the number of unlabeled data, i.e. m, is increased, the

generalization error of the discriminative classifier should decrease at the same asymptotic

rate as it would if supervised with traditional hand-labeled data [30]. More generally, we

expect the discriminative classifier to provide performance gains over the generative model

(i.e. the reweighted combination of the labeling function outputs) that it is trained on, both

by applying to data types that the labeling functions cannot be applied to, e.g. servable

versus non-servable features (see Section 4), and by learning to generalize beyond them. For

example, the discriminative classifier can learn to put weight on more subtle or synonymous

features that the labeling functions (and thus, the generative model) do not cover. For

empirical evidence of this generalization, and further details of the actual discriminative

models used, see Section 6.

Inbuilding Snorkel DryBell, we sought to extend Snorkel to study weak supervision in the

context of an organizational-scale deployment, focusing on three key aspects. First, while

Snorkel was designed to handle “de novo” weak supervision applications built with a

handful of simple pattern-matching rules, written from scratch by domain experts, we design

a template-based interface for ingesting existing organizational knowledge resources like

internal models, taggers, legacy code, and more (Section 3). Second, we implement support

for cross-feature production serving, where weak supervision defined over features not

servable for application deployment—such as aggregate statistics or expensive results of

model inference—can be transferred to deployable models defined over servable features

(Section 4). Finally, our design of the Snorkel DryBell architecture focuses on handling

massive scale (e.g. 6.5M data points in one application), and thus we focus on speeding up

both labeling function execution and generative model training, in particular using a new

sampling-free modeling approach (Section 5).

3 CASE STUDIES: WEAK SUPERVISION FOR RAPID DEVELOPMENT

We start by exploring three case studies of weak supervision applied to classification

problems at Google: two on content classification related to topics and commercial product

categories, and one for classifying real-time events across several serving platforms. In this

section, we focus on highlighting the diversity of weak supervision signals from across the

organization that developers were able to express as labeling functions (LFs) in Snorkel

DryBell. We broadly categorize the weak supervision sources into several coarse-grained

buckets, representing different types of organizational knowledge and resources (Figure 2):

• Source Heuristics: Labeling functions expressing heuristics (pattern or

otherwise) about the source of the content or event, or aggregate statistics of this.

Bach et al. Page 5

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Content Heuristics: Labeling functions expressing heuristics about the content

or event.

• Model-Based: Labeling functions that use the predictions of internal models

which were developed for some related or component problem. Examples

include topic models and named entity recognizers applied to content.

• Graph-Based: Labeling functions that use a knowledge or entity graph to derive

labels.

We now describe the applications, giving examples of the above weak supervision source

types used in each.

3.1 Topic Classification

In the first task, an engineering team for a Google product needed to develop a new classifier

to detect a topic of interest in its content. The team oversees well over 100 such classifiers,

each with its own set of training data, so there is strong motivation for finding faster and

more agile ways to develop or modify these models. Currently, however, the default

procedure for developing a new classifier such as this one requires substantial manual data

labeling effort.

In our study, we instead used Snorkel DryBell to weakly supervise 684,000 unlabeled data

points, selected by a coarse-grained initial keyword-filtering step. A developer then spent a

short time writing ten labeling functions that both expressed basic heuristics, and pulled on

organizational resources such as existing models at Google. Specific examples of labeling

functions included:

• URL-based: Heuristics based on the linked URL;

• NER tagger-based: Heuristics over entities tagged within the content, using

custom named entity recognition (NER) models maintained internally at Google;

• Topic model-based: Heuristics based on a topic model maintained internally at

Google. This topic model output semantic categorizations far too coarse-grained

for the targeted task at hand, but which nonetheless could be used as effective

negative labeling heuristics.

These weak supervision strategies pulled on diverse types of signal from across Google’s

organization, but were simple to write within the Snorkel DryBell framework. With these

strategies, we matched the performance of 80K hand-labeled training labels, and get within

4.6 F1 points of a model trained on 175K hand-labeled training data points (see Section 6).

3.2 Product Classification

In a second case study with the same engineering team at Google, a strategic decision

necessitated a modification of an existing classifier for detecting content references to

products in a category of interest. The category of interest was expanded to include many

types of accessories and parts—meaning that all previously negative class labels (i.e., “not in

the category of interest”) needed to be relabeled, or else discarded. In fact, our post-hoc

experiments revealed that even using the previously positive labels resulted in a slight

Bach et al. Page 6

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

reduction in end model F1 score, highlighting the near-instantaneous depreciation of a

significant labeling investment given a change in strategy.

Instead, in a similar process to the content classification scenario described above, one

developer was able to write eight labeling functions, leveraging diverse weak supervision

resources from across the organization. These labeling functions included:

• Keyword-based: Keywords in the content indicated either products and

accessories in the category of interest, or other accessories not of interest;

• Knowledge Graph-based: In order to increase coverage across the many

languages for which this classifier is used, we queried Google’s Knowledge

Graph for translations of keywords in ten languages;

• Model-based: We again used the semantic topic model to identify content

obviously unrelated to the category of products of interest.

A classifier trained with these labeling functions matched the performance of 12K hand-

labeled training examples, and got within 5.1 F1 points of classifier model trained on 50K

hand-labeled training examples (see Section 6).

3.3 Real-Time Event Classification

Finally, we applied Snorkel DryBell to a real-time events classification problem over two of

Google’s platforms. In this setting, a common approach is to classify events based on offline

(or non-servable) features such as aggregate statistics and relationship graphs. However, this

approach induces latency between when an event occurs and when it is identified. An

alternative approach is to use a machine learning model to classify events directly from real-

time, event-level features. However, getting hand-labeled training data in this setting is

challenging due to the shifting environment, as well as the cost of trained expert annotators.

Instead, we used Snorkel DryBell to train models over the event-level features using weak

supervision sources (n=140) defined over the non-servable features, spanning three broad

categories:

• Model-based: Several smaller models that had previously been developed over

various feature sets were also used as weak labelers in this setting.

• Graph-based: A set of models over graphs of entity and destination relationships

provided higher recall but generally lower-precision signals than the heuristic

classifiers.

• Other heuristics: A large set of existing heuristic classifiers that had previously

been developed.

These sources were combined in Snorkel DryBell and used to train a deep neural network

over real-time event-level features. Compared to the same network trained on an unweighted

combination of the labeling functions, Snorkel DryBell identifies 58% more events of

interest, with a quality improvement of 4.5% according to an internal metric.

One of the aspects that we found critical in this setting was the ability of Snorkel DryBell to

estimate the accuracies of different labeling functions. Given the large number of weak

Bach et al. Page 7

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

supervision sources in play, determining the quality or utility of each source, and tuning

their combinations accordingly, would have itself been an onerous engineering task. Using

Snorkel DryBell, these weak supervision signals could simply all be integrated as labeling

functions, and the resulting estimated accuracies were found to be independently useful for

identifying previously unknown low-quality sources (which were then either fixed or

removed).

4 CROSS-FEATURE MODEL SERVING

One significant advantage of a weakly supervised approach, as implemented in Snorkel

DryBell, is the ability to easily and flexibly transfer knowledge contained in non-servable
feature sets that are too slow, expensive, or private to use in production, to servable feature

sets such as real-time event-level signals or cheap edge-computable features, as in the real-

time event application (Figure 3). Formally, this goal of transferring knowledge from a

model defined over one feature set to a new model trained over another feature set can be

viewed as a type of transfer learning [27], or as similar to a transductive form of model

distillation [15]. However, most commonly used transfer learning techniques today apply to

models with similar or identical architectures defined over the same basic feature set.

Instead, with Snorkel DryBell we can quickly use models over one set of features—for

example, aggregate statistics, results of expensive crawlers, internal models or graphs—and

use these to supervise a new model over external, cheap, or otherwise servable features.

In the applications we survey at Google, this is an essential element. In the real-time events

case study, as outlined in the preceding section, none of the weak supervision sources are

directly applicable to the event-level, real-time, servable features of interest; instead, with

Snorkel DryBell we use them to train a new model that is defined over these servable

features. For the two content applications, while some of the labeling functions could be

applied at test time over servable features, others—specifically, those comprising internal

models that are expensive to run, or features obtained with high-latency such as the result of

web crawlers—are effectively non-servable. By incorporating the signal from these non-

servable sources in Snorkel DryBell, we get average gains of 52% in final F1 score

performance according to an ablation. We find that this ability to bridge the gap between

non-servable organizational resources and servable models is one of the major advantages of

a weak supervision approach like the one implemented in Snorkel DryBell.

5 SYSTEM ARCHITECTURE

Deploying the Snorkel framework proposed by Ratner et. al. [29] required redesigning its

implementation for an industrial, distributed computing environment, where the scale of

examples (millions) is at least an order of magnitude larger than any reported data set for

which Snorkel has been used. This required decoupling and redesigning the labeling

function execution and generative modeling components of the pipeline around a template

library and distributed compute environment, which we detail next.

Bach et al. Page 8

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.1 Labeling Function Template Library

We implement support for user-defined labeling functions as a library of templated C++

classes. Our goal is to abstract away the repeated development of code for reading and

writing to Google’s distributed filesystem, and for executing MapReduce pipelines. We

achieve this by implementing an AbstractLabelingFunction class that handles all input and

output to Google’s distributed filesystem. Each subclass defines a MapReduce pipeline, with

class template slots for functions to be executed within the pipeline. We initially developed

two labeling function pipelines.

The first pipeline is a default pipeline that does not launch any additional services; it simply

executes a user-defined function written in C++ (LabelingFunction). This class meets the

needs of many use cases, such as content heuristics, model-based heuristics for models that

are executed offline as part of data collection such as semantic categorization, and graph-

based heuristics that can query a knowledge graph offline (e.g., categories of products in

top-ten languages).

The second pipeline integrates with Google’s general-purpose natural language processing

(NLP) models (NLPLabelingFunction). Such integration is necessary because these NLP

models are too computationally expensive to run for all content submitted to Google.

Snorkel DryBell therefore needs to enable labeling-function writers to execute additional

models in a manner that scales to the millions of examples to be labeled. To achieve this

goal, Snorkel DryBell uses Google’s MapReduce framework to launch a model server on

each compute node. Other model servers besides the NLP models can be supported by

creating new subclasses of AbstractLabelingFunction.

Engineers using this library need to write only simple main files that define the function(s)

that computes the labeling function’s vote for an individual example. These functions

capture the engineer’s knowledge about how to use existing resources at Google as

heuristics for weak supervision. As an example that is analogous to a labeling function in

our content classification application, suppose our goal is to identify content related to

celebrities. A developer can implement a heuristic that uses a named-entity recognition

model for this task as an instance of NLPLabelingFunction. The labeling function labels any

content that does not contain a person as not related to celebrities. The first template

argument is a pointer to a function that takes an example object as input and selects the text

to be provided to the NLP model server. The second template argument is a pointer to a

function that takes the same example object and the output of the NLP models as its inputs,

and checks whether the named-entity recognition model found any proper names of people.

We illustrate this example in code:

string GetText(const Example& x) {

 return StrCat(x.title, " ", x.body);

}

LFVote GetValue(const Example& x,

 const NLPResult& nlp) {

 if (nlp.entities.people.size() == 0) {

Bach et al. Page 9

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 return NEGATIVE;

 }

 else { return ABSTAIN; }

}

int main(int argc, char *argv[]) {

 Init (argc , argv) ;

 NLPLabelingFunction<&GetText, &GetValue> lf;

 lf.Run () ;

}

This short bit of code captures a logical relationship between an existing model and the

target task, speeding development.

5.2 Sampling-Free Generative Model

The critical task in Snorkel DryBell is to combine the noisy votes of the various labeling

functions into estimates of the true labels for training. In Snorkel DryBell, we use a new

sampling-free modeling approach which is far less CPU intensive and far simpler to

distribute across compute nodes. We focus on a conditionally independent generative model,

which we write as:

Pw(Λ, Y) = ∏
i = 1

m
Pw(Yi) ∏

j = 1

n
Pw(λ j(Xi) ∣ Yi),

Following prior work [29], we assume each labeling function has an accuracy given that it

did not abstain, and a propensity to not abstain, i.e., we share parameters across the

conditional distributions. For simplicity, here we assume that Pw(Yi) is uniform, but we can

also learn this distribution.

The learning objective of the generative model is to minimize the negative marginal log-

likelihood of the observed labeling function outputs – log P(Λ). The open-source Snorkel

implementation1 uses a Gibbs sampler to compute the gradient of this likelihood, but

sampling is relatively CPU intensive and complicated to distribute across compute nodes.

Instead, we design a new TensorFlow-based [1] implementation for sampling-free

optimization. For numeric stability, we represent the model parameters in log space. Let αj

be the unnormalized log probability that labeling function j is correct given that it did not

abstain, and let βj be the unnormalized log probability that it did not abstain. Then, to define

a static compute graph, as required by TensorFlow, we use 0-1 indicator functions for each

possible label value and multiply by the corresponding log likelihood:

−log P(Λ) = − ∑
i = 1

m
log(P(Λi, Yi = 1) + P(Λi, (Yi = − 1)),

1http://snorkel.stanford.edu

Bach et al. Page 10

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://snorkel.stanford.edu/

where

log P(Λi, Yi = 1) = ∑
j = 1

n
(1[λ j(Xi) = 1](α j + β j − Z j)

+ 1[λ j(Xi) = − 1](− α j + β j − Z j)

− 1[λ j(Xi) = 0]Z j),

log P(Λi, Yi = − 1) = ∑
j = 1

n
(1[λ j(Xi) = 1](− α j + β j − Z j)

+ 1[λ j(Xi) = − 1](α j + β j − Z j)

− 1[λ j(Xi) = 0]Z j),

Z j = log(exp(α j + β j) + exp(− α j + β j) + 1) .

The result is a fast implementation that can take hundreds of gradient steps per second on a

single compute node. For example, in our product classification application, in which there

are ten labeling functions, the optimizer takes an average >100 steps per second with a batch

size of 64. With ten labeling functions and a batch size of 64, a Gibbs sampler averages < 50

examples per second, so Snorkel DryBell provides a 2× speedup. Implementing the

generative model as a static compute graph in TensorFlow has another advantage over a

Gibbs sampler. It is easy to parallelize across multiple compute nodes using TensorFlow’s

API. (Here we report timing using a single process for a fair comparison.)

It is also possible to relax the conditional independence assumption by defining model

functions in TensorFlow that capture specific, low-tree-width graphical model structures,

which we leave for future work. It is also possible to directly plug-in matrix factorization

models of the kind recently used for denoising labeling functions [31] as TensorFlow model

functions.

5.3 Discriminative Model Serving

To create discriminative models that are servable in production, we integrated Snorkel

DryBell with TFX [4], Google’s platform for end-to-end production-scale machine learning.

The probabilistic training labels estimated by Snorkel DryBell are passed to TFX, where

users can configure a model to train with a noise-aware loss function. Once trained, we use

TFX to automatically stage it for serving.

As described in Section 4, the discriminative model acts on a more compact feature

representation than the labeling functions, enabling a cross-feature transfer of knowledge

Bach et al. Page 11

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

from non-servable resources used in labeling functions to a servable model. TFX supports

both logistic regression and deep neural network models, which can operate on user-

specified features that are available in production, or on the “raw” content, e.g., an LSTM

[16] that embeds each token of text in a vector space.

5.4 Comparison with Snorkel Architecture

There are several other key differences between Snorkel DryBell and Snorkel’s existing

open-source implementation beyond the changes detailed above. Snorkel is designed to run

on a single, shared-memory compute node. In contrast, Google, like many large

organizations, uses a distributed job scheduling and accounting system for large-scale

computing. It therefore was necessary to integrate Snorkel DryBell with Google’s

MapReduce framework.

Further, Snorkel is designed to be accessible to novice programmers with limited machine

learning experience. It uses a Jupyter notebook interface and enforces a strict context
hierarchy data model for representing training data. This rigid approach is not appropriate

for the wide range of tasks that arise in a large organization. Snorkel also uses a relational

database backend for storing data, which does not easily integrate with Google’s existing

data-storage systems. We therefore developed the more loosely coupled system described

above, in which labeling functions are independent executables that use a distributed

filesystem to share data.

6 EXPERIMENTS

To evaluate the performance of Snorkel DryBell, we created benchmark data sets using

Google data representative of the production tasks described in Section 3. We first show

results on the content classification applications, and use them to illustrate trade-offs

between weak supervision and collecting hand-labeled data, as well as the benefits of using

non-servable features for weak supervision. We then show results on the real-time events

application. Due to the sensitive nature of these applications, we report relative improvement

to our baselines for the content classification applications. We are unable to describe the

details of internal metrics used to evaluate real-time events, but include a high-level

description as corroborating evidence that Snorkel DryBell is widely applicable.

6.1 Topic and Product Classification

To evaluate on the topic and product classification applications, we used the probabilistic

training labels estimated by Snorkel DryBell to train logistic regression discriminative

classifiers with servable features similar to those used in production. We have access to

hundreds of thousands to millions of unlabeled examples for these tasks. We also create a

small, hand-labeled development set (nDev in Table 1) which is used by the developer while

formulating labeling functions, for hyperparameter tuning of the end discriminative

classifier, and as a supervised learning baseline in our experiments.

We use a logistic regression model in TFX. We train using the FTLR optimization algorithm

[22], a variant of stochastic gradient descent that tunes per-coordinate learning rates, with an

initial step size of 0.2. We train for 10K iterations for the topic classification task and 100K

Bach et al. Page 12

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

iterations for the product classification task, in order to have a similar training time to

production classifiers. (The topic classification task has an order-of-magnitude more features

than the product classification task.) All experiments use a batch size of 64.

Table 2 shows the results of applying the Snorkel DryBell system on the product and topic

classification tasks. We report all results relative to the baseline approach of training the

discriminative classifier directly on the hand-labeled development set.

We also report the predictive accuracy of Snorkel DryBell’s generative model, i.e., using the

weighted combination of labeling functions directly to make predictions. We do so to

demonstrate that the discriminative classifier learns to generalize beyond the information

contained in the labeling functions. Note that the generative model is not actually viable for

production tasks, because labeling functions often depend on non-servable features of the

data.

The results show that on both tasks, the discriminative classifiers trained on Snorkel

DryBell-produced training data has higher predictive accuracy in F1 score on the test sets

than classifiers trained directly on the development set. The weakly supervised classifiers

also have higher predictive accuracy than the corresponding generative models. This result

demonstrates that Snorkel DryBell effectively transfers the knowledge contained in the non-

servable resources to classifiers that only depend on servable features.

6.2 Trade-Off Between Weak Supervision Hand-Labeled Data

We next investigate the trade-off between using weak supervision and collecting hand-

labeled training examples. We train the discriminative classifier for each content

classification task on increasingly large hand-labeled training sets. Figure 5 shows the

predictive performance in relative F1 score of the the classifiers versus the number of hand-

labeled training examples. On the topic classification task, we find that it takes roughly 80K

hand-labeled examples to match the predictive accuracy of the weakly supervised classifier.

On the product classification task, we find that it takes roughly 12K hand-labeled examples.

This result shows that weak supervision can significantly reduce the need for hand-labeled

training data in content classification applications.

6.3 Ablation Study

We measured the importance of including non-servable organizational supervision resources

by removing all labeling functions that depend on them from the topic and product

classification applications. The only labeling functions that remained were pattern-based

rules. Table 2 shows the results. We find that incorporating non-servable Google resources in

labeling functions leads to a 52% average performance improvement for the end

discriminative classifier. This result shows that the non-servable resources contain valuable

information that are effectively transferred.

We also measured the importance of using the generative model to estimate the weights of

the labeling function votes by training an identical logistic regression classifier giving equal

weight to all the labeling functions for the topic and product classification applications. In

other words, the probabilistic training labels were an unweighted average of the labeling

Bach et al. Page 13

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

function votes. Table 4 shows the results. We find that using the generative model to weight

labeling functions leads to a 4.8% average performance improvement for the end

discriminative classifier. This result shows that the generative model is an effective

component of the Snorkel DryBell pipeline.

6.4 Real-Time Events

We evaluate the application of Snorkel DryBell to the real-time events application as

compared to a baseline weak supervision approach of training the same deep neural network

architecture on a simpler combination of the same set of labeling functions. Specifically, we

compare:

• Logical-OR Weak Supervision: Here, the weak supervision sources, defined over

the non-servable features, are combined using a logical OR. The resulting labels

are then used to train a deep neural network (DNN) discriminative classifier over

the servable features.

• Snorkel DryBell: Here, we use Snorkel DryBell to combine the weak supervision

sources, and then use the resulting probabilistic training labels to train a DNN

over the servable features.

We observed that Snorkel DryBell identifies an additional 58% of events of interest as

compared to what the baseline Logical-OR approach captures, and the quality of the events

identified by Snorkel DryBell offer a 4.5% improvement according to an internal metric.

Finally, we note that Snorkel DryBell leads to an end discriminative classifier that produces

a more reasonable distribution of scores, i.e. predicted probabilities of a certain event label,

as compared to the Logical-OR weak supervision baseline (Figure 6). Whereas the DNN

trained using the latter approach ends up predicting labels with nearly absolute confidence,

the distribution produced by Snorkel DryBell is far more nuanced and consistent with the

expected distribution—resulting not only in better quality, but more interpretable and usable

end predictions.

7 DISCUSSION

The experimental results above demonstrate the importance of Snorkel DryBell’s design

principles to deploying weakly supervised machine learning in an industrial setting. First,

the ability to incorporate diverse organizational resources was critical to both the content and

real-time event applications. In both cases, Google has a variety of tools from which we

constructed weak supervision sources, from existing machine learning classifiers, to

structured background knowledge, to previously developed heuristic functions. These tools

are heterogeneous, not just in the information they contain, but how they are maintained and

executed within Google. Some, like semantic categorization, are maintained by one team

and applied generally to incoming content. Others, like the natural language processing

models, are maintained by another team and must be executed as part of the weak

supervision development process because they are too expensive to run on all incoming

content. We find that labeling functions are an effective abstraction for encapsulating all

these types of heterogeneity.

Bach et al. Page 14

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Second, we find that the mechanism of denoising labeling functions to produce training data

and train new classifiers used in Snorkel DryBell effectively transfers knowledge from non-

servable resources to servable models. This is crucial in an industrial environment in which

products are composed of many services that are connected via latency agreements. When

engineers have to ensure that classifiers make predictions within allotted times, they have to

be very selective about what features to use. In contrast, writing labeling functions affords

developers flexibility because they are executed as part of an offline training process.

Third, we find that the labeling function abstraction is user friendly, in the sense that

developers in the organization can write new labeling functions to capture domain

knowledge. Snorkel DryBell’s architecture is designed for high throughput, enabling rapid

human-in-the-loop development of labeling functions. For example, developing each content

classification application was possible because of the ability to rapidly iterate on labeling

functions. In contrast, waiting for human annotators to hand-label training data can cause

lengthy delays.

We anticipate that this low-latency development of machine learning classifiers will be

increasingly important as businesses and other large organizations increasingly depend on

machine learning. This is because machine learning teams are now responsible for

implementing business strategies. For example, if a company like Google decides to add a

feature to a product that requires identifying content on a specific topic, the machine

learning team currently must respond by curating training examples for this topic. If the

strategy changes, then the training examples must change too. Weakly supervised machine

learning systems like Snorkel DryBell enable these teams to respond by writing code, rather

than pushing high-latency tasks to data annotators. When launch schedules for products that

depend on machine learning are short, time spent curating training data is costly.

This code-as-supervision paradigm also has the potential to meet additional challenges that

modern machine learning teams face. A single team in a large organization is often now

responsible for hundreds or more different classifiers. Each one currently needs its own

hand-labeled set of training examples. We have demonstrated that Snorkel DryBell enables

Google to leverage existing resources—including other machine learning classifiers—to

create new classifiers. We anticipate that the problem of managing these large networks of

classifiers that share knowledge will be a significant area of future work in the near future.

Finally, we believe weakly supervised machine learning has the potential to affect

organizational structures. Google is beginning to experiment with reorganizing machine

learning development around the separation between subject matter expertise and

infrastructure enabled by weak supervision. Dedicated teams could potentially focus on

writing labeling functions while others stay focused on serving the resulting classifiers in

production.

7.1 Lessons for Other Organizations

As the code-as-supervision paradigm grows in use, we anticipate that several lessons learned

from our work are adoptable beyond Google. First, resources that can be used for weak

supervision are abundant, and our findings demonstrate that labeling functions combined via

Bach et al. Page 15

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a generative model are a new way to extract value from them. In our work, access to broad-

purpose natural language processing models saved significant developer time, even though

these models were not designed specifically for our tasks. We observe other organizations

already developing broad-purpose models for domains such as language modeling [13, 14],

object recognition [20], and object detection [39]. In addition, cloud-service providers are

making pre-trained, broad-purpose models for language and vision available to consumers

[12, 35]. Further, many open-source, broad-purpose models for tasks like named entity

recognition [17], sentiment analysis [21], and object detection [25] are freely available and

could be incorporated into labeling functions for more specific tasks. While our study

focused on existing resources, our results also indicate that further investment in broad-

purpose models and knowledge graphs that provide background knowledge for weak

supervision will be increasingly worthwhile.

Second, cross-feature transfer to servable models was critical in our applications, and

represents a new perspective on model serving strategies which we believe may be of

general applicability. In this approach, developers use a set of features not servable in

production—for example, expensive internal models or private entity network graphs—to

create training data for models that are defined over production-servable features. We

learned that having multiple representations of the same data is an effective way to weakly

supervise models with service-level agreements. This technique can potentially benefit the

many applications where efficient model serving is needed.

Third, the design choices made in the original Snorkel implementation can be improved for

many use cases. Some changes are applicable to both systems for novice users and experts.

We found that implementing the generative model in an optimization framework with

automatic differentiation was faster to develop, easier to distribute, and faster to execute than

an MCMC sampling approach. Other lessons came from the different needs of advanced

machine learning engineers versus novice users. We found that advanced users want

maximum flexibility in implementing labeling functions, including being able to launch

additional services and call remote procedures during execution. This approach is in contrast

to Snorkel’s focus on novice users, in which data to be labeled is represented with a

prescribed class hierarchy. The tradeoff is that while Snorkel DryBell offers fewer higher-

level helper functions for labeling function writers, it was easy to apply to a wider range of

data, from online content to events. We anticipate that other implementations of weak

supervision for advanced users will want to follow Snorkel DryBell’s approach.

8 RELATED WORK

Weakly supervised machine learning as implemented in Snorkel DryBell—using multiple

noisy but inexpensive sources of labels as an alternative to hand-labeled training data—is

related to other areas of research in machine learning and data systems that also seek to learn

and make inferences with limited labeled data.

In machine learning, semi-supervised learning [7] combines labeled data with unlabeled

data. It is a broad category of methods that generally seek to use the unlabeled data to

discover structure in the data, such as dense clusters or low-dimensional manifolds, that

Bach et al. Page 16

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

enables better extrapolation from the limited labeled examples. Transfer learning [26]

exploits labeled data available for one or more tasks to reduce the need for labeled data for a

new task. Methods in which a learner labels additional data for itself to train on include self-
training [2, 34], co-training [5], and pseudo-labeling [18]. Zero-shot learning [38] attempts

to learn a sufficiently general mapping between class descriptions and labeled examples that

new classes can be identified at test time from just a description, without any additional

training examples. Active learning [36] methods select data points for human annotators to

label. They aim to minimize the amount of labeling needed by interleaving learning and

requests for new labels.

Related problems in data systems include data fusion [11, 33] and truth discovery [19]. Here

the goal is to estimate the accuracy of possibly conflicting records in different data sources

and integrate them into the most likely set of correct records. A similar problem is data
cleaning [28], which aims to identify and correct errors in data sets. Recently, Rekatsinas et.

al. [32] proposed HoloClean, which uses weakly supervised machine learning to learn to

correct errors. Many methods for these problems, e.g., the latent truth model [41], use

generative models similar to the one in Snorkel DryBell in that they represent the

unobserved truth as a latent variable. Snorkel DryBell’s generative model differs in that it

models the output of labeling functions executed on input data, and these functions can

provide any class label or abstain.

9 CONCLUSION

In this paper we presented the first results from deploying the Snorkel DryBell framework

for weakly supervised machine learning in a large-scale, industrial setting. We find that

weak supervision can train classifiers that would otherwise require tens of thousands of

hand-labeled examples to obtain, and that Snorkel DryBell’s design enables developers to

effectively connect a wide range of organizational resources to new machine learning

problems in order to improve predictive accuracy. These results indicate that weak

supervision has the potential to play a significant role in industrial development of machine

learning applications in the near future.

ACKNOWLEDGMENTS

The authors would like to thank Vikaram Gupta, Shiv Venkataraman, and Sugato Basu for their support and help
preparing the manuscript. A.R. gratefully acknowledges the support of the Stanford Bio-X Fellowship. A.R., B.H.,
and C.R. gratefully acknowledge the support of DARPA under Nos. FA87501720095 (D3M) and FA86501827865
(SDH), NIH under No. N000141712266 (Mobilize), NSF under Nos. CCF1763315 (Beyond Sparsity) and
CCF1563078 (Volume to Velocity), ONR under No. N000141712266 (Unifying Weak Supervision), the Moore
Foundation, NXP, Xilinx, LETI-CEA, Intel, Google, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture,
Ericsson, Qualcomm, Analog Devices, the Okawa Foundation, and American Family Insurance, and members of
the Stanford DAWN project: Intel, Microsoft, Teradata, Facebook, Google, Ant Financial, NEC, SAP, and
VMWare. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views, policies, or
endorsements, either expressed or implied, of DARPA, NIH, ONR, or the U.S. Government.

REFERENCES

[1]. Abadi Martín, Barham Paul, Chen Jianmin, Chen Zhifeng, Davis Andy, Dean Jeffrey, Devin
Matthieu, Ghemawat Sanjay, Irving Geoffrey, Isard Michael, Kudlur Manjunath, Levenberg Josh,

Bach et al. Page 17

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Monga Rajat, Moore Sherry, Murray Derek G., Steiner Benoit, Tucker Paul, Vasudevan Vijay,
Warden Pete, Wicke Martin, Yu Yuan, and Zheng Xiaoqiang. 2016 TensorFlow: A System for
Large-scale Machine Learning. In USENIX Conference on Operating Systems Design and
Implementation (OSDI).

[2]. Agrawala AK. 1970 Learning with a Probabilistic Teacher. IEEE Transactions on Infomation
Theory 16 (1970), 373–379.

[3]. Bach Stephen H., He Bryan, Ratner Alexander, and Ré Christopher. 2017 Learning the Structure
of Generative Models without Labeled Data. In International Conference on Machine Learning
(ICML).

[4]. Baylor Denis, Breck Eric, Cheng Heng-Tze, Fiedel Noah, Foo Chuan Yu, Haque Zakaria, Haykal
Salem, Ispir Mustafa, Jain Vihan, Koc Levent, et al. 2017 TFX: A TensorFlow-based production-
scale machine learning platform. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD).

[5]. Blum A and Mitchell T. 1998 Combining Labeled and Unlabeled Data with Co-Training. In
Workshop on Computational Learning Theory (COLT).

[6]. Bootkrajang Jakramate and Kabán Ata. 2012 Label-noise robust logistic regression and its
applications. In Joint European conference on machine learning and knowledge discovery in
databases Springer, 143–158.

[7]. Chapelle O, Schölkopf B, and Zien A (Eds.). 2006 Semi-Supervised Learning. MIT Press.

[8]. Cubuk Ekin D, Zoph Barret, Mane Dandelion, Vasudevan Vijay, and Le Quoc V. 2018
AutoAugment: Learning Augmentation Policies from Data. arXiv preprint arXiv:1805.09501
(2018).

[9]. Dalvi Nilesh, Dasgupta Anirban, Kumar Ravi, and Rastogi Vibhor. 2013 Aggregating
crowdsourced binary ratings. In Proceedings of the 22nd international conference on World Wide
Web ACM, 285–294.

[10]. Dawid Alexander Philip and Skene Allan M. 1979 Maximum likelihood estimation of observer
error-rates using the EM algorithm. Applied statistics (1979), 20–28.

[11]. Dong XL and Srivastava D. 2015 Big Data Integration. Morgan & Claypool Publishers.

[12]. Google.2019 Cloud AI. https://cloud.google.com/products/ai/.

[13]. Grave Edouard, Cisse Moustapha M, and Joulin Armand. 2017 Unbounded cache model for
online language modeling with open vocabulary. In Advances in Neural Information Processing
Systems (NeurIPS.

[14]. Gupta Sonal, Shah Rushin, Mohit Mrinal, Kumar Anuj, and Lewis Mike. 2018 Semantic parsing
for task oriented dialog using hierarchical representations. arXiv preprint arXiv:1810.07942
(2018).

[15]. Hinton Geoffrey, Vinyals Oriol, and Dean Jeff. 2015 Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531 (2015).

[16]. Hochreiter Sepp and Schmidhuber Jürgen. 1997 Long short-term memory. Neural Computation
9, 8 (1997), 1735–1780. [PubMed: 9377276]

[17]. Honnibal Matthew and Montani Ines. 2017 spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing. (2017).

[18]. Lee Dong-Hyun. 2013 Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In ICML Workshop on Challenges in Representation Learning.

[19]. Li Yaliang, Gao Jing, Meng Chuishi, Li Qi, Su Lu, Zhao Bo, Fan Wei, and Han Jiawei. 2015 A
Survey on Truth Discovery. SIGKDD Explor. Newsl 17, 2(2015).

[20]. Mahajan Dhruv, Girshick Ross, Ramanathan Vignesh, He Kaiming, Paluri Manohar, Li Yixuan,
Bharambe Ashwin, and van der Maaten Laurens. 2018 Exploring the Limits of Weakly
Supervised Pretraining. In European Conference on Computer Vision (ECCV).

[21]. Manning Christopher, Surdeanu Mihai, Bauer John, Finkel Jenny, Bethard Steven, and McClosky
David. 2014 The Stanford CoreNLP natural language processing toolkit. In Annual meeting of
the Association for Computational Linguistics: System Demonstrations.

[22]. McMahan H Brendan, Holt Gary, Sculley David, Young Michael, Ebner Dietmar, Grady Julian,
Nie Lan, Phillips Todd, Davydov Eugene, Golovin Daniel, et al. 2013 Ad click prediction: A

Bach et al. Page 18

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cloud.google.com/products/ai/

view from the trenches. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD).

[23]. Mintz Mike, Bills Steven, Snow Rion, and Jurafsky Dan. 2009 Distant supervision for relation
extraction without labeled data. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2-Volume 2 Association for Computational Linguistics, 1003–1011.

[24]. Mnih Volodymyr and Hinton Geoffrey E. 2012 Learning to label aerial images from noisy data.
In Proceedings of the 29th International conference on machine learning (ICML-12) 567–574.

[25]. ONNX. 2017 Open Neural Network Exchange. https://github.com/onnx/onnx.

[26]. Pan SJ and Yang Q. 2010 A Survey on Transfer Learning. IEEE Transactions on Knowledge and
Data Engineering 22, 10 (2010), 1345–1359.

[27]. Pan Sinno Jialin, Yang Qiang, et al. 2010 A survey on transfer learning. IEEE Transactions on
knowledge and data engineering 22, 10 (2010), 1345–1359.

[28]. Rahm Erhard and Do Hong Hai. 2000 Data cleaning: Problems and current approaches. IEEE
Data Eng. Bull. 23, 4 (2000), 3–13.

[29]. Ratner Alexander, Bach Stephen H, Ehrenberg Henry, Fries Jason, Wu Sen, and Ré Christopher.
2017 Snorkel: Rapid training data creation with weak supervision. Proceedings of the VLDB
Endowment 11, 3 (2017), 269–282. [PubMed: 29770249]

[30]. Ratner Alexander J, De Sa Christopher M, Wu Sen, Selsam Daniel, and Ré Christopher. 2016
Data programming: Creating large training sets, quickly. In Advances in neural information
processing systems. 3567–3575. [PubMed: 29872252]

[31]. Ratner Alexander J, Hancock Braden, Dunnmon Jared, Sala Frederic, Pandey Shreyash, and Ré
Christopher. 2019 Training Complex Models with Multi-Task Weak Supervision. In AAAI.

[32]. Rekatsinas Theodoros, Chu Xu, Ilyas Ihab F., and Ré Christopher. 2017 HoloClean: Holistic Data
Repairs with Probabilistic Inference. PVLDB 10, 11 (2017), 1190–1201.

[33]. Rekatsinas Theodoros, Joglekar Manas, Garcia-Molina Hector, Parameswaran Aditya, and Ré
Christopher. 2017 SLiMFast: Guaranteed Results for Data Fusion and Source Reliability. In
ACM SIGMOD International Conference on Management of Data (SIGMOD).

[34]. Scudder HJ. 1965 Probability of Error of some Adaptive Pattern-Recognition Machines. IEEE
Transactions on Infomation Theory 11 (1965), 363–371.

[35]. Amazon Web Services. 2019 Amazon Comprehend. https://aws.amazon.com/comprehend/.

[36]. Settles B. 2012 Active Learning. Morgan & Claypool Publishers.

[37]. Sun Chen, Shrivastava Abhinav, Singh Saurabh, and Gupta Abhinav. 2017 Revisiting
Unreasonable Effectiveness of Data in Deep Learning Era. CoRR abs/1707.02968 (2017). arXiv:
1707.02968 http://arxiv.org/abs/1707.02968

[38]. Xian Yongqin, Lampert Christoph H, Schiele Bernt, and Akata Zeynep. 2018 Zero-shot learning -
A comprehensive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2018).

[39]. Zhai Andrew, Kislyuk Dmitry, Jing Yushi, Feng Michael, Tzeng Eric, Donahue Jeff, Du Yue Li,
and Darrell Trevor. 2017 Visual discovery at Pinterest. In International Conference on the World
Wide Web (WWW).

[40]. Zhang Ce, Shin Jaeho, Ré Christopher, Cafarella Michael, and Niu Feng. 2016 Extracting
databases from dark data with deepdive. In Proceedings of the 2016 International Conference on
Management of Data ACM, 847–859.

[41]. Zhao Bo, Rubinstein Benjamin IP, Gemmell Jim, and Han Jiawei. 2012 A Bayesian approach to
discovering truth from conflicting sources for data integration. PVLDB 5, 6 (2012), 550–561.

Bach et al. Page 19

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/onnx/onnx
https://aws.amazon.com/comprehend/
http://arxiv.org/abs/1707.02968

Figure 1:
Rather than using hand-labeled training data, Snorkel DryBell uses diverse organizational

resources as weak supervision to train content and event classifiers on Google’s platform.

Bach et al. Page 20

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
We plot the distribution of high-level categories of weak supervision types, counted by

number of labeling functions (LFs), for the three applications.

Bach et al. Page 21

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
In Snorkel DryBell, developers can use non-servable development features for weak

supervision, to train classifiers that operate over separate servable features in production.

Bach et al. Page 22

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
An overview of the Snorkel DryBell system. (1) Snorkel DryBell provides a library of

templated C++ classes, each of which defines a MapReduce pipeline for executing a labeling

function with the necessary services, such as natural language processing (NLP). (2)

Engineers write methods for the MapReduce pipeline to determine a vote for each example’s

label, using Google resources. (3) Snorkel DryBell executes the labeling function binary on

Google’s distributed compute environment. (4) Snorkel DryBell loads the labeling

functions’ output into its generative model, which combines them into probabilistic training

labels for use by production systems.

Bach et al. Page 23

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Relative difference in predictive accuracy measured in F1 of supervised classifiers trained on

increasing numbers of hand-labeled training examples for the topic and product

classification tasks. The dashed line shows the normalized F1 score of the weakly supervised

classifier trained on Snorkel DryBell-inferred labels.

Bach et al. Page 24

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
We compare a histogram of the predicted probabilities (“scores”) of an event using a model

trained with a baseline Logical-OR approach to combining weak supervision sources (left),

and trained using Snorkel DryBell’s output (right). We see that the baseline approach results

in greatly over-estimating the score of events, whereas the model trained using Snorkel

DryBell produces a smoother distribution. This results in better performance, and offers

more useful output to those monitoring the system.

Bach et al. Page 25

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bach et al. Page 26

Table 1:

Number of unlabeled examples used during training n, number of labeled examples in the development set

nDev and test set nTest, fraction of positive labels in nTest, and number of labeling functions used for each task,

for the content classification applications.

Task n nDev nTest % Pos. # LFs

Topic Classification 684K 11K 11K 0.86 10

Product Classification 6.5M 14K 13K 1.48 8

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bach et al. Page 27

Ta
b

le
 2

:

E
va

lu
at

io
n

of
 S

no
rk

el
 D

ry
B

el
l o

n
co

nt
en

t c
la

ss
if

ic
at

io
n

ta
sk

s,
 o

pt
im

iz
in

g
fo

r
F1

 s
co

re
. W

e
re

po
rt

 n
um

be
rs

 r
el

at
iv

e
to

 th
e

ba
se

lin
e

of
 tr

ai
ni

ng
 d

ir
ec

tly
 o

n

th
e

ha
nd

-l
ab

el
ed

 d
ev

el
op

m
en

t s
et

. R
ep

or
te

d
sc

or
es

 a
re

 n
or

m
al

iz
ed

 r
el

at
iv

e
to

 th
e

pr
ec

is
io

n,
 r

ec
al

l,
an

d
F1

 s
co

re
s

of
 th

es
e

ba
se

lin
es

, u
si

ng
 a

 tr
ue

/f
al

se

th
re

sh
ol

d
of

 0
.5

 f
or

 p
re

di
ct

io
n.

 L
if

t i
s

re
po

rt
ed

 r
el

at
iv

e
to

 th
e

ba
se

lin
e

F1
. W

e
co

m
pa

re
 th

e
ge

ne
ra

tiv
e

m
od

el
 o

f
Sn

or
ke

l D
ry

B
el

l,
i.e

.,
a

w
ei

gh
te

d

co
m

bi
na

tio
n

of
 th

e
la

be
lin

g
fu

nc
tio

ns
, a

nd
 th

e
di

sc
ri

m
in

at
iv

e
lo

gi
st

ic
 r

eg
re

ss
io

n
cl

as
si

fi
er

 tr
ai

ne
d

w
ith

 S
no

rk
el

 D
ry

B
el

l.
N

ot
e

th
at

 th
e

ge
ne

ra
tiv

e
m

od
el

 is

no
t s

er
va

bl
e,

 i.
e.

, i
t c

an
no

t b
e

us
ed

 to
 m

ak
e

pr
ed

ic
tio

ns
 in

 p
ro

du
ct

io
n.

G
en

er
at

iv
e

M
od

el
 O

nl
y

Sn
or

ke
l D

ry
B

el
l

Ta
sk

R
el

at
iv

e:
P

R
F

1
L

if
t

P
R

F
1

L
if

t

To
pi

c
C

la
ss

if
ic

at
io

n
84

.4
%

10
1.

7%
93

.9
%

−6
.1

%
10

0.
6%

13
2.

1%
11

7.
5%

+1
7.

5%

Pr
od

uc
t C

la
ss

if
ic

at
io

n
10

3.
8%

10
2.

0%
10

2.
7%

+2
.7

%
99

.2
%

11
0.

1%
10

5.
2%

+5
.2

%

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bach et al. Page 28

Table 3:

An ablation study of Snorkel DryBell using only labeling functions that depend on servable features

(“Servable LFs”) compared with all labeling functions, including non-servable resources. All scores are

normalized to the precision, recall, and F1 of the logistic regression classifier trained directly on the

development set. Lift is reported relative to Servable LFs.

Relative: P R F1 Lift

Topic Classification

Servable LFs 50.9% 159.2% 86.1%

+ Non-Servable LFs 100.6% 132.1% 117.5% +36.4%

Product Classification

Servable LFs 38.0% 119.2% 62.5%

+ Non-Servable LFs 99.2% 110.1% 105.2% +68.2%

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bach et al. Page 29

Table 4:

An ablation study of Snorkel DryBell using equal weights for all labeling functions to label training data

(“Equal Weights”) compared with using the weights estimated by the generative model. All scores are

normalized to the precision, recall, and F1 of the logistic regression classifier trained directly on the

development set. Lift is reported relative to Equal Weights.

Relative: P R F1 Lift

Topic Classification

Equal Weights 54.1% 163.7% 109.0%

+ Generative Model 100.6% 132.1% 117.5% +7.7%

Product Classification

Equal Weights 94.3% 110.9% 103.24%

+ Generative Model 99.2% 110.1% 105.2% +1.9%

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2019 November 27.

	Abstract
	INTRODUCTION
	BACKGROUND
	CASE STUDIES: WEAK SUPERVISION FOR RAPID DEVELOPMENT
	Topic Classification
	Product Classification
	Real-Time Event Classification

	CROSS-FEATURE MODEL SERVING
	SYSTEM ARCHITECTURE
	Labeling Function Template Library
	Sampling-Free Generative Model
	Discriminative Model Serving
	Comparison with Snorkel Architecture

	EXPERIMENTS
	Topic and Product Classification
	Trade-Off Between Weak Supervision Hand-Labeled Data
	Ablation Study
	Real-Time Events

	DISCUSSION
	Lessons for Other Organizations

	RELATED WORK
	CONCLUSION
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

