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Abstract

As deep learning models are applied to increasingly diverse problems, a key bottleneck is 

gathering enough high-quality training labels tailored to each task. Users therefore turn to weak 
supervision, relying on imperfect sources of labels like pattern matching and user-defined 

heuristics. Unfortunately, users have to design these sources for each task. This process can be 

time consuming and expensive: domain experts often perform repetitive steps like guessing 

optimal numerical thresholds and developing informative text patterns. To address these 

challenges, we present Snuba, a system to automatically generate heuristics using a small labeled 

dataset to assign training labels to a large, unlabeled dataset in the weak supervision setting. Snuba 

generates heuristics that each labels the subset of the data it is accurate for, and iteratively repeats 

this process until the heuristics together label a large portion of the unlabeled data. We develop a 

statistical measure that guarantees the iterative process will automatically terminate before it 

degrades training label quality. Snuba automatically generates heuristics in under five minutes and 

performs up to 9.74 F1 points better than the best known user-defined heuristics developed over 

many days. In collaborations with users at research labs, Stanford Hospital, and on open source 

datasets, Snuba outperforms other automated approaches like semi-supervised learning by up to 

14.35 F1 points.

1. INTRODUCTION

The success of machine learning for tasks like image recognition and natural language 

processing [12, 15] has ignited interest in using similar techniques for a variety of tasks. 

However, gathering enough training labels is a major bottle-neck in applying machine 

learning to new tasks. In response, there has been a shift towards relying on weak 
supervision, or methods that can assign noisy training labels to unlabeled data, like 

crowdsourcing [9, 23, 61], distant supervision [8, 33], and user-defined heuristics [39, 40, 

52], Over the past few years, we have been part of the broader effort to enhance methods 

based on user-defined heuristics to extend their applicability to text, image, and video data 

for tasks in computer vision, medical imaging, bioinformatics and knowledge base 

construction [40, 4, 52],
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Through our engagements with users at large companies, we find that experts spend a 

significant amount of time designing these weak supervision sources. As deep learning 

techniques are adopted for unconventional tasks like analyzing codebases and now 

commodity tasks like driving marketing campaigns, the few domain experts with required 

knowledge to write heuristics cannot reasonably keep up with the demand for several 

specialized, labeled training datasets. Even machine learning experts, such as researchers at 

the computer vision lab at Stanford, are impeded by the need to crowdsource labels before 

even starting to build models for novel visual prediction tasks [26, 24], This raises an 

important question: can we make weak supervision techniques easier to adopt by automating 
the process of generating heuristics that assign training labels to unlabeled data?

The key challenge in automating weak supervision lies in replacing the human reasoning 

that drives heuristic development. In our collaborations with users with varying levels of 

machine learning expertise, we noticed that the process to develop these weak supervision 

sources can be fairly repetitive. For example, radiologists at the Stanford Hospital and 

Clinics have to guess the correct threshold for each heuristic that uses a geometric property 

of a tumor to determine if it is malignant (example shown in Figure 1). We instead take 

advantage of a small, labeled dataset to automatically generate noisy heuristics. Though the 

labeled dataset is too small to train an end model, it has enough information to generate 

heuristics that can assign noisy labels to a large, unlabeled dataset and improve end model 

performance by up to 12.12 F1 points. To aggregate labels from these heuristics, we improve 

over majority vote by relying on existing factor graph-based statistical techniques in weak 

supervision that can model the noise in and correlation among these heuristics [40, 4, 52, 2, 

42, 50]. However, these techniques were intended to work with user-designed labeling 

sources and therefore have limits on how robust they are. Automatically generated heuristics 

can be noisier than what these models can account for and introduce the following 

challenges:

Accuracy.

Users tend to develop heuristics that assign accurate labels to a subset of the unlabeled data. 

An automated method has to properly model this trade-off between accuracy and coverage 

for each heuristic based only on the small, labeled dataset. Empirically, we find that 

generating heuristics that each labels all the datapoints can degrade end model performance 

by up to 20.69 F1 points.

Diversity.

Since each heuristic has limited coverage, users develop multiple heuristics that each labels 

a different subset to ensure a large portion of the unlabeled data receives a label. In an 

automated approach, we could mimic this by maximizing the number of unlabeled 

datapoints the heuristics label as a set. However, this approach can select heuristics that 

cover a large portion of the data but have poor performance. There is a need to account for 

both the diversity and performance of the heuristics as a set. Empirically, balancing both 

aspects improves end model performance by up to 18.20 F1 points compared to selecting the 

heuristic set that labels the most datapoints.
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Termination Condition.

Users stop generating heuristics when they have exhausted their domain knowledge. An 

automated method, however, can continue to generate heuristics that deteriorate the overall 

quality of the training labels assigned to the unlabeled data, such as heuristics that are worse 

than random for the unlabeled data. Not accounting for performance on the unlabeled 

dataset can affect end model performance by up to 7.09 F1 points.

Our Approach.

To address the challenges above, we introduce Snuba, an automated system that takes as 

input a small labeled and a large unlabeled dataset and outputs probabilistic training labels 

for the unlabeled data, as shown in Figure 1. These labels can be used to train a downstream 

machine learning model of choice, which can operate over the raw data and generalize 

beyond the heuristics Snuba generates to label any datapoint. Users from research labs, 

hospitals and industry helped us design Snuba such that it outperforms user-defined 

heuristics and crowdsourced labels by up to 9.74 F1 points and 13.80 F1 points in terms of 

end model performance. Snuba maintains a set of heuristics that is used to assign labels to 

the unlabeled dataset. At each iteration, Snuba appends a new heuristic to this set after going 

through the following components:

Synthesizer for Accuracy.

To address the trade-off between the accuracy and coverage of each heuristic, the synthesizer 
(Section 3.1) generates heuristics based on the labeled set and adjusts its labeling pattern to 

abstain if the heuristic has low confidence. The synthesizer relies on a small number of 

primitives, or features of the data, to generate multiple, simple models like decision trees, 

which improves over fitting a single model over primitives by 12.12 F1 points. These 

primitives are user-defined and part of open source libraries [36, 51] and data models in 

existing weak supervision frameworks [39, 59]. Primitives examples in our evaluation 

include bag-of-words for text and bounding box attributes for images.

Pruner for Diversity.

To ensure that the set of heuristics is diverse and assigns high-quality labels to a large 

portion of the unlabeled data, the pruner (Section 3.2) ranks the heuristics the synthesizer 

generates by the weighted average of their performance on the labeled set and coverage on 

the unlabeled set. It selects the best heuristic at each iteration and adds it to the collection of 

existing heuristics. This method performs up to 6.57 F1 points better than ranking heuristics 

by performance only.

Verifier to Determine Termination Condition.

The verifier uses existing statistical techniques to aggregate labels from the heuristics into 

probabilistic labels for the unlabeled datapoints [52, 40, 4]. However, the automated 

heuristic generation process can surpass the noise levels to which these techniques are robust 

to and degrade end model performance by up to 7.09 F1 points. We develop a statistical 

measure that uses the small, labeled set to determine whether the noise in the generated 

heuristics is below the threshold these techniques can handle (Section 4).
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Contribution Summary.

We describe Snuba, a system to automatically generate heuristics using a small labeled 

dataset to assign training labels to a large, unlabeled dataset in the weak supervision setting. 

A summary of our contributions are as follows:

• We describe the system architecture, the iterative process of generating 

heuristics, and the optimizers used in the three components (Section 3). We also 

show that our automated optimizers can affect end model performance by up to 

20.69 F1 points (Section 5).

• We present a theoretical guarantee that Snuba will terminate the iterative process 

before the noise in heuristics surpasses the threshold to which statistical 

techniques are robust (Section 4). This theoretical result translates to improving 

end model performance by up to 7.09 F1 points compared to generating as many 

heuristics as possible (Section 5).

• We evaluate our system in Section 5 by using Snuba labels to train downstream 

models, which generalize beyond the heuristics Snuba generates. We report on 

collaborations with Stanford Hospital and Stanford Computer Vision Lab, 

analyzing text, image, and multimodal data. We show that heuristics from Snuba 

can improve over hand-crafted heuristics developed over several days by up to 

9.74 F1 points. We compare to automated methods like semi-supervised 

learning, which Snuba outperforms by up to 14.35 F1 points.

2. SYSTEM OVERVIEW

We describe the input and output for Snuba, introduce notation used in the rest of paper, and 

summarize statistical techniques Snuba relies on to learn heuristic accuracies.

2.1 Input and Output Data

Input Data.—The input to Snuba is a labeled dataset OL with NL datapoints and an 

unlabeled dataset OU with NU datapoints. Each datapoint is defined by its associated 

primitives, or characteristics of the data, and a label. The inputs to the system can be 

represented as

xi, yi* i = 1
NL , (for the labeled set OL , and

xi i = 1
NU , (for the unlabeled set OU

where xi ∈ ℝD, y* represent the primitives for a particular object and the true label, 

respectively. For convenience, we focus on the binary classification setting, in which 

y* ∈ − 1, 1  and discuss the multi-class setting in Section 3.4.

The primitives for each datapoint xi ∈ ℝD can be viewed as features of the data — examples 

include numerical features such as area or perimeter of a tumor for image data. or one-hot 
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vectors for the bag of words representation for text data. For our collaborators using Snuba, 

these primitives are usually part of data models in existing weak supervision systems and 

open source libraries [39, 59, 36, 51]. For example, Scikit-image includes functions to 

extract geometric properties from segmented images [51]. In our evaluation, we do not allow 

users to extend the set of primitives beyond those present in these data models and libraries, 

though they could be extended in principle.

Output Data.—Snuba outputs a probabilistic training label y = P y* = 1 ∈ [0, 1] for each 

datapoint in the unlabeled set, a weighted combination of labels from different heuristics. 

Since Snuba only relies on information about the data encoded in the primitives and does not 

take advantage of a complete representation of the data, it is advantageous to train a 

downstream model that has access to the entire input data space using probabilistic labels 

from Snuba as training labels. These downstream models, such as a convolutional neural 

network (CNN) [27] for image classification or a long-short term memory (LSTM) 

architecture [20] for natural language processing tasks, can operate over the raw data (e.g., 

the radiology image of a tumor from Figure 1 or complete sentences). We discuss specific 

end models and show that the end model generalizes beyond the heuristics by improving 

recall by up to 61.54 points in Section 5.

2.2 Learning Heuristic Accuracies

Each heuristic Snuba generates relies on one or more primitives and outputs a binary label or 

abstains for each data-point in the unlabeled dataset (Section 3.1). A single bad (but prolific) 

voter can compromise majority vote, which weights all heuristics equally [40]. Snuba 

instead relies on existing statistical techniques (Section 4) that can learn the accuracies of 

these heuristics without using ground truth labels and assign probabilistic labels to the 

unlabeled dataset accordingly [40, 4, 52, 2, 42, 50]. We treat these statistical techniques as 

black-box methods that learns heuristic accuracies and refer to them as label aggregators 
since they combine the labels the heuristics assign to generate a single probabilistic label per 

datapoint. However, since Snuba can generate heuristics that are much noisier than the label 

aggregator can handle, it has to determine the conditions under which the aggregator 

operates successfully (Section 4).

3 THE SNUBA ARCHITECTURE

The Snuba process is iterative and generates a new heuristic specialized to the subset of the 

data that did not receive high confidence labels from the existing set of heuristics at each 

iteration. As shown in Figure 2, the three components of Snuba are the synthesizer (Section 

3.1) that generates a candidate set of heuristics, a pruner (Section 3.2) that selects a heuristic 

to add to an existing committed set of heuristics, and a verifier (Section 3.3) that assigns 

probabilistic labels to the data and passes the subset of the labeled data that received low 

confidence labels to the synthesizer for the next iteration. This process is repeated until the 

subset the verifier passes to the synthesizer is empty, or the verifier determines that the 

conditions for the label aggregator to operate successfully are violated (Section 4).
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3.1 Synthesizer

The Snuba synthesizer takes as input the labeled set, or a subset of the labeled set after the 

first iteration, and outputs a candidate set of heuristics (Figure 2). First, we describe how the 

heuristics are generated using the labeled dataset and the different models the heuristic can 

be based on. Then, we describe how the labeling pattern of the heuristics are adjusted to 

assign labels to only a subset of the unlabeled dataset. Finally, we explore the trade-offs 

between accuracy and coverage by comparing heuristics Snuba generated to other automated 

methods.

3.1.1 Heuristic Generation—In Snuba, users can select the model they want to base 

their heuristics on given the heuristic h follows the input-output form: 

h xi′ P yi* = 1 ∈ [0, 1] where xi′ ∈ ℝD′ is a subset of primitives, D′ ≤ D is the number of 

primitives in this subset, and P yi* = 1  is a probabilistic label.

Choosing subsets of size D′ from the primitives translates to selecting D′ rows from X, as 

shown in function GenComb in Algorithm 1. For D primitives, there will be a total of 

distinct primitive subsets of size D′. These subsets of primitives can be representative of a 

few specific words if primitives are generated using a bag-of words model while a subset of 

bounding box attribute primitives could represent the x,y-coordinates of the bounding box. 

The synthesizer generates a heuristic for each possible combination of 1 to D primitives, 

resulting in ∑D′ = 1
D D

D′ = 2D − 1 total heuristics per iteration of Snuba. We find that D′ < 4 

for most real-world tasks, resulting in a maximum runtime of 14.45 minutes for Snuba on a 

single thread (Section 5).

Heuristic Models.: In this paper, we focus on heuristics that are based on classification 

models that take as input one or more primitives and assign probabilistic labels 

P[yi* = 1] ∈ [0, 1] to the unlabeled datapoints. We consider three different ways of generating 

heuristics given a subset of the labeled data and a subset of primitives (Figure 3).

• Decision Stumps mimic the nested threshold-based heuristics that users 

commonly write. To maintain the simplicity of the heuristic, we limit the depth 

of each tree to the number of primitives the heuristic depends on. The confidence 

each unlabeled datapoint receives is the fraction of labeled datapoints that belong 

to the same leaf.

• Logistic Regressor allows the heuristic to learn a single linear decision 

boundary. As shown in Figure 3, it does not have to be parallel to the primitive 

axes, unlike decision trees. The confidence for an unlabeled datapoint is 

determined by the sigmoid function, whose parameters are learned using the 

labeled datapoints.

• K-Nearest Neighbor is based on a kd-tree implementation of nearest neighbor 

and can lead to complex decision boundaries that neither decision trees nor 

logistic regressors can capture. Unlike the previous heuristic models, it does not 

learn a parameter per primitive, but instead relies on the distribution of the 
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labeled datapoints to decide the decision boundaries. The confidence for a 

unlabeled datapoint is a function of its distance from labeled datapoints.

The user can replace the heuristic model with another function of choice as long as it follows 

the input-output criteria described earlier in this section. For example, decision trees that 

rely on bag-of-words primitives represent heuristics that check whether a particular word, 

represented as a primitive, exists or not.

3.1.2 Tuning Threshold for Abstains—We can improve performance of heuristics by 

modeling the trade-off between heuristic accuracy and coverage. Snuba forces heuristics to 

only assign labels to datapoints they have high confidence for and abstain for the rest. To 

measure confidences, Snuba relies on the probabilistic label P yi* = 1  that each heuristic 

model assigns to a datapoint. We define datapoints that heuristics have low confidence for as 

the points where P yi* = 1 − 0.5 ≤ β, β ∈ (0, 0.5) . For each heuristic, Snuba selects a 

threshold β that determines when a heuristic assigns a label, y ∈ − 1, 1  and when it 

abstains, y = 0. The relation between β and y can be defined as:

yi =

1 if P yi = 1 ≥ 0.5 + β

0 if P yi = 1 − 0.5 < β

−1 if P yi = 1 ≤ 0.5 − β

To choose the best threshold β, we need a metric that models the trade-offs between 

coverage and accuracy. We calculate the precision and recall of the heuristics on the labeled 
set with NL datapoints as a proxy for their performance on the unlabeled dataset. We define 

these metrics below:
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Algorithm 1:

Snuba Synthesis Procedure

• Precision (P) the fraction of correctly labeled points over the total points labeled, 

∑i = 1
NL 𝟙 yi = yi*

∑i = 1
NL 𝟙 yi ≠ 0

• Recall (R) the fraction of correctly labeled points over the total number of 

points, 
∑i = 1

NL 𝟙 yi = yi*
NL

• F1 Score the harmonic mean of P and R, 2 P × R
P + R

To balance precision and recall, the Snuba synthesizer selects β for each heuristic that 

maximizes the F1 score on the labeled dataset OL (Algorithm 1). The synthesizer iterates 

through (default 10) equally spaced values in β ∈ (0, 0.5), calculates the F1 score the 

heuristic achieves, and selects the β that maximizes F1 score. In case of ties, the synthesizer 

chooses the lower β value for higher coverage. We find selecting β based on F1 score 

outperforms a constant β by up to 5.30 F1 points (Section 5).
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As an example, if the synthesizer uses a decision tree as the heuristic model, it trains a 

normal decision tree on the small labeled dataset and learns appropriate parameters for a 

specific subset of primitives (e.g., D = 2 means two primitives, or two rows of X in 

Algorithm 1) to decide on a label. Then, the synthesizer learns β, which adjusts these 

decision tree thresholds to abstain for low-confidence data points. This adjusted decision tree 

is then added as a heuristic to the candidate set, and the process is repeated for different 

subsets of primitives as inputs to the decision tree.

3.1.3 Synthesizer Tradeoffs—We explore the trade-offs that result from allowing the 

heuristics to abstain in terms of the effect on end model performance. We compare to 

automated baseline methods (more details in Section 5.1) that assign labels to the entire 
unlabeled dataset. We generate a synthetic experiment (Figure 4) using one of the datasets 

from our evaluation, the Visual Genome dataset [26] (more details in Section 5.1). To study 

how Snuba performs given varying amounts of unlabeled data, we set up the following 

simulation: given NL = 100 labeled data points, we varied the amount of unlabeled data 

available to Snuba from NU = 100 to NU = 500. Each of the methods assigned training labels 

to the unlabeled dataset, and this dataset was used to fine-tune the last layer of GoogLeNet 

[49].

NL ≈ NU Case:  Since Snuba only labels a portion of the unlabeled data, the end model has 

fewer training labels to learn from compared to the other methods that do not abstain. Since 

the unlabeled set is small in this situation (NL = NU = 100), the baseline methods have better 

end model performance.

NL ≪ NU Case:  Heuristics Snuba generates continue to only assign labels with high 

confidence, leading to a smaller labeled training set than other methods, but high quality 

training labels for that portion. This is promising for machine learning applications in which 

the bottleneck lies in gathering enough training labels, while unlabeled data, is readily 

available. Semi-supervised learning also performs better as the amount of unlabeled data 

increases; however, it still performs worse than Snuba when the amount of unlabeled data is 

more than 3× larger than labeled data since semi-supervised methods do not abstain. Snuba 

also outperforms these baseline methods when the unlabeled data is between 2× to l000× as 

much as labeled data (Section 5).

3.2 Pruner

The pruner takes as input the candidate heuristics from the synthesizer and selects a heuristic 

to add to the committed set of heuristics (Figure 2). We want the heuristics in the committed 

set to be diverse in terms of the datapoints in the unlabeled set they label, but also ensure 

that it performs well for the datapoints it labels in the labeled dataset.

A diverse heuristic is defined as one that labels points that have never received a label from 

any other heuristic. Therefore, we want to be able to maximize the dissimilarity between the 

set of datapoints a heuristic labels and the set of datapoints that previous heuristics in the 

committed set have already labeled. Let n j ∈ 0, 1
NU represent whether heuristic j from the 
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candidate set has assigned labels to the datapoints in the unlabeled set. Let n ∈ 0, 1
NU

represent whether any heuristic from the committed set has assigned a label to the datapoints 

in the unlabeled set. To measure the distance between these two vectors, we rely on the 

Jaccard distance metric [21], the complement of Jaccard similarity, as a standard measure of 

similarity between sets. For a particular heuristic hj in the candidate set, the generalized 

Jaccard distance is defined as:

J j = 1 −
n j ∩ n

n j ∪ n

Algorithm 2:

Snuba Pruning Procedure

To measure performance on the labeled dataset, Snuba uses the Fl score of each heuristic in 

the candidate set, as defined in the previous section. As the final metric to rank heuristics, 

the pruner uses a weighted average of the Jaccard distance and Fl score and selects the 

highest ranking heuristic from the candidate set and adds it to the committed set of 

heuristics. This process is described in Algorithm 2. For our experiments, we use both w = 

0.5 for a simple average and w = 𝟙Tn
NU

 (percentage of unlabeled set with at least one label). 

The latter weights the Fl score more as coverage of the unlabeled dataset increases. We find 

that considering both performance on the labeled set and diversity on the unlabeled set 

Varma and Ré Page 10

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



improves over only considering diversity by up to 18.20 Fl points and over only considering 

performance by up to 6.57 Fl points in Section 5.

3.3 Verifier

The verifier uses the label aggregator (Section 4) to learn accuracies of the heuristics in the 

committed set without any ground truth labels to produce a single, probabilistic training 

label for each datapoint in the unlabeled dataset.

These probabilistic labels also represent how confident the label aggregator is about the 

assigned label. Datapoints that have not received a single label from heuristics in the 

committed set will have a probabilistic label P[y* = 1] = 0.5, equal chance of belonging to 

either class. P[y* = 1] close to 0.5 represent datapoints with low confidence, which can 

result from scenarios with low accuracy heuristics labeling that datapoint, or multiple 

heuristics with similar accuracies disagreeing on the label for that datapoint. Since Snuba 

generates a new heuristic at each iteration, we want the new heuristic to assign labels to the 

subset that currently has low confidence labels. Snuba identifies datapoints in the labeled set 
that receive low confidence labels from the label aggregator. It passes this subset to the 

synthesizer with the assumption that similar datapoints in the unlabeled dataset would have 

also received low confidence labels (Algorithm 3).

Algorithm 3:

Snuba Verifier Procedure

Formally, we define low confidence labels as yi − 0.5 ≤ ν where y  is the probabilistic label 

assigned by the label aggregator and ν = 1
2 − 1

(M + 1)η
where the η > 1 parameter (default 

η = 3
2 ) controls the rate at which the definition of low confidence changes with number of 
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heuristics in the committed set (M). As the number of heuristics increases, we expect that 

fewer datapoints will have confidences near 0.5 and adjust what is considered low 

confidence accordingly. We also compare to a weighted feedback approach in which the 

weights are the inverse of the label confidence wv =1
2 − y − 1

2  normalized across all 

datapoints.

The iterative process terminates if: (1) the statistical measure discussed in Section 4 suggests 

the generative model in the synthesizer is not learning the accuracies of the heuristics 

properly, or (2) there are no low confidence datapoints, as defined by ν, in the small, labeled 

dataset. Empirically, we find that (1) is a more popular termination condition than (2). In 

both cases, it is likely for some datapoints in the large, unlabeled set to not receive a label 

from any heuristic in the committed set; however, since Snuba generates training labels, the 

downstream end model can generalize to assign labels to these datapoints.

3.4 Discussion

We discuss the extension of the Snuba architecture to the multi-class setting, intuition behind 

the greedy approach, alternative heuristic models, and limitations of the system.

Multi-Class Setting.—While we focus on the binary setting, Snuba can be extended to the 

multi-class setting without additional changes. We include an example of a three-class 

classification task in the Appendix. Statistics like FI and Jaecard score in the synthesizer and 

pruner are calculated using only overall accuracy and coverage, which apply to the multi-

class setting. The label aggregator in the verifier can operate over multi-class labels [40, 39] 

and pass feedback using the probabilistic label of the most likely class.

Greedy Approach.—Our intuition behind generating heuristics greedily was to mimic the 

the user process of manually developing heuristics. The iterative approach tries to ensure 

each heuristic labels a subset of the data that does not have labels from existing heuristics 

and ensure a large portion of the datapoints receive high confidence labels. We use a 

statistical method to determine the optimal stopping condition for the iterative approach 

(Section 4, Figure 5).

Alternative Heuristic Models.—While we only discuss three possible heuristic models 

in this paper, Snuba can handle any heuristic model that follows the input-output schema 

described in Section 3.1. The user can therefore design different heuristic models that are 

specialized for their classification task. For example, the user can use a regex heuristic 

model that can perform more complex operations over bag-of-words primitives than a 

decision tree.

Limitations.—First, the performance of the Snuba heuristics is bounded by the quality of 

the input primitives. For example, if the primitives for the tumor classification task only 

contained age, which was a poor signal of tumor malignancy, then the heuristics Snuba 

generated would not assign high quality training labels. Second, Snuba heuristics can only 

rely on the input primitives and no external knowledge about the task, such as knowledge 

bases, which is a limitation compared to user-defined heuristics (more details in Section 
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5.2.3). Finally, Snuba is likely to overfit and not perform well on the unlabeled dataset if the 

small, labeled dataset is not representative of the unlabeled dataset. For the tumor 

classification task, the images in the small, labeled set could be taken from one perspective 

while the ones in the larger, unlabeled dataset are from a different perspective. This can lead 

the distribution of the primitives to be significantly different across the two datasets and 

prevent Snuba from generating high quality heuristics.

4. SNUBA SYSTEM GUARANTEES

We provide an overview of generative models [40, 52, 4, 54] that serve as the label 

aggregator for Snuba. As discussed in Section 2, these models can learn the accuracies of the 

noisy heuristics without using any ground truth data and can assign probabilistic labels to 

the unlabeled data accordingly. However, these generative models are designed to model the 

noise in user-defined heuristics, which are much more accurate than automatically generated 

heuristics. Specifically, the generative model assumes that heuristics always have accuracies 

better than 50%; however, Snuba-generated heuristics can easily violate this assumption as 

described in Section 4.2. Therefore, a key challenge in Snuba is recognizing whether the 

committed set includes heuristics that are worse than random for the unlabeled dataset 

without access to ground truth labels. We introduce a statistical measure in Section 4.3 that 

relies on the accuracies the generative model learns and the small labeled dataset. In Section 

4.4, we formally define this statistical measure and provide a theoretical guarantee that it 

will recognize when the generative model is not learning heuristic accuracies successfully.

4.1 Generative Model

Generative models are a popular approach to learn and model the accuracies of different 

labeling sources like user-defined heuristics and knowledge bases when data is labeled by a 

variety of sources [11, 40]. In Snuba, we could also rely on the accuracies of the heuristics 

on the small, labeled dataset, α; however, this could degrade end model performance by up 

to 8.43 F1 points (Section 5). Formally, the goal of the generative model is to estimate the 

true accuracies of the heuristics, α* ∈ ℝM, using the labels the heuristics assign to the 

unlabeled data, Y ∈ − 1, 0, 1
M × NU . It models the true class label Y* ∈ − 1, 1

NU for a 

datapoint as a latent variable in a probabilistic model and in the simplest case, assumes that 

each labeling source is independent. The generative model is expressed as a factor graph:

πϕ Y , Y* = 1
Zϕ

exp ϕTYY* (1)

where Zϕ is a partition function to ensure n is a normalized distribution. The parameter 

ϕ ∈ ℝM is used to calculate the learned accuracies α = exp(ϕ)
1 + exp(ϕ) ∈ ℝM (defined point-wise). 

It is estimated by maximizing the marginal likelihood of the observed heuristics Y , using a 

method similar to contrastive divergence [19], alternating between using stochastic gradient 

descent and Gibbs sampling [40, 4]. The generative model assigns probabilistic training 
labels by computing Y = πϕ Y* |Y  for each datapoint. These probabilistic training labels can 

be used to train any end model with noise-aware loss [39, 40]
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min ∑
i = 1

NU
𝔼

y Y
l hθ oi , y

where oi ∈ OU is an object in the unlabeled dataset and Y are the probabilistic training labels. 

In our experiments, we adjust the loss functions of several popular machine learning models 

to the use the noise-aware variant.

4.2 Assumption Violation

Since the generative model requires no ground truth labels to learn heuristic accuracies α, it 
has to solve an underdetermined problem where the heuristics could have accuracies 

α or 1 − α . The generative model assumes that the labeling sources always perform better 

than random (α* > 0.5), which is a reasonable assumption for user-defined heuristics [40, 4, 

52]. Since Snuba generates these heuristics automatically, it is possible for the heuristics to 

be accurate for the labeled set but violate the generative model’s assumption that α* > 0.5. 

An example of such a situation is shown in Figure 5(a),(c) for two real datasets. The 8th and 

12th heuristics, respectively, have an accuracy worse than 50% on the unlabeled dataset. 

However, since the generative model does not know that this assumption has been violated, 

it learns an accuracy much greater than 50% in both cases. If these heuristics are included in 

the generative model, the generated probabilistic training labels degrade end model 

performance by 5.15 F1 and 4.05 F1 points, respectively.

4.3 Statistical Measure

Snuba can take advantage of the small, labeled dataset to indirectly determine whether the 

generated heuristics are worse than random for the unlabeled dataset. We define the 

empirical accuracies of the heuristics as

αi = 1
Ni

∑
j = 1

NL
𝟙 Yi j = Y j* ,

for i = 1…M . Y i j ∈ − 1, 0, 1  is the label heuristic i assigned to the j-th datapoint in the 

labeled set OL, and Ni is the number of datapoints where Y i ∈ 1, − 1 . Our goal is to use the 

empirical accuracies, α to estimate whether the learned accuracies, α are close to the true 

accuracies, α*, defined as α* − α ∞ < γ, the maximum absolute difference between the 

learned and true accuracies being less than γ, a positive constant to be set. Toward this end, 

we define the measured error between the learned and empirical accuracies as α − α ∞ . To 

guarantee with high probability that the generative model learns accuracies within γ, we 

want to find ϵ, the largest allowed error between the learned and empirical accuracies, 

α − α ∞ ≤ ϵ at each iteration. We discuss the exact form of ϵ in Section 4.4.
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We compare the measured error α − α ∞ to the maximum allowable value of ϵ at each 

iteration, as shown in Figure 5(b),(d). If the measured error is greater than ϵ, then we stop 

the iterative process of generating heuristics and use the probabilistic training labels 

generated at the previous iteration (since the heuristic generated at the current iteration led to 

measured error being greater than ϵ). As shown in Figure 5, this stopping point maps to the 

iteration at which the new heuristic generated has a true accuracy α* worse than 50% for the 

unlabeled dataset (we only calculate α* for demonstration since we would not have access 

to ground truth labels for real-world tasks). Intuitively, we expect that once the synthesizer 

generates a heuristic that is worse than random for the unlabeled dataset, it will never 

generate heuristics that will be helpful in labeling the data anymore. Empirically, we observe 

that this is indeed the case as shown for two real tasks in Figure 5(a) and (c).

4.4 Theoretical Guarantees

Assuming that the objects in the labeled set OL are independent and identically distributed, 

we provide the following guarantee on the probability of the generative model learning the 

accuracies successfully:

Proposition 1: Suppose we have M heuristics with empirical accuracies α, accuracies 
learned, by the generative model α,, and measured error α − α ∞ ≤ ϵ for all M iterations. 

Then, if each heuristic labels a minimum of

N ≥ 1
2(γ − ϵ)2

log 2M2
δ

datapoints at each iteration, the generative model will succeed in learning accuracies within 
α* − α ∞ < γ across all iterations with probability 1 − δ.

We provide a formal proof for this proposition in the Appendix. We require each heuristic to 

assign labels to at least N datapoints to guarantee that the generative model will learn 

accuracies within γ of the true accuracies, given the measured error is less than ϵ for all 
iterations. We solve for the maximum allowed error ϵ at each iteration:

ϵ = γ − 1
2N log 2M

δ .

This value is plotted against the value of the measured error α − α ∞ in Figure 5(b,d). 

Snuba stops generating new heuristics when the measured error surpasses the allowed error. 

The above proposition relies only on the measured error to guarantee whether the generative 

model is learning accuracies successfully.

5. EVALUATION

We compare the performance of end models trained on labels generated by Snuba and other 

baseline methods. We seek to experimentally validate the following claims:
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• Training labels from Snuba outperform labels from automated baseline 
methods We compare Snuba to models that generate heuristics using only the 

labeled data, such as boosting and decision trees, and semi-supervised methods, 

which utilize both labeled and unlabeled datasets. Snuba outperforms these 

methods by up to 14.35 F1 points. We also compare to transfer learning using 

only the labeled dataset, which Snuba outperforms by up to 5.74 F1 points.

• Training labels from Snuba outperform those from user-developed 
heuristics We compare the performance of heuristics generated by Snuba to 

heuristics developed by users. Snuba can use the same amount of labeled data as 

users to generate heuristics and improve end model performance by up to 9.74 

F1 points.

• Each component of Snuba boosts overall system performance We evaluate 

separate components of the Snuba system by changing how the β parameter is 

chosen in the synthesizer, how the pruner selects a heuristic to add to the 

committed set, and different label aggregation methods in the verifier. Compared 

to the complete Snuba system, we observe that performance can degrade by up to 

20.69 F1 points by removing these components.

5.1 Experiment Setup

We describe the datasets, baseline methods, performance metrics, and implementation 

details for Snuba.

5.1.1 Datasets—We consider real-world applications and tasks over open source 

datasets for image, text, and multi-modal classification. For each of the tasks, previous 

techniques to assign training labels included using crowdsourcing, user-defined functions, 

and decision trees based on a small, labeled dataset. Summary statistics are provided in 

Table 1 and additional details are in the Appendix.

Image Classification.: We focus on two real-world medical image classification tasks that 

we collaborated on with radiologists at Stanford Hospital and Clinics. The Bone Tumor and 

Mammogram tumor classification tasks demonstrate how Snuba-generated heuristics 

compare to those developed by domain experts. The first dataset uses domain-specific 

primitives while the second relies on simple geometric primitives. Working with graduate 

students in the Stanford Computer Vision lab, we identify images of “person riding bike”. 

We use the Visual Genome database [26] with bounding box characteristics as primitives 

and study how Snuba performs with severe class imbalance.

Text and Multi-Modal Classification.: We applied Snuba to text and multi-modal datasets 

to study how well Snuba operated in domains where humans could easily interpret and write 

rules over the raw data. We generate primitives by featurizing the text using a bag-of-words 

representation. The MS-COCO dataset [31] had heuristics generated over captions and 

classification performed over associated images, and the IMDb plot summary classification 

[1] is purely text-based. The Twitter sentiment analysis dataset relied on crowdworkers for 

labels [32] while the chemical-disease relation extraction task (CDR) [58] relies on external 
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sources of information like knowledge bases. The Hardware relation extraction task over 

richly formatted data classifies part numbers and electrical characteristics from specification 

datasheets1 as valid or not. We use visual, tabular, and structural primitives extracted using 

Fonduer [59].

5.1.2 Baseline Methods—We compare to pruned decision tree [43] and boosting [17] 

(AdaBoost), which use the labeled dataset to generate one complex or multiple, simple 

decision trees, respectively. We compare to semi-supervised learning [62], which uses both 
the labeled and unlabeled dataset to assign training labels and represents a single ‘heuristic’ 

in the form of a blaek-box model. For select tasks, we perform transfer learning using pre-

trained models. We use GLoVE embeddings [37] for IMBd and Twitter only tune the last 

layer of a VGGNet [45] for MS-COCO, and tune the weights of a GoogLeNet [49] pre-

trained on ImageNet [12] for Visual Genome and Mammogram (more details in the 

Appendix).

As shown in Table 1, training labels for all tasks were previously generated by some user-
driven labeling method, such as user-defined heuristics, distant supervision, or 

crowdsourcing. These were developed by users, ranging from domain experts to machine 

learning practitioners and input to label aggregators we developed [52, 39, 53]. For tasks like 

CDR, Bone Tumor, and Mammogram that required specific domain knowledge, the time 

taken for bioinformatics experts and radiologists to manually develop heuristics ranged from 

a few days to a few weeks. For tasks that did not require domain expertise, such as IMDb 

and Visual Genome, graduate students wrote a small number of heuristics over a period of a 

few hours. In all cases, users encoded their domain knowledge in heuristics and evaluated 

their performance on a small, held-out labeled set in an iterative manner.

5.1.3 Implementation Details

Primitives for Snuba.: Since text-based tasks used a bag-of-words representation, the 

primitives are sparse and number in the hundreds of thousands. We filter bag-of-words 

primitives by only considering primitives that are active for both the labeled and unlabeled 

dataset, and for at least 5% of the unlabeled dataset to ensure a minimim coverage for 

generated heuristics. The 5% threshold had the best performance for our text datasets but 

this threshold can be user-defined in practice.

For our image-based tasks, we found that Snuba never generated heuristics that relied on 

more than 4 primitives as input, while for text-based tasks, it only generated heuristics that 

relied on a single primitive (Figure 6). Heuristics rely on a small number of primitives since 

this limits their complexity and prevents them from overfitting to the small, labeled dataset. 

Moreover, relying on multiple primitives can also lower the coverage of the heuristics, and a 

fairly accurate heuristic that relies on several primitives being present is filtered by the 

pruner, which relies on both coverage and performance. The relatively small number of 

primitives heuristics used as input leads to a maximum single threaded runtime of 14.45 

mins for the Hardware task on a Xeon E7–4850 v3 CPU.

1https://www.digikey.com
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Performance Metrics.: To measure performance, we report the FI score of an end model 

trained on labels from Snuba and the baseline methods on a test set. We report FI score 

instead of accuracy since some datasets have class imbalance that can lead to high accuracy 

by naively predicting the majority class for all datapoints. The FI scores for the end model 

are defined in terms of true positives instead of correctly classified datapoints (this is 

different Section 3.1.2, since the end models never abstain).

End Models.: While Snuba can generate training labels efficiently, they rely only on the 

user-defined primitives. The end model trained on these labels can use the raw data or 

representations of the data based on pretrained models. For example, the end model can 

operate over the entire raw image, sentence or representation from a pre-trained model as 

opposed to measurements of the tumor, bag-of-words representation, or bounding box 

coordinates. For image classification tasks, we use popular deep learning models like 

GoogLeNet and VGGNet that take the raw image as input, while for text tasks we use a 

model composed of a single embedding and a single LSTM layer that take the raw text 

sentence(s) as input. These models take as input the probabilistic or binary training labels 

from Snuba or the baseline methods and minimize the noise-aware loss, as defined in 

Section 4. While the tasks explored in this section are all binary classification, the system 

can be easily generalized to the multi-class case (Section 3.4).

5.2 End to End System Comparison

We demonstrate that a downstream model trained on the labels from Snuba generalizes 

beyond the Snuba heuristics, improving recall by up to 61.54 points (Section 5.2.1), 

outperforms automated baseline methods by up to 12.12 FI points (Section 5.2.2) and user-

driven labeling by up to 9.74 FI points (Section 5.2.3).

5.2.1 Generalization beyond Heuristics—One of the motivations for designing 

Snuba is to efficiently label enough training data for training powerful, downstream machine 

learning models like neural networks. Heuristics from Snuba are not used directly for the 

classification task at hand because (1) they may not label the entire dataset due to 

abstentions, and (2) they are based only on the user-defined primitives and fail to take 

advantage of the raw data representation. For datasets like MS-COCO, the end model also 

operates over a different modality than the heuristics. To demonstrate the advantage of 

training an end model, we compare the performance of Snuba heuristics to standard end 

models trained on labels from Snuba on a test set in Table 3. The end model improves over 

the heuristics’ performance by up to 39.97 FI points. The end model helps generalize 
beyond the heuristics, as a result of more powerful underlying models and access to raw 

data, and improves recall by up to 61.54 points.

5.2.2 Automated Methods—Table 2 shows that Snuba can outperform automated 

baseline methods by up to 14.35 FI points. Snuba outperforms decision trees, which fit a 

single model to the labeled dataset, by 7.38 FI points on average, the largest improvement 

compared to other baselines. The method that performs the closest to Snuba for most tasks is 

semi-supervised learning, which takes advantage of both the unlabeled and unlabeled 

dataset, but fails to account for diversity, performing worse than Snuba by 6.21 FI points on 
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average. Finally, compared to transfer learning which does not have to learn a representation 

of the data from scratch, Snuba performs up to 5.74 F1 points better using the same amount 

of labeled data. This demonstrates how for many tasks, using a larger training set with noisy 

labels is able to train a better end model from scratch than fine tuning a pre-trained model 

with a small labeled dataset.

5.2.3 User-Driven Labeling Methods—We compare end model performance trained 

on labels Snuba generates to labels from manually generated labeling sources in Table 2 and 

report the precision, recall, and F1 score of Snuba-generated and user-defined heuristics in 

Table 3. The labels from the heuristics are combined using the Snuba label aggregator, the 

generative model in Section 4. Overall, Snuba generates heuristics that perform up to 25.82 

F1 points better than user-defined heuristics. Note that users develop heuristics that are very 

high precision, up to 98.28 points. Snuba-generated heuristics, on the other hand, balance 

both precision and recall. This supports the design of the system since the synthesizer 

optimizes for F1 score, which relies on both precision and recall, and the pruner optimizes 

for both accuracy and coverage, which are related to both precision and recall.

For image domains, Snuba generates fewer heuristics (Figure 7) that depend on more 

primitives than user-defined heuristics. Primitives for image domains are numerical and 

require guessing the correct threshold for heuristics, a process Snuba automates while users 

guess manually. For the Bone Tumor classification task, the user-defined heuristics were 

manually tuned versions of decision trees fit to the labeled set. Therefore, Snuba only 

improves 0.67 FI points over this partially automated approach. For text datasets (MS-

COCO and IMDb), Snuba generates almost 5 × as many heuristics as users since each 

heuristic relies only on a single primitive and improves F1 score by up to 25.82 points (Table 

3). For CDR, users relied on distant supervision through the Comparative Toxicogenomics 

Database [10]. Snuba only relies on the primitives it has access to and cannot incorporate 

any external information, leading to 7.71 F1 points lower performance than user-defined 

heuristics using distant supervision. Finally, for Hardware, Snuba uses only 100 labeled 

datapoints to generate heuristics while users had ac-cess to 47,413, which leads to Snuba 

performing 4.75 F1 points worse in terms of end model performance.

5.3 Micro-Benchmarking Results

We evaluate the individual components of the Snuba system and show how adjustments to 

each component can affect end model performance by up to 20.69 F1 points.

5.3.1 Synthesizer—First, we compare how different heuristic models perform for select 

tasks in Table 4 and show how much better the best heuristic type (marked as 0) performs 

compares to alternate heuristic types. For text-based tasks, decision tree and logistic 

regressor based heuristics perform the same since they both rely on a single primitive and 

learn the same threshold to make a binary decision. These heuristic models essentially check 

whether a word exists in a sentence.

Next, we set β = 0 to prevent heuristics from abstaining and set it to a constant β = 0.25, the 

midpoint of possible values β ∈ (0, 0.5) (Table 4). Allowing heuristics to abstain can 
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improve end model performance by up to 20.69 F1 points and choosing the correct β value 

can improve end model performance by up to 5.30 F1 points.

5.3.2 Pruner—We show the performance of the pruner compared to only optimizing for 

either performance (with F1 score) or diversity (with Jaccard distance) in Table 5. For text 

tasks, only optimizing for performance comes within 2.15 F1 points of the Snuba pruner 

since each heuristic selecting a different word automatically accounts for diversity. On the 

other hand, only optimizing for diversity in text domains can affect performance by up to 

18.20 F1 points since it could result in a large portion of the unlabeled dataset receiving low-

quality labels. We also compare to weighting the F1 score by how much of the unlabeled 

dataset is covered, which performs closest to the simple average case for text-based tasks. 

This suggests that other domain-specific weighting schemes, like weighting coverage more 

than accuracy given sparse primitives can further improve performance.

5.3.3 Verifier—Finally, we look at how learning heuristic accuracies for label aggregation 

compares to majority vote in Table 6. Text domains in which the number of heuristics 

generated is more than 15, the majority vote score comes within 1.80 F1 points of the Snuba 

verifier. With a large number of heuristics, each datapoint receives enough labels that 

learning accuracies has little effect on the assigned labels [29].

We compare to using the empirical accuracies of the heuristics α rather than learning 

accuracies based on labels assigned to the unlabeled data. This method performs worse than 

the Snuba verifier by up to 8.43 F1 points. We also generate heuristics till there are no more 

datapoints in the small, labeled dataset with low confidence labels and find that this can 

degrade end model performance by up to 7.09 F1 points as shown in Table 6.

We compare to passing a weighted version of the small, labeled dataset as feedback to the 

synthesizer instead of a subset and find it performs up to 4.42 F1 points worse than passing a 

subset. We posit that heuristics fit to a weighted set can lead to more low confidence labels 

and eventually a higher rate of abstentions for the unlabeled dataset.

6. RELATED WORK

We provide an overview of methods that label data automatically based on heuristics, use 

both labeled an unlabeled data, and aggregate noisy sources of labels.

Rule Learning.

The inspiration for Snuba comes from program synthesis, where programs are generated 

given access to a set of input-output pairs [16, 46], reference implementations [3], or 

demonstrations [22]. The design is based loosely on counter-example guided inductive 

synthesis (CEGIS) in which a synthesizer generates programs, passes it to the verifier that 

decides whether the candidate program satisfies the given specifications, and passes relevant 

feedback to the synthesizer [46, 16, 22, 48]. However, unlike Snuba, such models only 

synthesize programs that match all the specified input-output pairs. Other works also 

generate heuristics to help interpret the underlying data labels [56, 55], but neither methods 

use unlabeled data since the programs generated either mimic the desired program perfectly 
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or provide interpretations for existing labels. While Snuba focuses on generating training 

labels for various domains, rule learning has been widely studied in the context of 

information extraction [47, 34]. Recent works can learn logical rules for knowledge base 

reasoning [60], interleave beam search with parameter learning [25], select rules from a 

restricted set using lasso regression [28], and use alternate gradient-based search to find 

parameters for probailistic logic [57]. While these methods are more sophisticated than 

Snuba, they use a large amount of training data and rely directly on the generated rules for 

prediction. Incorporating these methods into the Snuba synthesizer could be interesting for 

future work, especially for text-based tasks.

Training Label Generation.

Focusing on the problem of generating training data, Snorkel [39] is a system that relies on 

domain experts manually developing heuristics, patterns, or distant supervision rules to label 

data noisily. While users in Snorkel rely on a small, labeled dataset to evaluate and refine 

their heuristics, Snuba automatically generates heuristics using the labeled and unlabeled 

data it has access to. Snorkel and Snuba both use the generative model to aggregate heuristic 

labels, but Snuba can generate heuristics that are noisier than the generative model can 

account for. Therefore, it uses a statistical measure to determine when the generative model 

can be used (Section 4). Other methods that rely on imperfect sources of labels that are 

partially user-defined include heuristic patterns [18, 6] and distant supervision [8, 33], which 

relies on information present in knowledge bases.

Utilizing Labeled and Unlabeled Data.

To train a deep learning model with a small, labeled dataset, a common approach is using 

transfer learning, or retraining models that have been trained for different tasks that have 

abundant training data in the same domain [35]. However, this approach does not take 

advantage of any unlabeled data available. Semi-supervised learning leverages both labeled 

and unlabeled data, along with assumptions about low-dimensional structure and 

smoothness of the data to automatically assign labels to the unlabeled data [7, 62]. Unlike 

semi-supervised learning, which generates a single black-box model, Snuba generates 

multiple, diverse heuristics to label the unlabeled data. Moreover, as demonstrated in Section 

5, Snuba performs better than a specific semi-supervised model, label spreading [62], when 

the amount of unlabeled data is larger than than the amount of labeled data. Co-training [5] 

also takes advantage of both labeled and unlabeled data and trains two independent models 

on two separate views of the data. Snuba does not require access to separate feature sets as 

views and can generate more than two heuristics (classifiers) that can be correlated with 

each other (Section 4).

Combining Noisy Labels.

Combining labels from multiple sources like heuristics is well-studied problem [11], 

especially in the context of crowdsourcing [9, 23, 61]. However, these methods assume the 

labeling sources are not generated automatically and requires a labeled dataset to learn the 

accuracies of the different sources. Other methods, including our previous work [52, 40, 54], 

rely on generative models to learn accuracies and dependencies among labeling sources [2, 

42, 50]. Areas like data fusion [13, 41, 38] and truth discovery [30] also look at the problem 
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of estimating how reliable different data sources are while utilizing probabilistic graphical 

models like Snuba.

7. CONCLUSION

Snuba is a system to automatically generate heuristics using a small labeled dataset to assign 

training labels to a large, unlabeled dataset, which can be used to train a downstream model 

of choice. It iteratively generates heuristics that are accurate and diverse for the unlabeled 

dataset using the small, labeled dataset. Snuba relies on a statistical measure to determine 

when generated heuristics are too noisy and therefore when to terminate the iterative 

process. We demonstrate how training labels from Snuba outperform labels from semi-

supervised learning by up to 14.35 F1 points and from user-defined heuristics by up to 9.74 

F1 points in terms of end model performance for tasks across various domains. Our work 

suggests that there is potential to use a small amount of labeled data to make the process of 

generating training labels much more efficient.
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APPENDIX

A. EVALUATION DETAILS

We describe the tasks and baselines from Section 5 in more detail, along with an expanded 

version of Table 3.

A.1 Datasets

Bone Tumor—The first dataset in the medical domain consists of 800 X-rays of bones 

from various parts of the body, and we give Snuba access to 200 hand-labeled examples. 

Each X-ray also contains an associated binary mask which denotes where the tumor occurs 

in the image. Radiologists extract 400 domain-specific primitives based on the shape, 

texture, and intensity of the tumor, out of which we use 17 as primitives for Snuba and the 

rest as features for a logistic regression model. We use this dataset to show how Snuba can 
efficiently assign labels to previously unlabeled images and improve over the oracle score.

Mammogram—The second medical dataset is based on the publicly available DDSM-

CBIS [44] dataset, in which each CT scan has an associated segmentation binary mask that 
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outlines the location of the tumor in the mammogram and a label for whether the tumor is 

malignant or benign. Given this segmentation, we extract simple features such as area and 

perimeter, which require no domain expertise, unlike the Bone Tumor dataset. We use this 
dataset to demonstrate how Snuba performs well even when the quality of the primitives is 
mediocre and not domain-specific.

Visual Genome [26]—We define a image query of whether an image contains a person 

riding a bike or not by defining primitives over bounding box characteristics of the objects in 

the image. This query results in significant class imabalance in the labeled and unlabeled 

dataset, with the labeled dataset containing only 18% positive examples. We use this dataset 
to measure how Snuba performs with a small number of easily interpretable primitives and 
with a skewed labeled dataset to learn heuristics based on.

MS-COCO [31]—In this multi-modal dataset, each image has five text caption associated 

with it and the goal was to build a classifier to determine whether there was a person in the 

image. Snuba only has access to the bag-of-words representations of these captions as 

primitives and the deep learning end model has access only to the images associated with the 

captions. We use this dataset to demonstrate how Snuba can operate over the text domain 
and how the domain that heuristics are generated for can be different from the domain the 
final classifier is running on.

IMDb—The task was to classify plot summaries of movies as describing action or romance 

movies. Users had previously developed a collection of 6 heuristics to label this data; 

however, we found that Snuba was able to outperform these hand-written heuristics for a 

task that did not require any domain expertise. We use this dataset to demonstrate how 
Snuba can outperform user-based heuristics for text-based tasks that do not require any 
domain expertise.

Twitter [32]—The originally crowdsourced task is to determine whether a specific tweet 

has a positive or negative connotation. Since less than 1% of the data was labeled by 

crowdworkers, Snuba used that subset as the labeled set. With such a significant difference 

between the labeled and unlabeled dataset, we wanted to see how well Snuba can generalize. 

Moreover, results of this task has interesting follow on work for how to make crowdsourcing 

more efficient. We use this dataset to demonstrate how Snuba can work even when the 
labeled dataset is signficantly smaller than the unlabeled set and how this can help make 
crowdsourcing more efficient.

Chemical-Disease Relation Extraction (CDR) [58]—The task is to detect relations 

among chemicals and diseases mentioned in PubMed abstracts [58]. Previously, a 

combination of distant supervision from the Comparative Toxicogenomics Database [10] 

and user-defined heuristics were used to build a training set for this task. Unlike previous 

datasets, the heuristics contain additional, structured information from the knowledge base, 

which puts Snuba at a disadvantage. We use this dataset to demonstrate how Snuba 
generated heuristics compare to these complex and rules external sources of information.
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A.2 Baselines

Decision Tree [43]: We pass in all the primitives associated with the labeled datapoints 

and prune the tree structure by limiting the number of datapoints at the leaves and the 

number of datapoints required to split a node. This baseline does not use the unlabeled 

dataset and represents generating a single heuristic using only the labeled dataset.

Boosting [17]: We compare to AdaBoost, which generates a collection of weak classifiers, 

which are imperfect decision trees in our evaluation. This method also takes as input all the 

primitives associated with the labeled datapoints for generating the imperfect decision trees. 

This baseline does not use the unlabeled dataset and represents generating a multiple, noisy 

heuristics using only the labeled dataset.

Semi-Supervised Learning [62]: We compare to label spreading [62], a semi-

supervised method that uses both the labeled and unlabeled dataset to assign training labels. 

This baseline represents generating a single ‘heuristic’ in the form of a black-box model 

using both the labeled and unlabeled datasets.

Transfer Learning: For select tasks, there exist pre-trained models that performed well on 

a similar task for the same data modality. In these cases, we also compared against transfer 

learning, or fine-tuning the weights from a pretrained model using only the labeled 

datapoints. For IMDb and Twitter, we use GLoVE embeddings [37] and only learn weights 

for a single LSTM layer on top of the embeddings, only tune the last layer of a VGGNet 

[45] for MS-COCO, and tune the weights of a GoogLeNet [49] pre-trained on ImageNet 

[12] over a few iterations for the Visual Genome and Mammogram datasets. This baseline 

represents a popular method that users rely on when they have a small amount of labeled 

data.

A.3 Extended Generalization Comparison

We extend Table 3 in Table 7 and discuss two special cases, Twitter and CDR. For Twitter, 

the “user-heuristics” are different crowdworkers. Unlike other tasks for which precision is 

much higher than recall, the precision and recall are balanced in this case. Snuba heuristics 

improve over the precision slightly and boost recall to 100. In terms of the end model, it 

lowers recall but improves precision significantly over the heuristics, which is not the case 

for any other dataset. We hypothesize this is because a few words were enough to detect 

sentiment accurately, leading the Snuba heuristics to perform extremely well.

For CDR, Snuba heuristics have lower recall than user-defined heuristics, since users could 

access knowledge bases through distant supervision while Snuba only relies on input 

primitives. Snuba heuristics therefore perform 16.29 F1 points worse than user-defined 

heuristics and distant supervision. Like other datasets, the end model improves recall and 

improves F1 score by 2.43 F1 points.

A.4 Multi-Class Extension—We use the iris dataset [14] to demonstrate that Snuba can 

also generate labels for multi-class classification tasks. We use four features associated with 

the task as primitives and report micro F1 scores for the generated training labels in Table 8. 
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We use 25 labeled and 125 unlabeled datapoints and report scores for predictions on the 125 

unlabeled datapoints. Note that Snuba performs worse than semi-supervised learning for this 

simple task, but matches the performance of a pruned decision tree and boosting. Moreover, 

since this task is simple, each datapoint received at least one label from Snuba heuristics, 

resulting in full coverage of the unlabeled set.

B. PROOF OF PROPOSITION 1

Proposition 1:

Suppose we have M heuristics with empirical accuracies a, accuracies learned by the 
generative model α, and measured error α − α ∞ ≤ ϵ for all M iterations. Then, if each 

heuristic labels a minimum of

N ≥ 1
2(γ − ϵ)2

log 2M2
δ

datapoints at each iteration, the generative model will succeed in learning accuracies within 
α* − α ∞ < γ across all iterations with probability 1 − δ.

Table 7:

Precision (P), Recall (R) and F1 scores for user-defined heuristics, Snuba-generated 

heuristics, and end model trained on labels from Snuba-generated heuristics. Lift reported is 

from user to Reef heuristics, then Reef heuristics to end model trained on labels from Snuba.

Application
User Heuristics Reef Heuristics Reef + End Model

F1 P R F1 P R Lift F1 P R Lift

Bone Tumor 30.91 89.47 18.68 31.58 33.75 29.67 +0.67 71.55 58.86 91.21 +39.97

Mammogram 38.02 79.31 25.00 68.16 70.11 66.30 +30.14 74.54 61.80 93.91 +6.38

Visual Genome 34.76 98.28 21.11 46.06 48.10 44.19 +11.30 56.83 41.34 90.91 +10.77

MS-COCO 21.43 63.66 12.88 24.41 29.40 41.49 +12.98 69.52 55.80 92.16 +35.11

IMDb 20.65 76.19 11.94 46.47 48.03 45.52 +25.82 62.47 45.42 100. +16.00

Twitter 36.17 30.91 43.59 48.15 31.71 100. +11.98 78.84 75.40 82.61 +30.69

CDR 55.42 81.13 42.09 39.13 80.31 25.87 −16.29 41.56 32.11 58.96 +2.43

Table 8:

Scores for training labels over unlabeled data for multi-class Iris dataset.

Decision Tree Boosting Semi-Supervised Reef

F1 95.20 95.20 96.80 95.20
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Proof:

We first start by using the triangle inequality to bound the probability of the l∞ norm error 

between the learned and true accuracies being larger than 7, γ, α* − α ∞ ≤ γ .

P α* − α ∞ > γ ≤ P α* − α ∞ + α − α ∞ > γ

≤ P α* − α ∞ + ϵ > γ
(2)

where ϵ is the l∞ norm error between the learned and empirical accuracies.

We then bound the probability of the l∞ norm error between the empirical and true 

accuracies being greater than γ. By the union bound,

P α* − α ∞ + ϵ > γ ≤ ∑
i = 1

M
P αi* − αi + ϵ > γ (3)

We rewrite αi for heuristics i = 1,...,M as

αi = 1
Ni

∑
j: y j ∈ − 1, 1

𝟙 yi j = y j*

where yi j is the label heuristic i assigned to datapoint j, y j* is the true label for datapoint j, 

and Ni is the number of datapoints where yi j ∈ 1, − 1  and did not abstain.

Substituting the above expression in (3), we get

P αi* − αi ∞ + ϵ > γ = P αi* − αi ∞ > γ − ϵ

≤ ∑
i = 1

M
P |αi* − 1

Ni
∑

j = 1, y j ∈ − 1, 1
1 yi j = y j* | > γ − ϵ

≤ ∑
i = 1

M
2exp −2(γ − ϵ)2Ni

≤ 2Mexp −2(γ − ϵ)2min N1, …, NM

(4)

where the second step uses Hoeffding’s inequality and assumes that the datapoints are 

independent.

The above expression bounds the probability of the generative model failing per iteration of 

Snuba. To bound the probability of failure across all iterations, we use the union bound:
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P αi* − αi ∞ > γ − ϵ for any iteration

≤ ∑
i = 1

M
P αi* − αi ∞ > γ − ϵ for one iteration

≤ ∑
i = 1

M
p

= Mp

where P αi* − αi ∞ > γ − ϵ = p is the failure probability for a single iteration.

With the failure probability over all M iterations, δ = P αi* −αi ∞ > γ − ϵ for any iteration), 

we can express the failure probability of a single iteration as p = δ
M . Substituting into (4), 

we get

δ
M = P α* − α ∞ > γ − ϵ

δ = MP α* − α ∞ > γ − ϵ

≤ 2M2exp −2(γ − ϵ)2min N1, …, NM

8. REFERENCES

[1]. IMDb Dataset. https://www.imdb.com/interfaces/.

[2]. Alfonseca E, Filippova K, Delort J-Y, and Garrido G Pattern learning for relation extraction with a 
hierarchical topic model. In Proceedings of the 50th Annual Meeting of the Association for 
Computational Linguistics: Short Papers-Volume 2, pages 54–59. Association for Computational 
Linguistics, 2012.

[3]. Alur R, Bodik R, Juniwal G, Martin MM, Raghothaman M, Seshia SA, Singh R, Solar-Lezama A, 
Torlak E, and Udupa A Syntax-guided synthesis In Formal Methods in Computer-Aided Design 
(FMCAD), 2013, pages 1–8. IEEE, 2013.

[4]. Bach SH, He B, Ratner A, and Re C Learning the structure of generative models without labeled 
data. In International Conference on Machine Learning, pages 273–282, 2017.

[5]. Blum A and Mitchell T Combining labeled and unlabeled data with co-training. In Proceedings of 
the eleventh annual conference on Computational learning theory, pages 92–100. ACM, 1998.

[6]. Bunescu R and Mooney R Learning to extract relations from the web using minimal supervision. 
In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, 
pages 576–583, 2007.

[7]. Chapelle O, Scholkopf B, and Zien A Semi-supervised learning (Chapelle O et al., eds.; 2006)
[book reviews]. IEEE Transactions on Neural Networks, 20(3):542–542, 2009.

[8]. Craven M, Kumlien J, et al. Constructing biological knowledge bases by extracting information 
from text sources. In ISMB, volume 1999, pages 77–86, 1999.

[9]. Dalvi N, Dasgupta A, Kumar R, and Rastogi V Aggregating crowdsourced binary ratings. In 
Proceedings of the 22nd international conference on World Wide Web, pages 285–294. ACM, 
2013.

Varma and Ré Page 27

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.imdb.com/interfaces/


[10]. Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, Wiegers J, Wiegers TC, 
and Mattingly CJ The comparative toxicogenomics database: update 2017. Nucleic acids 
research, 45(D1):D972–D978, 2016. [PubMed: 27651457] 

[11]. Dawid AP and Skene AM Maximum likelihood estimation of observer error-rates using the EM 
algorithm. Applied statistics, pages 20–28, 1979.

[12]. Deng J, Dong W, Socher R, Li L-J, Li K, and Fei-Fei L ImageNet: A large-scale hierarchical 
image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE 
Conference on, pages 248–255. IEEE, 2009.

[13]. Dong XL and Srivastava D Big data integration. Synthesis Lectures on Data Management, 7(1):
1–198, 2015.

[14]. Fisher RA The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2):
179–188, 1936.

[15]. Graves A and Schmidhuber J Framewise phoneme classification with bidirectional LSTM and 
other neural network architectures. Neural Networks, 18(5–6):602–610, 2005. [PubMed: 
16112549] 

[16]. Gulwani S. Synthesis from examples: Interaction models and algorithms; Symbolic and Numeric 
Algorithms for Scientific Computing (SYNASC), 2012 14th International Symposium; IEEE; 
2012. 8–14. 

[17]. Hastie T, Rosset S, Zhu J, and Zou H Multi-class AdaBoost. Statistics and its Interface, 2(3):349–
360, 2009.

[18]. Hearst MA. Automatic acquisition of hyponyms from large text corpora; Proceedings of the 14th 
conference on Computational linguistics-Volume 2; Association for Computational Linguistics; 
1992. 539–545. 

[19]. Hinton GE Training products of experts by minimizing contrastive divergence. Neural 
computation, 14(8):1771–1800, 2002. [PubMed: 12180402] 

[20]. Hochreiter S and Schmidhuber J Long short-term memory. Neural computation, 9(8):1735–1780, 
1997. [PubMed: 9377276] 

[21]. Jaccard P Lois de distribution florale dans la zone alpine. Bull Soc Vaudoise Sci Nat, 38:69–130, 
1902.

[22]. Jha S, Gulwani S, Seshia SA, and Tiwari A Oracle-guided component-based program synthesis. 
In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1, pages 215–224. ACM, 2010.

[23]. Joglekar M, Garcia-Molina H, and Parameswaran A Comprehensive and reliable crowd 
assessment algorithms. In Data Engineering (ICDE), 2015 IEEE 31st International Conference 
on, pages 195–206. IEEE, 2015.

[24]. Johnson J, Hariharan B, van der Maaten L, Fei-Fei L, Zitnick CL, and Girshick R Clevr: A 
diagnostic dataset for compositional language and elementary visual reasoning. In Computer 
Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 1988–1997. IEEE, 
2017.

[25]. Kok S and Domingos P Statistical predicate invention. In Proceedings of the 24th international 
conference on Machine learning, pages 433–440. ACM, 2007.

[26]. Krishna R, Zhu Y, Groth O, Johnson J, Hata K, Kravitz J, Chen S, Kalantidis Y, Li L-J, Shamma 
DA, et al. Visual Genome: Connecting language and vision using crowdsourced dense image 
annotations. International Journal of Computer Vision, 123(1):32–73, 2017.

[27]. Krizhevsky A, Sutskever I, and Hinton GE ImageNet classification with deep convolutional 
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[28]. Lao N and Cohen WW Relational retrieval using a combination of path-constrained random 
walks. Machine learning, 81(1):53–67, 2010.

[29]. Li H, Yu B, and Zhou D Error rate analysis of labeling by crowdsourcing. In ICML Workshop: 
Machine Learning Meets Crowdsourcing Atalanta, Georgia, USA Citeseer, 2013.

[30]. Li Y, Gao J, Meng C, Li Q, Su L, Zhao B, Fan W, and Han J A survey on truth discovery. ACM 
Sigkdd Explorations Newsletter, 17(2):1–16, 2016.

Varma and Ré Page 28

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[31]. Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, and Zitnick CL Microsoft 
COCO: Common objects in context. In European conference on computer vision, pages 740–
755. Springer, 2014.

[32]. Metz C Crowdflower dataset: Airline Twitter sentiment, 2015 https://www.crowdflower.com/
data/airline-twitter-sentiment/.

[33]. Mintz M, Bills S, Snow R, and Jurafsky D Distant supervision for relation extraction without 
labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and 
the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 
2-Volume 2, pages 1003–1011. Association for Computational Linguistics, 2009.

[34]. Mooney R. Relational learning of pattern-match rules for information extraction; Proceedings of 
the Sixteenth National Conference on Artificial Intelligence; 1999. volume 334

[35]. Pan SJ and Yang Q A survey on transfer learning. IEEE Transactions on knowledge and data 
engineering, 22(10):1345–1359, 2010.

[36]. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer 
P, Weiss R, Dubourg V, et al. Scikit-learn: Machine learning in Python. Journal of machine 
learning research, 12(Oct):2825–2830, 2011.

[37]. Pennington J, Socher R, and Manning C GloVe: Global vectors for word representation. In 
Proceedings of the 2014 conference on empirical methods in natural language processing 
(EMNLP), pages 1532–1543, 2014.

[38]. Pochampally R, Das Sarma A, Dong XL, Meliou A, and Srivastava D Fusing data with 
correlations. In Proceedings of the 2014 ACM SIGMOD international conference on 
Management of data, pages 433–444. ACM, 2014.

[39]. Ratner A, Bach SH, Ehrenberg H, Fries J, Wu S, and Ré C Snorkel: Rapid training data creation 
with weak supervision. PVLDB, 11(3):269–282, 2017. [PubMed: 29770249] 

[40]. Ratner AJ, De Sa CM, Wu S, Selsam D, and Ré C Data programming: Creating large training 
sets, quickly. In Advances in Neural Information Processing Systems, pages 3567–3575, 2016. 
[PubMed: 29872252] 

[41]. Rekatsinas T, Joglekar M, Garcia-Molina H, Parameswaran A, and Ré C SLiMFast: Guaranteed 
results for data fusion and source reliability. In Proceedings of the 2017 ACM International 
Conference on Management of Data, pages 1399–1414. ACM, 2017.

[42]. Roth B and Klakow D Combining generative and discriminative model scores for distant 
supervision. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language 
Processing, pages 24–29, 2013.

[43]. Safavian SR and Landgrebe D A survey of decision tree classifier methodology. IEEE 
transactions on systems, man, and cybernetics, 21(3):660–674, 1991.

[44]. Sawyer-Lee R, Gimenez F, Hoogi A, and Rubin D Curated breast imaging subset of DDSM, 
2016.

[45]. Simonyan K and Zisserman A Very deep convolutional networks for large-scale image 
recognition. arXiv preprint arXiv:1409.1556, 2014.

[46]. Singh R and Gulwani S Synthesizing number transformations from input-output examples. In 
International Conference on Computer Aided Verification, pages 634–651. Springer, 2012.

[47]. Soderland S Learning information extraction rules for semi-structured and free text. Machine 
learning, 34(1–3):233–272, 1999.

[48]. Solar-Lezama A, Tancau L, Bodik R, Seshia S, and Saraswat V Combinatorial sketching for 
finite programs. ACM Sigplan Notices, 41(11):404–415, 2006.

[49]. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich 
A, et al. Going deeper with convolutions. Cvpr, 2015.

[50]. Takamatsu S, Sato I, and Nakagawa H Reducing wrong labels in distant supervision for relation 
extraction. In Proceedings of the 50th Annual Meeting of the Association for Computational 
Linguistics: Long Papers-Volume 1, pages 721–729. Association for Computational Linguistics, 
2012.

[51]. Van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, 
and Yu T scikit-image: image processing in Python. PeerJ, 2:e453, 2014. [PubMed: 25024921] 

Varma and Ré Page 29

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.crowdflower.com/data/airline-twitter-sentiment/
https://www.crowdflower.com/data/airline-twitter-sentiment/


[52]. Varma P, He BD, Bajaj P, Khandwala N, Banerjee I, Rubin D, and Re C Inferring generative 
model structure with static analysis. In Advances in Neural Information Processing Systems, 
pages 239–249, 2017. [PubMed: 29391769] 

[53]. Varma P, Iter D, De Sa C, and Re C Flipper: A systematic approach to debugging training sets. In 
Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics, page 5 ACM, 2017.

[54]. Varma P, Yu R, Iter D, De Sa C, and Re C Socratic learning: Correcting misspecified generative 
models using discriminative models. arXiv preprint arXiv:1610.08123, 2017.

[55]. Wang F and Rudin C Falling rule lists. In Artificial Intelligence and Statistics, pages 1013–1022, 
2015.

[56]. Wang T, Rudin C, Doshi-Velez F, Liu Y, Klampfl E, and MacNeille P Or’s of and’s for 
interpretable classification, with application to context-aware recommender systems. arXiv 
preprint arXiv:1504.07614, 2015.

[57]. Wang WY, Mazaitis K, and Cohen WW Structure learning via parameter learning. In Proceedings 
of the 23rd ACM International Conference on Conference on Information and Knowledge 
Management, pages 1199–1208. ACM, 2014.

[58]. Wei C-H, Peng Y, Leaman R, Davis AP, Mattingly CJ, Li J, Wiegers TC, and Lu Z Overview of 
the biocreative v chemical disease relation (CDR) task. In Proceedings of the fifth BioCreative 
challenge evaluation workshop, pages 154–166. Sevilla Spain, 2015.

[59]. Wu S, Hsiao L, Cheng X, Hancock B, Rekatsinas T, Levis P, and Ré C Fonduer: Knowledge base 
construction from richly formatted data. In Proceedings of the 2018 International Conference on 
Management of Data, pages 1301–1316. ACM, 2018.

[60]. Yang F, Yang Z, and Cohen WW Differentiable learning of logical rules for knowledge base 
reasoning. In Advances in Neural Information Processing Systems, pages 2319–2328, 2017.

[61]. Zhang Y, Chen X, Zhou D, and Jordan MI Spectral methods meet EM: A provably optimal 
algorithm for crowdsourcing. In Advances in neural information processing systems, pages 
1260–1268, 2014.

[62]. Zhou D, Bousquet O, Lal TN, Weston J, and Schoölkopf B Learning with local and global 
consistency. In Advances in neural information processing systems, pages 321–328, 2004.

Varma and Ré Page 30

Proceedings VLDB Endowment. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Snuba uses a small labeled and a large unlabeled dataset to iteratively generate heuristics. It 

uses existing label aggregators to assign training labels to the large dataset.
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Figure 2: 
An overview of the Snuba system. (1) The synthesizer generates a candidate set of heuristics 

based on the labeled dataset. (2) The pruner selects the heuristic from the candidate set to 

add to the committed set. (3) The verifier learns heuristic accuracies and passes appropriate 

feedback to the synthesizer to continue the iterative process.
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Figure 3: 
Heuristic models and associated boundaries.
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Figure 4: 
Linear performance increase of end model trained on labels from Snuba w.r.t. unlabeled 

data.
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Figure 5: 
(a,c) show the learned and true accuracies of the committed set of heuristics at the last 

iteration. (b,d) show the allowed error and the measured error between learned and empirical 

accuracies across all iterations. The marked heuristic in each figure shows Snuba 

successfully stops generating heuristics when the new heuristic’s true accuracy is worse than 

random.
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Figure 6: 
We observe a maximum of D′ = 1 for our text and D′ < 4 for our image and multi-modal 

tasks.
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Figure 7: 
Snuba generates fewer heuristics than users for our image tasks and usually more for text 

tasks.
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Table 4:

Improvement of best heuristic type over others and Snuba choosing β over never abstaining (β = 0) and 

midpoint value (β = 0.25). 0.00 is best heuristic type that was best for each task. DT: decision tree, LR: logistic 

regressor; NN: nearest neighbor.

F1 Improvement Over

Dataset DT LR NN β = 0 β = 0.25

Bone Tumor +2.73 0.00 +4.62 +2.35 +3.77

Visual Genome +3.22 +3.38 0.00 +7.99 +5.30

MS-COCO 0.00 0.00 +0.24 +2.51 +2.51

IMDb 0.00 0.00 +14.32 +20.69 +2.13
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Table 5:

Snuba pruner optimizing for only performance (F1) and diversity (Jaccard) compared to performance and 

diversity individually and a weighted average.

F1 Improvement Over

Dataset F1 Only Jaccard Only Weighted

Bone Tumor +3.86 +8.84 +2.74

Visual Genome +6.57 +7.33 +3.74

MS-COCO +2.51 +18.2 +0.80

IMDb +2.15 +14.23 +0.37
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Table 6:

Snuba verifier aggregation compared to using α instead of α, no termination condition, majority vote (MV) 

across labels, feedback with weighted samples.

F1 Improvement Over

Dataset α No Term. MV Weighted

Bone Tumor +5.42 +5.15 +3.78 +1.76

Visual Genome +8.43 +7.09 +6.59 +4.42

MS-COCO +7.98 +3.70 +3.00 +2.22

IMDb +5.67 +4.05 +1.80 +1.63
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