
A Kernel Theory of Modern Data Augmentation

Tri Dao1, Albert Gu1, Alexander J. Ratner1, Virginia Smith2, Christopher De Sa3,
Christopher Ré1

1Department of Computer Science, Stanford University

2Department of Electrical and Computer Engineering, Carnegie Mellon University

3Department of Computer Science, Cornell University

Abstract

Data augmentation, a technique in which a training set is expanded with class-preserving

transformations, is ubiquitous in modern machine learning pipelines. In this paper, we seek to

establish a theoretical framework for understanding data augmentation. We approach this from two

directions: First, we provide a general model of augmentation as a Markov process, and show that

kernels appear naturally with respect to this model, even when we do not employ kernel

classification. Next, we analyze more directly the effect of augmentation on kernel classifiers,

showing that data augmentation can be approximated by first-order feature averaging and second-

order variance regularization components. These frameworks both serve to illustrate the ways in

which data augmentation affects the downstream learning model, and the resulting analyses

provide novel connections between prior work in invariant kernels, tangent propagation, and

robust optimization. Finally, we provide several proof-of-concept applications showing that our

theory can be useful for accelerating machine learning workflows, such as reducing the amount of

computation needed to train using augmented data, and predicting the utility of a transformation

prior to training.

1 Introduction

The process of augmenting a training dataset with synthetic examples has become a critical

step in modern machine learning pipelines. The aim of data augmentation is to artificially

create new training data by applying transformations, such as rotations or crops for images,

to input data while preserving the class labels. This practice has many potential benefits:

Data augmentation can encode prior knowledge about data or task-specific invariances, act

as regularizer to make the resulting model more robust, and provide resources to data-

hungry deep learning models. As a testament to its growing importance, the technique has

been used to achieve nearly all state-of-the-art results in image recognition [4, 11, 13, 33],

and is becoming a staple in many other areas as well [40, 22]. Learning augmentation

policies alone can also boost the state-of-the-art performance in image classification tasks

[31, 7].

trid@stanford.edu.

HHS Public Access
Author manuscript
Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

Published in final edited form as:
Proc Mach Learn Res. 2019 June ; 97: 1528–1537.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Despite its ubiquity and importance to the learning process, data augmentation is typically

performed in an ad-hoc manner with little understanding of the underlying theoretical

principles. In the field of deep learning, for example, data augmentation is commonly

understood to act as a regularizer by increasing the number of data points and constraining

the model [12, 42]. However, even for simpler models, it is not well-understood how training

on augmented data affects the learning process, the parameters, and the decision surface of

the resulting model. This is exacerbated by the fact that data augmentation is performed in

diverse ways in modern machine learning pipelines, for different tasks and domains, thus

precluding a general model of transformation. Our results show that regularization is only

part of the story.

In this paper, we aim to develop a theoretical understanding of data augmentation. First, in

Section 3, we analyze data augmentation as a Markov process, in which augmentation is

performed via a random sequence of transformations. This formulation closely matches how

augmentation is often applied in practice. Surprisingly, we show that performing k-nearest

neighbors with this model asymptotically results in a kernel classifier, where the kernel is a

function of the base augmentations. These results demonstrate that kernels appear naturally

with respect to data augmentation, regardless of the base model, and illustrate the effect of

augmentation on the learned representation of the original data.

Motivated by the connection between data augmentation and kernels, in Section 4 we show

that a kernel classifier on augmented data approximately decomposes into two components:

(i) an averaged version of the transformed features, and (ii) a data-dependent variance

regularization term. This suggests a more nuanced explanation of data augmentation—

namely, that it improves generalization both by inducing invariance and by reducing model
complexity. We validate the quality of our approximation empirically, and draw connections

to other generalization-improving techniques, including recent work in invariant learning

[43, 24, 30] and robust optimization [28].

Finally, in Section 5, to illustrate the utility of our theoretical understanding of

augmentation, we explore promising practical applications, including: (i) developing a

diagnostic to determine, prior to training, the importance of an augmentation; (ii) reducing

training costs for kernel methods by allowing for augmentations to be applied directly to

features—rather than the raw data—via a random Fourier features approach; and (iii)

suggesting a heuristic for training neural networks to reduce computation while realizing

most of the accuracy gain from augmentation.

2 Related Work

Data augmentation has long played an important role in machine learning. For many years it

has been used, for example, in the form of jittering and virtual examples in the neural

network and kernel methods literatures [35, 34, 8]. These methods aim to augment or

modify the raw training data so that the learned model will be invariant to known

transformations or perturbations. There has also been significant work in incorporating

invariance directly into the model or training procedure, rather than by expanding the

training set. One illustrative example is that of tangent propagation for neural networks [36,

Dao et al. Page 2

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

37], which proposes a regularization penalty to enforce local invariance, and has been

extended in several recent works [32, 9, 43]. However, while efforts have been made that

loosely connect traditional data augmentation with these methods [21, 43], there has not

been a rigorous study on how these sets of procedures relate in the context of modern

models and transformations.

In this work, we make explicit the connection between augmentation and modifications to

the model, and show that prior work on tangent propagation can be derived as a special case

of our more general theoretical framework (Section 5). Moreover, we draw connections to

recent work on invariant learning [24, 30] and robust optimization [28], illustrating that data

augmentation not only affects the model by increasing invariance to specific

transformations, but also by reducing the variance of the estimator. These analyses lead to an

important insight into how invariance can be most effectively applied for kernel methods and

deep learning architectures (Section 5), which we show can be used to reduce training

computation and diagnose the effectiveness of various transformations.

Prior theory also does not capture the complex process by which data augmentation is often

applied. For example, previous work [1, 3] shows that adding noise to input data has the

effect of regularizing the model, but these effects have yet to be explored for more

commonly applied complex transformations, and it is not well-understood how the inductive

bias embedded in complex transformations manifest themselves in the invariance of the

model (addressed here in Section 4). A common recipe in achieving state-of-the-art accuracy

in image classification is to apply a sequence of more complex transformations such as

crops, flips, or local affine transformations to the training data, with parameters drawn

randomly from hand-tuned ranges [4, 10]. Similar strategies have also been employed in

applications of classification for audio [40] and text [22]. In Section 3, we analyze a

motivating model reaffirming the connection between augmentation and kernel methods,

even in the setting of complex and composed transformations.

Finally, while data augmentation has been well-studied in the kernels literature [2, 34, 25], it

is typically explored in the context of simple geometrical invariances with closed forms. For

example, van der Wilk et al. [41] use Gaussian processes to learn these invariances from data

by maximizing the marginal likelihood. Further, the connection is often approached in the

opposite direction—by looking for kernels that satisfy certain invariance properties [15, 38].

We instead approach the connection directly via data augmentation, and show that even

complicated augmentation procedures akin to those used in practice can be represented as a

kernel method.

3 Data Augmentation as a Kernel

To begin our study of data augmentation, we propose and investigate a model of

augmentation as a Markov process, inspired by the general manner in which the process is

applied—via the composition of multiple different types of transformations. Surprisingly, we

show that this augmentation model combined with a k-nearest neighbor (k-NN) classifier is

asymptotically equivalent to a kernel classifier, where the kernel is a function of the base

transformations. While the technical details of the section can be skipped on a first reading,

Dao et al. Page 3

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the central message is that kernels appear naturally in relation to data augmentation, even

when we do not start with a kernel classifier. This provides additional motivation to study

kernel classifiers trained on augmented data, as in Section 4.

Markov Chain Augmentation Process.

In data augmentation, the aim is to perform class-preserving transformations to the original

training data to improve generalization. As a concrete example, a classifier that correctly

predicts an image of the number ‘1’ should be able to predict this number whether or not the

image is slightly rotated, translated, or blurred. It is therefore common to pick some number

of augmentations (e.g., for images: rotation, zoom, blur, flip, etc.), and to create synthetic

examples by taking an original data point and applying a sequence of these augmentations.

To model this process, we consider the following procedure: given a data point, we pick

augmentations from a set at random, applying them one after the other. To avoid deviating

too far, with some probability we discard the point and start over from a random point in the

original dataset. We formalize this below.

Definition 1 (Markov chain augmentation model). Given a dataset of n examples

zi = xi, yi ∈ 𝒳 × 𝒴, we augment the dataset via augmentation matrices A1,A2,…,Am, for

A j ∈ ℝΩ × Ω, which are stochastic transition matrices over a finite state space of possible

labeled (augmented) examples Ω: = 𝒳 × 𝒴. We model this via a discrete time Markov chain

with the transitions:

• With probability proportional to βj, a transition occurs via augmentation matrix

Aj.

• With probability proportional to γi, a retraction to the training set occurs, and the

state resets to zi.

For example, the probability of retracting to training example z1 is γ1/(γ1 + ⋯ + γn + β1 +

⋯ + βm). The augmentation process starts from any point and follows Definition 1 for an

arbitrary amount of time. The retraction steps intuitively keep the final distribution grounded

closer to the original training points.

From Definition 1, by conditioning on which transition is chosen, it is evident that the entire

process is equivalent to a Markov chain whose transition matrix is the weighted average of

the base transitions. Note that the transition matrices Aj do not need to be materialized but

are implicit from the description of the augmentation. A concrete example is given in

Section B.2. Without loss of generality, we let all rates βj,γi be normalized with Σj γi = 1.

Let {eω}ω∈Ω be the standard basis of Ω, and let ezi
 be the basis element corresponding to zi.

The resulting transition matrix and stationary distribution are given below; proofs and

additional details are provided in Appendix A. This describes the long-run distribution of the

augmented dataset.

Proposition 1. The described augmentation process is a Markov chain with transition
matrix:

Dao et al. Page 4

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R = 1 + ∑ j = 1
m β j

−1 ∑i = 1
m β jA j + ∑i = 1

n γi 1ezi
⊤ .

Lemma 1 (Stationary distribution). The stationary distribution is given by:

π = ρ⊤(I(β + 1) − A)−1, where A = ∑ j = 1
m β jA j, β = ∑i = 1

m β j, ρ

= ∑i = 1
n γiezi

.
(1)

Lemma 1 agrees intuitively with the augmentation process: When all βj ≈ 0 (i.e., low rate of

augmentation), Lemma 1 implies that the stationary distribution π is close to ρ, the original

data distribution. As βj increases, the stationary distribution becomes increasingly distorted

by the augmentations.

Classification Yields a Kernel.

Using our proposed model of augmentation, we can show that classifying an unseen

example using augmented data results in a kernel classifier. In doing so, we can observe the

effect that augmentation has on the learned feature representation of the original data. We

discuss several additional uses and extensions of the result itself in Appendix A.1.

Theorem 1. Consider running the Markov chain augmentation process in Definition 1 and
classifying an unseen example x ∈ X using an asymptotically Bayes-optimal classifier, such
as k-nearest neighbors. Suppose that the Ai are time-reversible with equal stationary
distributions. Then in the limit as time T → ∞ and k → ∞, this classification has the
following form:

y = sign∑i = 1
n yiαzi

Kxi, x, (2)

where α ∈ ℝΩ is supported only on the dataset z1,…,zn, and K ∈ ℝΩ × Ω is a kernel matrix
(i.e., K is symmetric positive definite and non-negative) depending only on all the
augmentations Aj,βj.

Theorem 1 follows from formulating the stationary distribution (Lemma 1) as π = α⊤K for a

kernel matrix K and α ∈ ℝΩ. Noting that k-NN asymptotically acts as a Bayes classifier,

selecting the most probable label according to this stationary distribution, leads to (2).1 In

Appendix A, we include a closed form for α and K along with the proof. We include details

and examples, and elaborate on the strength of the assumptions.

Takeaways.

This result has two important implications: First, kernels appear naturally in relation to

complex forms of augmentation, even when we do not begin with a kernel classifier. This

1We use k-NN as a simple example of a nonparametric classifier, but the result holds for any asymptotically Bayes classifier.

Dao et al. Page 5

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

underscores the connection between augmentation and kernels even with complicated

compositional models, and also serves as motivation for our focused study on kernel

classifiers in Section 4. Second, and more generally, data augmentation—a process that

produces synthetic training examples from the raw data—can be understood more directly

based on its effect on downstream components in the learning process, such as the features

of the original data and the resulting learned model. We make this link more explicit in

Section 4, and show how to exploit it in practice in Section 5.

4 Effects of Augmentation: Invariance and Regularization

In this section we build on the connection between kernels and augmentation in Section 3,

exploring directly the effect of augmentation on a kernel classifier. It is commonly

understood that data augmentation can be seen as a regularizer, in that it reduces

generalization error but not necessarily training error [12, 42]. We make this more precise,

showing that data augmentation has two specific effects: (i) increasing the invariance by

averaging the features of augmented data points, and (ii) penalizing model complexity via a

regularization term based on the variance of the augmented forms. These are two approaches

that have been explicitly applied to get more robust performance in machine learning,

though outside of the context of data augmentation. We demonstrate connections to prior

work in our derivation of the feature averaging (Section 4.1) and variance regularization

(Section 4.2) terms. We also validate our theory empirically (Section 4.3), and in Section 5,

show the practical utility of our analysis to both kernel and deep learning pipelines.

General Augmentation Process.

To illustrate the effects of augmentation, we explore it in conjunction with a general kernel

classifier. In particular, suppose that we have an original kernel K with a finite-dimensional2

feature map ϕ:ℝd ℝD, and we aim to minimize some smooth convex loss l:ℝ × ℝ ℝ
with parameter w ∈ ℝD over a dataset (x1,y1),…,(xn,yn). The original objective function to

minimize is f (w) = 1
n ∑i = 1

n l w⊤ϕ xi ; yi , with two common losses being logistic l(ŷ;y) =

log(1 + exp(−yŷ)) and quadratic l(ŷ;y) = (ŷ − y)2.

Now, suppose that we first augment the dataset using an augmentation kernel T. Whereas the

augmentation kernel in Section 3 had a specific form based on the stationary distribution of

the proposed Markov process, here we make this more general, simply requiring that for

each data point xi, T(xi) describes the distribution over data points into which xi can be

transformed. The new objective function becomes:

g(w) = 1
n ∑i = 1

n E
ti T xi

l w⊤ϕ ti ; yi . (3)

2We focus on finite-dimensional feature maps for ease of exposition, but the analysis still holds for infinite-dimensional feature maps.

Dao et al. Page 6

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.1 Data Augmentation as Feature Averaging

We begin by showing that, to first order, objective (3) can be approximated by a term that

computes the average augmented feature of each data point. In particular, suppose that the

applied augmentations are “local” in the sense that they do not significantly modify the

feature map ϕ. Using the first-order Taylor approximation, we can expand each term around

any point ϕ0 that does not depend on ti:

Eti
T xi l w⊤ϕ ti ; yi ≈ l w⊤ϕ0; yi + E

ti T xi
w⊤ ϕ0 − ϕ ti l′ w⊤ϕ0; yi .

Picking ϕ0 = Eti~T(xi) [ϕ(ti)], the second term vanishes, yielding the first-order
approximation:

g(w) ≈ g(w): = 1
n ∑i = 1

n l w⊤E
ti T xi

ϕ ti ; yi . (4)

This is exactly the objective of a linear model with a new feature map ψ(x) = Et~T(x) [ϕ(t)],
i.e., the average feature of all the transformed versions of x. If we overload notation and use

T(x,u) to denote the probability density of transforming x to u, this feature map corresponds

to a new kernel:

K x, x′
= ψ(x), ψ x′ = Eu T(x)[ϕ(u)], Eu′ T x′ ϕ u′

= ∫
u ∈ ℝn∫u′ ∈ ℝn ϕ(u), ϕ u′ T(x, u)T x′, u′ du′du

= ∫
u ∈ ℝn∫u′ ∈ ℝnK u, u′ T(x, u)T x′, u′ du′du

= TKT⊤ x, x′ .

That is, training a kernel linear classifier with a particular loss function plus data

augmentation is equivalent, to first order, to training a linear classifier with the same loss on

an augmented kernel K = TKT⊤, with feature map ψ(x) = Et~T(x) [ϕ(t)]. This feature map is

exactly the embedding of the distribution of transformed points around x into the

reproducing kernel Hilbert space [26, 30]. This means that the first-order effect of training

on augmented data is equivalent to training a support measure machine [25], with the n input

distributions corresponding to the n distributions of transformed points around x1,…,xn. The

new kernel K has the effect of increasing the invariance of the model, as averaging the

features from transformed inputs that are not necessarily present in the original dataset

makes the features less variable to transformation.

By Jensen’s inequality, since the function l is convex, ĝ(w) ≤ g(w). In other words, if we

solve the optimization problem that results from data augmentation, the resulting objective

value using K will be no larger. Further, if we assume that the loss function is strongly

convex and strongly smooth, we can quantify how much the solution to the first-order

Dao et al. Page 7

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

approximation and the solution of the original problem with augmented data will differ (see

Proposition 3 in the appendix). We validate the accuracy of this first-order approximation

empirically in Section 4.3.

4.2 Data Augmentation as Variance Regularization

Next, we show that the second-order approximation of the objective on an augmented

dataset is equivalent to variance regularization, making the classifier more robust. We can

get an exact expression for the error by considering the second-order term in the Taylor

expansion, with ζi denoting the remainder function from Taylor’s theorem:

g(w) − g(w) = 1
2n ∑i = 1

n E
ti T xi

w⊤ ϕ ti − ψ xi
2
l′′ ζi w⊤ϕ ti ; yi

= w⊤ 1
2n ∑i = 1

n E
ti T xi

Δti, xi
Δti, xi

⊤ l′′ ζi w⊤ϕ ti ; yi w,

where Δti,xi := ϕ(ti) − ψ(xi) is the difference between the features of the transformed image ti
and the averaged features ψ(xi). If (as is the case for logistic and linear regression) l″ is

independent of y, the error term is independent of the labels. That is, the original augmented

objective g is the modified objective ĝ plus some regularization that is a function of the

training examples, but not the labels. In other words, data augmentation has the effect of

performing data-dependent regularization.

The second-order approximation to the objective is:

g(w): = g(w) + 1
2n ∑i = 1

n w⊤E
ti T xi

Δti, xi
Δti, xi

⊤ l′′ w⊤ψ xi w . (5)

For a fixed w, this error term is exactly the variance of the output w⊤ϕ(X), where the true

data X is assumed to be sampled from the empirical data points xi and their augmented

versions specified by T(xi), weighted by l″(w⊤ψ(xi)) This data-dependent regularization

term favors weight vectors that produce similar outputs wTϕ(x) and wTϕ(x′) if x′ is a

transformed version of x.

4.3 Validation of Approximation

We empirically validate3 the first- and second-order approximations, ĝ(w) and g(w), on

MNIST [19] and CIFAR-10 [18] datasets, performing rotation, crop, or blur as

augmentations, and using either an RBF kernel with random Fourier features [29] or LeNet

(details in Appendix E.1) as a base model. Our results show that while both approximations

perform reasonably well, the second-order approximation indeed results in a better

approximation of the actual objective than the first-order approximation alone, validating the

significance of the variance regularization component of data augmentation. In particular, in

Figure 1a, we plot the difference after 10 epochs of SGD training, between the actual

3Code to reproduce experiments and plots is available at https://github.com/HazyResearch/augmentation_code

Dao et al. Page 8

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/HazyResearch/augmentation_code

objective function over augmented data g(w) and: (i) the first-order approximation g(w), (ii)
second-order approximation g(w), and (iii) second-order approximation without the first-

order term, f (w) + (g(w) − g(w)). As a baseline, we plot these differences relative to the

difference between the augmented and non-augmented objective (i.e., the original images),

f(w). In Figure 1b, to see how training on approximate objectives affect the predicted test

values, we plot the prediction disagreement between the model trained on true objective and

the models trained on approximate objectives. Finally, Figure 1c shows that these

approximations are relatively stable in terms of performance throughout the training process.

For the CIFAR-10 dataset and the LeNet model (Appendix E), the results are quite similar,

though we additionally observe that the first-order approximation is very close to the model

trained without augmentation for LeNet, suggesting that the data-dependent regularization of

the second-order term may be the dominating effect in models with learned feature maps.

4.4 Connections to Prior Work

The approximations we have provided in this section unify several seemingly disparate

works.

Invariant kernels.—The derived first-order approximation can capture prior work in

invariant kernels as a special case, when the transformations of interest form a group and

averaging features over the group induces invariance [24, 30]. The form of the averaged

kernel can then be used to learn the invariances from data [41].

Robust optimization.—Our work also connects to robust optimization. For example,

previous work [1, 3] shows that adding noise to input data has the effect of regularizing the

model. Maurer & Pontil [23] bounds generalization error in terms of the empirical loss and

the variance of the estimator. The second-order objective here adds a variance penalty term,

thus optimizing generalization and automatically balancing bias (empirical loss) and

variance with respect to the input distribution coming from the empirical data and their

transformed versions (this is presumably close to the population distribution if the

transforms capture the right invariance in the dataset). Though the resulting problem is

generally non-convex, it can be approximated by a distributionally robust convex

optimization problem, which can be efficiently solved by a stochastic procedure [28, 27].

Tangent propagation.—In Section 5.3, we show that when applied to neural networks,

the described second-order objective can realize classical tangent propagation methods [36,

37, 43] as a special case. More precisely, the second-order only term (orange in Figure 1) is

equivalent to the approximation described in Zhao et al. [43], proposed there in the context

of regularizing CNNs. Our results indicate that considering both the first- and second-order

terms, rather than just this second-order component, in fact results in a more accurate

approximation of the true objective, e.g., providing a 6–9× reduction in the resulting test

prediction disagreement (Figure 1b). This suggests an approach to improve classical tangent

propagation methods, explored in Section 5.3.

Dao et al. Page 9

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5 Practical Connections: Accelerating Training With Data Augmentation

We now present several proof-of-concept applications to illustrate how the theoretical

insights in Section 4 can be used to accelerate training with data augmentation. First, we

propose a kernel similarity metric that can be used to quickly predict the utility of potential

augmentations, helping to obviate the need for guess-and-check work. Next, we explore

ways to reduce training computation over augmented data, including incorporating

augmentation directly in the learned features with a random Fourier features approach, and

applying our derived approximation at various layers of a deep network to reduce overall

computation. We perform these experiments on common benchmark datasets, MNIST and

CIFAR-10, as well a real-world mammography tumor-classification dataset, DDSM.

5.1 A Fast Kernel Metric for Augmentation Selection

For new tasks and datasets, manually selecting, tuning, and composing augmentations is one

of the most time-consuming processes in a machine learning pipeline, yet is critical to

achieving state-of-the-art performance. Here we propose a kernel alignment metric,

motivated by our theoretical framework, to quickly estimate if a transformation is likely to

improve generalization performance without performing end-to-end training.

Kernel alignment metric.—Given a transformation T, and an original feature map ϕ(x),

we can leverage our analysis in Section 4.1 to approximate the features for each data point x

as ψ(x) = Et~T(x) [ϕ(t)]. Defining the feature kernel K x, x′ = ψ(x)⊤ψ x′ and the label kernel

KY (y,y′) = 1{y = y′}, we can compute the kernel target alignment [6] between the feature

kernel K and the target kernel KY without training:

A X, K, KY =
K, KY

K, K KY , KY
,

where Ka, Kb = ∑i, j
n Ka xi, x j Kb xi, x j . This alignment statistic can be estimated quickly

and accurately from subsamples of the data [6]. In our case, we use random Fourier features

[29] as an approximate feature map ϕ(x) and sample t ~ T(x) to estimate the averaged feature

ψ(x) = Et~T(x) [ϕ(t)]. The kernel target alignment measures the extent to which points in the

same class have similar features. If this alignment is larger than that between the original

feature kernel K(x,x′) = ϕ(x)⊤ϕ(x) and the target kernel, we postulate that the transformation

T is likely to improve generalization. We validate this method on MNIST and CIFAR-10

with numerous transformations (rotation, blur, flip, brightness, and contrast). In Figure 2, we

plot the accuracy of the kernel classifier and LeNet against the kernel target alignment. We

see that there is indeed a correlation between kernel alignment and accuracy, as points tend

to cluster in the upper right (higher alignment, higher accuracy) and lower left (lower

alignment, lower accuracy) quadrants, indicating that this approach may be practically

useful to detect the utility of a transformation prior to training.

Dao et al. Page 10

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.2 Efficient Augmentation via Random Fourier Features

Beyond predicting the utility of an augmentation, we can also use our theory to reduce the

computation required to perform augmentation on a kernel classifier—resulting, e.g., in a 4×

speedup while achieving the same accuracy (MNIST, Table 1). When the transformations are

affine (e.g., rotation, translation, scaling, shearing), we can perform transforms directly on
the approximate kernel features, rather than the raw data points, thus gaining efficiency

while maintaining accuracy.

Recall from Section 4 that the first-order approximation of the new feature map is given by

ψ(x) = Et~T(x) [ϕ(t)], i.e., the average feature of all the transformed versions of x. Suppose

that the transform is linear in x of the form Aαx, where the transformation is parameterized

by α. For example, a rotation by angle α has the form T(x) = Rαx, where Rα is a d × d
matrix that 2D-rotates the image x. Further, assume that the original kernel k(x,x′) is shift-

invariant (say an RBF kernel), so that it can be approximated by random Fourier features

[29]. Instead of transforming the data point x itself, we can transform the averaged feature

map for x directly as:

ψ(x) = s−1D−1/2 ∑ j = 1
s exp i Aα j

⊤ ω1
⊤

x … ∑ j = 1
s exp i Aα j

⊤ ωD

⊤
x ,

where ω1,…,ωD are sampled from the spectral distribution, and α1,…,αs are sampled from

the distribution of the parameter α (e.g., uniformly from [−15, 15] if the transform is

rotation by α degrees). This type of random feature map has been suggested by Raj et al.

[30] in the context of kernels invariant to actions of a group. Our theoretical insights in

Section 4 thus connect data augmentation to invariant kernels, allowing us to leverage the

approximation techniques in this area. Our framework highlights additional ways to improve

this procedure: if we view augmentation as a modification of the feature map, we naturally

apply this feature map to test data points as well, implicitly reducing the variance in the

features of different versions of the same data point. This variance regularization is the

second goal of data augmentation discussed in Section 4.

We validate this approach on standard image datasets MNIST and CIFAR-10, along with a

real-world mammography tumor-classification dataset called Digital Database for Screening

Mammography (DDSM) [17, 5, 20]. DDSM comprises 1506 labeled mammograms, to be

classified as benign versus malignant tumors. In Table 1, we compare: (i) a baseline model

trained on non-augmented data, (ii) a model trained on the true augmented objective, and

(iii) a model that uses augmented random Fourier features. We augment via rotation between

−15 and 15 degrees. All models are RBF kernel classifiers with 10,000 random Fourier

features, and we report the mean accuracy and standard deviation over 10 trials. To make the

problem more challenging, we also randomly rotate the test data points. The results show

that augmented random Fourier features can retain 70–100% of the accuracy boost of data

augmentation, with 2–4× reduction in training time.

Dao et al. Page 11

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.3 Intermediate-Layer Feature Averaging for Deep Learning

Finally, while our theory does not hold exactly given the non-convexity of the objective, we

show that our theoretical framework also suggests ways in which augmentation can be

efficiently applied in deep learning pipelines. In particular, let the first k layers of a deep

neural network define a feature map ϕ, and the remaining layers define a non-linear function

f(ϕ(x)). The loss on each data point is then of the form Eti~T(xi) [l(f(ϕ(ti));yi)]. Using the

second-order Taylor expansion around ψ(xi) = Eti~T(xi) [ϕ(ti)], we obtain the objective:

1
n ∑i = 1

n l f ψ xi ; yi + 1
2E

ti T xi
ϕ ti − ψ xi

⊤∇
ψ xi

2 l f ψ xi ; yi ϕ ti − ψ xi .

If f(ϕ(x)) = w⊤ϕ(x), we recover the result in Section 4 (Equation 5). Operationally, we can

carrying out the forward pass on all transformed versions of the data points up to layer k
(i.e., computing ϕ(ti)), and then averaging the features and continuing with the remaining

layers using this averaged feature, thus reducing computation.

We train with this approach, applying the approximation at various layers of a LeNet

network using rotation as the augmentation. To get a rough measure of tradeoff between

accuracy of the model and computation, we record the fraction of time spent at each layer in

the forward pass, and use this to measure the expected reduction in computation when

approximating at layer k. In Figure 3, we plot the relative accuracy gain of the classifier

when trained on approximate objectives against the fraction of computation time, where 0

corresponds to accuracy (averaged over 10 trials) of training on original data, and 1

corresponds to accuracy of training on true augmented objective g(w). These results

indicate, e.g., that this approach can reduce computation by 30%, while maintaining 92% of

the accuracy gain (red, Figure 3a). In Appendix E.4, we demonstrate similar results in terms

of the test prediction distribution throughout training.

Connection to tangent propagation.—If we perform the described averaging before
the very first layer and use the analytic form of the gradient with respect to the

transformations (i.e., tangent vectors), this procedure recovers tangent propagation [36]. The

connection between augmentation and tangent propagation in this special case was recently

observed in Zhao et al. [43]. However, as we see in Figure 3, applying the approximation at

the first layer (standard tangent propagation) can in fact yield very poor accuracy results—

similar to performing no augmentation—showing that our more general approximation can

improve this approach in practice.

6 Conclusion

We have taken steps to establish a theoretical base for modern data augmentation. First, we

analyze a general Markov process model and show that the k-nearest neighbors classifier

applied to augmented data is asymptotically equivalent to a kernel classifier, illustrating the

effect that augmentation has on downstream representation. Next we show that local

transformations for data augmentation can be approximated by first-order feature averaging

and second-order variance regularization components, having the effects of inducing

Dao et al. Page 12

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

invariance and reducing model complexity. We use our insights to suggest ways to accelerate

training for kernel and deep learning pipelines. Generally, a tension exists between

incorporating domain knowledge more naturally via data augmentation, or through more

principled kernel approaches. We hope our work will enable easier translation between these

two paths, leading to simpler and more theoretically grounded applications of data

augmentation.

Acknowledgments

We thank Fred Sala and Madalina Fiterau for helpful discussion, and Avner May for providing detailed feedback on
earlier versions.

We gratefully acknowledge the support of DARPA under Nos. FA87501720095 (D3M) and FA86501827865
(SDH), NIH under No. N000141712266 (Mobilize), NSF under Nos. CCF1763315 (Beyond Sparsity) and
CCF1563078 (Volume to Velocity), ONR under No. N000141712266 (Unifying Weak Supervision), the Moore
Foundation, NXP, Xilinx, LETI-CEA, Intel, Google, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture,
Ericsson, Qualcomm, Analog Devices, the Okawa Foundation, and American Family Insurance, and members of
the Stanford DAWN project: Intel, Microsoft, Teradata, Facebook, Google, Ant Financial, NEC, SAP, and
VMWare. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views, policies, or
endorsements, either expressed or implied, of DARPA, NIH, ONR, or the U.S. Government.

A: Omitted Proofs and Results From Section 3

Here we provide additional details and proofs from Section 3. First, we prove Lemma 1

characterizing the stationary distribution of the Markov chain augmentation process.

Proof of Lemma 1. Recall that the stationary distribution satisfies πR = π.

Under the given notation, we can express R as

R = A + 1ρ⊤
β + 1 .

Assume for now that I(β + 1) − A is invertible. Notice that

ρ⊤ I β + 1 − A −1 A
β + 1 = ρ⊤ I β + 1 − A −1 A − I(β + 1)

β + 1 + I

= − ρ⊤
β + 1 + ρ⊤ I β + 1 − A −1

Also, A1 = ∑j βj(Aj1) = β1, so we know that (I(β+1)−A)1 = 1. So the inverse satisfies (I(β
+1)−A)−11 = 1 as well. Thus,

ρ⊤ I β + 1 − A −1R = ρ⊤ I β + 1 − A −1 A
β + 1 + ρ⊤ 1ρ⊤

β + 1

= − ρ⊤
β + 1 + ρ⊤ I β + 1 − A −1 + ρ⊤

β + 1

= ρ⊤ I β + 1 − A −1

Dao et al. Page 13

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

It follows that π = ρ⊤(I(β + 1) − A)−1 is the stationary distribution of this chain.

Finally, we show that I(β +1)−A is invertible as follows. By the Gershgorin Circle Theorem,

the eigenvalues of A lie in the union of the discs B(Aii,∑j≠i|Aij|) = B(Aii,β −Aii). In

particular, the eigenvalues have real part bounded by β. Thus I(β + 1) − A has all

eigenvalues with real part at least 1, hence is invertible.

For convenience, we now restate the main Theorem of Section 3.

Theorem 1. Consider running the Markov chain augmentation process in Definition 1 where
the base augmentations preserve labels, and classifying an unseen example x ∈ 𝒳 using k-
nearest neighbors. Suppose that the Ai are time-reversible with equal stationary distributions.
Then there are coefficients αzi

 and a kernel K depending only on the augmentations, such

that in the limit as the number of augmented examples goes to infinity, this classification
procedure is equivalent to a kernel classifier

y = sign ∑
i = 1

n
yiαzi

Kxi, x . (6)

For the remainder of this section, we will refer to K alternately as a matrix ℝΩ × Ω or as a

function Ω × Ω ℝ, with corresponding notation Kzi, z j
 and K zi, z j .

Classification process.

Suppose that we receive a new example x ∈ 𝒳 with unknown label y. Consider running the

augmentation process for time T and determining the label for x via k-nearest neighbors.4

Then in the limit as T → ∞, we predict

y = arg max
y ∈ 𝒴

π((x, y)) . (7)

In other words, as the number of augmented training examples increases, k-NN approaches a

Bayes classifier: it will select the class for x that is most probable in π.

We now show that under additional mild assumptions on the base augmentations Aj,

applying this classification process after the Markov chain augmentation process is

equivalent to a kernel classifier. In particular, suppose that the Markov chains corresponding
to the Aj are all time-reversible and there is a positive distribution π0 that is stationary for all
Aj. This condition is not restrictive in practice, as we discuss in Section A.1. Under these

assumptions, the stationary distribution can be expressed in terms of a kernel matrix.

4This works for any label-preserving non-parametric model.

Dao et al. Page 14

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma 2. The stationary distribution (1) can be written as π = α⊤K, where the vector

α ∈ ℝΩ is supported only on the dataset z1,…,zn, and K is a kernel matrix (i.e., K symmetric
positive definite and non-negative) depending only on the augmentations Aj,βj.

Proof of Lemma 2. Let Π0 = diag(π0). The stationary distribution can be written as

π = ρ⊤ I β + 1 − A −1

= ρ⊤ (β + 1)Π0
−1Π0 − AΠ0

−1Π0
−1

= ρ⊤Π0
−1 (β + 1)Π0

−1 − AΠ0
−1 −1

(Π0 is invertible from the assumption that π0 is supported everywhere).

Letting α = Π0
−1ρ and K = (β + 1)Π0

−1 − AΠ0
−1 −1

, we have π = α⊤K. Clearly, α is

supported only on the dataset z1,…,zn since ρ is. It remains to show that K is a kernel.

The detailed balance condition of time-reversible Markov chains states that π0(u)Aj(u,v) =

π0(v)Aj(v,u) for all augmentations A1,…,Am and u,v ∈ Ω. This can be rewritten

Aj(u,v)π0(v)−1 = Aj(v,u)π0(u)−1 or A jΠ0
−1 = A jΠ0

−1 ⊤
, so that A jΠ0

−1 is symmetric. This

implies that AΠ0
−1 and in turn K are symmetric.

The positivity of K follows from the Gershgorin Circle Theorem, similar to the last part of

the proof of Lemma 1. To show this, it suffices to show positivity of

((β + 1)I − A)Π0
−1 = Π0

−1Π0((β + 1)I − A)Π0
−1; we have already shown it is symmetric. Thus it

suffices to show positivity of Z = Π0((β + 1)I − A).5 In particular, the eigenvalues of Z are in

the union of the discs Di = B((π0)i(β + 1 − Aii),(π0)i(β − Aii)).6 Note that Di has real part at

least (π0)i, and therefore the eigenvalues of Z are at least mini(π0)i > 0.

Finally, we need to show that K is a nonnegative matrix; it suffices to show this for (I(β + 1)

− A)−1. Note that 1
β A is a stochastic matrix, hence the spectral radius of A

β + 1 is bounded by

β
β + 1 < 1. Therefore we can expand

I(β + 1) − A −1

= 1
β + 1 I − A

β + 1
−1

= 1
β + 1 ∑

n = 0

∞ A
β + 1

n
.

This is a sum of nonnegative matrices, so K is nonnegative.

5This follows from the characterization of A positive definite as x⊤ Ax > 0∀x ≠ 0.
6Where B(x; r) is the ball centered at × of radius r.

Dao et al. Page 15

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

By Lemma 2, since α is supported only on the training set z1,…,zn, the stationary

probabilities can be expressed as π(z) = ∑u ∈ Ωα(u)K(u, z) = ∑i = 1
n α zi K zi, z .

Expanding the classification rule (7) using this explicit representation yields

y = arg max
y ∈ − 1, 1

∑
i = 1

n
α zi K xi, yi , (x, y)

= sign ∑
y ∈ − 1, 1

y ∑
i = 1

n
α zi K xi, yi , (x, y) .

Finally, suppose, as is common practice, that our augmentations Aj do not change the label

y. In this case, we overload the notation K so that K(x1,x2) := K((x1,1),(x2,1)) = K((x1,−1),

(x2,−1))7, and the classification simplifies to equation (6), the classification rule for a kernel-

trick linear classifier using kernel K. Thus, k-NN with data augmentation is asymptotically
equivalent to a kernel classifier. This completes the proof of Theorem 1.

Rate of Convergence.

The rate at which the augmentation plus k-NN classifier approaches the kernel classifier can

be decomposed into two parts: the rate at which the augmentation Markov chain mixes, and

the rate which the k-NN classifier approaches the true function. The latter follows from

standard generalization error bounds for the k-NN classifier. For example, if the kernel

regression function L(x) = ∑i = 1
n α zi K xi, x is smooth enough (e.g. Lipschitz) on the

underlying space 𝒳 = ℝd, then the expected difference between the two classifiers of the

probability of misclassifying new examples scales as n−1/(2+d), where n is the number of

samples (i.e. augmentation steps) [14]. Furthermore, the stationary distribution (1) can be

further analyzed to yield the finite-sample distributions of the Markov chain, which is

related to the power series expansion ρ⊤(I(β + 1) −A)−1 = ρ⊤(β + 1)−1(I + A/(β + 1) + …) of

Equation (1). This in turn determines the mixing rate of the Markov chain, which converges

to its stationary distribution exponentially fast with rate β/(β +1). More formal statements

and proofs of these bounds are in Appendix A.2.

A.1 Discussion

Here we describe our modeling assumptions in more detail, as well as additional uses of our

main result in Theorem 1. First, we note that the assumptions needed for Lemmas 1 and 2

hold for most transformations used in practice. For example, the condition behind Lemma 2

is satisfied by “reversible” augmentations, or any augmentation that has equal probability of

sending a point x ∈ Ω to y as y to x: these augmentations have symmetric transition

matrices, which are time-reversible and have a uniform stationary distribution. This class

7The intuition is that K measures the similarity between examples in Ω in terms of how hard it is to augment one to the other, and this
distance is the same whether y is 1 or −1 in the label-preserving case. Formally, a K satisfying this condition exists because the
Markov chain is not irreducible, and an appropriate π0 putting equal weights on y = ±1 can be chosen in Lemma 2. Note also that
K((x1; 1); (x2;−1)) = K((x1; −1); (x2; 1)) = 0 by the same intuition; formally, A is a block matrix with A((x1; y); (x2;−y)) = 0 so K =
Π0(I(β + 1) − A)−1 has the same property

Dao et al. Page 16

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

includes all deterministic lossless transformations, such as jittering, flips, and rotations for

images. Furthermore, lossy transformations can be combined with their inverse

transformation (such as ZoomOut for ZoomIn), possibly adding a probability of not

transitioning, to form a symmetric augmentation.8

Second, our use of augmentation matrices implies a finite state space Ω, which is defined as

the set of base training examples and all possible augmentations. Note that augmentations

typically yield finite orbits (e.g. flip, rotation, zoom – as output pixel values are a subset of

input values), which is consistent with this assumption. Furthermore, finiteness is always

true in actual models due to the use of finite precision (e.g. floating point numbers).

Beyond serving as motivating connection between data augmentation, a process applied to

the raw input data, and kernels, which affect the downstream feature representation,

Theorem 1 also points to alternate ways to understand and optimize the augmentation

pipeline. In particular, Lemma 2 provides a closed-form representation for the induced

kernel in terms of the base augmentation matrices and rates, and we point out two potential

ways this alternate classifier can be useful on top of the original augmentation process.

In Appendix B.1 we show that if the augmentations are changed, for example by tuning the

rates or adding/removing a base augmentation, the kernel matrix can potentially be directly

updated from the original kernel (opposed to re-sampling an augmented dataset and re-

training the classifier).

Second, many parameters of the original process appear in the kernel directly. For example,

in Appendix B.2 we show that in the simple case of a single additive Gaussian noise

augmentation, the equivalent kernel is very close to a Gaussian kernel whose bandwidth is a

function of the variance of the jitter. Additionally, in general the augmentation rates βj all

show up in the resulting kernel in a differentiable manner. Therefore instead of treating them

as hyperparameters, there is potential to optimize the underlying parameters in the base

augmentations, as well as the augmentation rates, through their role in a more tractable

objective.

A.2 Convergence Rate

The following proposition from Györfi et al. [14] and Tibshirani & Wasserman [39] provides

generalization bounds for a k-NN classifier when k → ∞ and k/n → 0 at a suitable rate.

Treating the equivalent kernel classifier as the true function, this bounds the risk between the

k-NN and kernel classifiers as a function of the number of augmented samples n.

Proposition 2. Let Ĉ be the k-NN classifier. Let C0 be the asymptotically equivalent kernel
classifier from Theorem 1 and assume it is L-Lipschitz.

Letting r(C) = Pr(x,y)~π(y ≠ C(x)) be the risk of a classifier C, then

8For example, if a lossy transform sends a; b; c → c, with transition matrix

0 0 1
0 0 1
0 0 1

, it can be symmetrized to

2/3 0 1/3
0 2/3 1/3

1/3 1/3 1/3
.

Dao et al. Page 17

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

r(C) − r C0 ≤ O Ld /(2 + d)n−1/(2 + d) .

Next we analyze the convergence of the Markov chain by computing its distribution at time

n. Define

πn = ρ⊤
β + 1

An

(β + 1)n − 1 + ∑
i = 0

n − 1 A
β + 1

i
.

We claim that πn is the distribution of the combined Markov augmentation process at time n.

Recall that ρ⊤ is a distribution over the orignial training data. We naturally suppose that the

initial example is drawn from this distribution, so that π0 = ρ⊤. Note that this matches the

expression for πn at n = 0. All that remains to show that this is the distribution of the

Markov chain at time n is to prove that πn+1 = πnR.

From the relations ρ⊤1 = 1 and A1 = β1, we have

ρ⊤AiR = ρ⊤Ai A + 1ρ⊤
β + 1 = ρ⊤ Ai + 1 + βiρ⊤

β + 1

for all i ≥ 0.

Therefore

πnR = ρ⊤
β + 1

An

(β + 1)n − 1 + ∑
i = 0

n − 1 A
β + 1

i
R

= ρ⊤
β + 1

An + 1 + βnI

(β + 1)n
+ ∑

i = 0

n − 1 Ai + 1 + βiI

(β + 1)i + 1

= ρ⊤
β + 1

An + 1

(β + 1)n
+ ∑

i = 0

n − 1 Ai + 1

(β + 1)i + 1 + βnI

(β + 1)n
+ ∑

i = 0

n − 1 βiI

(β + 1)i + 1

= ρ⊤
β + 1

An + 1

(β + 1)n
+ ∑

i = 1

n − 1 Ai

(β + 1)i
+ βnI

(β + 1)n
+ I

β + 1
1 − β

β + 1
n

1 − β
β + 1

= ρ⊤
β + 1

An + 1

(β + 1)n
+ ∑

i = 1

n − 1 Ai

(β + 1)i
+ I

= πn + 1 .

The difference from the stationary distribution is

Dao et al. Page 18

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

πn − π = πn − ρ⊤
β + 1 ∑

i = 0

∞ A
β + 1

i

= ρ⊤
β + 1

An

(β + 1)n + 1 − ∑
i = n

∞ A
β + 1

i
.

The l2 norm of this can be straightforwardly bounded, noting that ∥A∥op ≤ β.

πn − π 2 ≤ 1
β + 1

βn

(β + 1)(n + 1) + ∑
i = n

∞ β
β + 1

i

≤ 1
β + 1

βn

(β + 1)(n + 1) + βn

(β + 1)n − 1

= β
β + 1

n
1 + 1

(β + 1)2
.

A bound on the total variation distance instead incurs an extra constant (in the dimension).

This shows that the augmentation chain mixes exponentially fast, i.e. takes O((β + 1)log(1/ε)

samples to converge to a desired error from the stationary distribution.

B: Kernel Transformations and Special Cases

B.1 Updated Kernel for Modified Augmentations

Our analysis of the kernel classifier in Lemma 2 yields a closed form in terms of the base

augmentation matrices. This allows us to modify any kernel by changing the augmentations,

producing a new kernel. For example, imagine that we start with a kernel K, which has

corresponding augmentation operator A such that

K = (I(β + 1) − A)−1 .

Suppose that we want to add an additional augmentation operator with stochastic transition

matrix Â and rate β. The resulting kernel is guaranteed to be a non-negative kernel by

Lemma 2, and it can be computed from the known K by expanding

I(β + β + 1) − A − βA) −1 = K−1 + βI − βA
−1

= [I + (I − A)βK] K−1 −1

= K I + I − A βK −1

= K ∑
n = 0

∞
βn A − I K n .

Dao et al. Page 19

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B.2 Kernel Matrix for the Jitter Augmentation

In the context of Definition 1, consider performing a single augmentation Aj corresponding

to adding Gaussian noise to an input vector. Although Definition 1 uses an approximated

finite sample space, for this simple case we consider the original space 𝒳 = ℝd. The

transition matrix A1 is just the standard Gaussian kernel, A1(x,y) = (2πσ2)−d/2 exp(−∥x −

y∥2/(2σ2)). With rate β, the kernel matrix by Lemma 2 is

K = I 1 + β − βA −1,

where we think of I as the identity operator on 𝒳 𝒳.

We define a d-dimensional Fourier Transform satisfying

ℱ exp − t
2

2σ2 (ω) = σ2 d /2exp − ω
2
σ2

2 .

Note that this Fourier Transform is its own inverse on Gaussian densities. Therefore

ℱK = 1 + β − β(2π)d /2exp − ω
2
σ2

2

−1
.

To compute the inverse transform of this, consider the function

1

α − β exp − t
2
σ2/2

= 1
α

1

1 − β
αexp − t

2
σ2/2

= 1
α 1 + ∑

i = 1

∞ β
α

i
exp − t

2
σ2

2 i

Applying the inverse Fourier Transform ℱ−1, it becomes

1
α δ(ω) + ∑

i = 1

∞ β
α

i 1

σ2i
d /2exp − t

2

2σ2i
.

Since the value of the kernel matrix only matters up to a constant, we can scale it by the first

term. We also ignore the δ(ω) term, which in the context of Theorem 1 only serves to

emphasize that a test point in the training set should be classified as its known true label.

Scaling by α(α/β)σd, we are left with

Dao et al. Page 20

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

∑
i = 1

∞ β
α

i − 1 1
id /2exp − t

2

2σ2i

= exp − t
2

2σ2 + ∑
i = 1

∞ β
α

i 1
(i + 1)d /2exp − t

2

2σ2(i + 1)
.

Finally, after plugging in the corresponding values for α and β, notice that β is proportional

to (2π)−d/2, which causes the sum to be negligible.

C: Additional Propositions for Section 4

A function f is α-strongly convex if for all x and x′, f(x′) ≥ f(x) + ∇f(x)⊤(x′ − x) + (α/2) ∥x′

− x∥2; the function f is β-strongly smooth if for all x and x′, f(x′) ≤ f(x) + ∇f(x)⊤(x′ − x) +

(β/2) ∥x′ − x∥2.

If we assume that the loss is strongly convex and strongly smooth, then the difference in

objective functions g(w) and ĝ(w) can be bounded in terms of the squared-norm of w, and

then the minimizer of the approximate objective ĝ(w) is close to the minimizer of the true

objective g(w).

Proposition 3. Assume that the loss function l(x;y) is α-strongly convex and β-strongly
smooth with respect to x, and that

aI⪯1
n ∑

i = 1

n
Cov

ti T xi
ϕ ti ⪯bI, and

1
n ∑

i = 1

n
ψ xi ψ xi

⊤ ≽ cI .

Letting w* = arg min g(w) and ŵ = argmin ĝ(w), then

αa
2 w

2
≤ g(w) − g(w) ≤ βb

2 w
2
, and

w* − w 2 ≤ βb
αc w

2
.

If αc ≫ βb (that is, the covariance of ϕ(ti) is small relative to the square of its expected

value), then βb
αc ≪ 1, and so

w* − w 2 ≪ w
2 .

This means that minimizing the first-order approximate objective ĝ will provide a fairly

accurate parameter estimate for the objective g on the augmented dataset.

Dao et al. Page 21

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Proof of Proposition 3. By Taylor’s theorem, for any random variable X over ℝ, there exists

some remainder function ζ:ℝ ℝ such that

E[l(X; y)] = E l(E[X];) + (X − E[X])l′(E[X]; y) + 1
2(X − E[X])2l′′(ζ(X); y)

= l(E[X]; y) + 1
2E (X − E[X])2l′′(ζ(X); y) .

The condition of l(x;y) being α-strongly convex and β-strongly smooth means that α ≤ l″(x)

≤ β for any x. Thus

α
2 Var(X) ≤ E[l(X)] − l(E[X]) ≤ β

2 Var(X) .

It follows that (letting our random variable X be w⊤ ϕ(ti)),

α
2 ⋅ 1

n ∑
i = 1

n
Var

ti T xi
w⊤ϕ ti ≤ g(w) − g(w) ≤ β

2 ⋅ 1
n ∑

i = 1

n
Var

ti T xi
w⊤ϕ ti .

Because of the assumption that aI⪯1
n ∑i = 1

n Cov
ti T xi

ϕ ti ⪯bI,

αa
2 w

2
≤ g(w) − g(w) ≤ βb

2 w
2

.

We can bound the second derivative of ĝ(w):

∇2g(w) = 1
n ∑

i = 1

n
ψ xi ψ xi

⊤l′′ w⊤ψ xi ; yi ≽ α
n ∑

i = 1

n
ψ xi ψ xi

⊤ ≽ αc,

where we have used the assumption that 1
n ∑i = 1

n ψ xi ψ xi
⊤ ≽ cI. Thus ĝ is (αc)-strongly

convex.

We bound ĝ(w*) − ĝ(ŵ):

g w* − g(w) = g w* − g w* + g w* − g(w) + g(w) − g(w) ≤ 0 + 0 + βb
2 w

2
,

where we have used the fact that ĝ(w) ≤ g(w) for all w and that w* minimizes g(w). But ĝ is

(αc)-strongly convex, so ĝ(w*) − ĝ(ŵ) ≥ αc/2∥w* −ŵ∥2. Combining these inequalities

yields

w* − w 2 ≤ βb
αc w

2
.

Dao et al. Page 22

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

D: Variance Regularization Terms for Common Loss Functions

Here we derive the variance regularization term for common loss functions such as logistic

regression and multinomial logistic regression.

For logistic regression,

l(x; y) = log(1 + exp(− yx))

= − yx
2 + log exp yx

2 + exp − yx
2

= − yx
2 + log 2cosh yx

2

= − yx
2 + log2 + log cosh yx

2 .

And so

l′(x; y) = − y
2 +

sinh yx
2

cosh yx
2

⋅ y
2

= − y
2 + y

2tanh yx
2

and

l″(x; y) = y2
4 sech2 yx

2

= 1
4sech2 x

2 ,

since y ∈ {−1,1} and so y2 = 1. Therefore,

g(w) − g(w) = w⊤ 1
4n ∑

i = 1

n
E

ti T xi
ϕ ti − ψ xi ϕ ti − ψ xi

⊤sech2 1
2ζi w⊤ϕ ti w .

To second order, this is

g(w) − g(w) ≈ w⊤ 1
4n ∑

i = 1

n
E

ti T xi
ϕ ti − ψ xi ϕ ti − ψ xi

⊤sech2 1
2 w⊤ψ xi w

= w⊤ 1
4n ∑

i = 1

n
Cov

ti T xi
ϕ ti sech 1

2w⊤ψ xi w .

For multinomial logistic regression, we use the cross entropy loss. With the softmax

probability pi =
exp xi

∑exp x j
,

Dao et al. Page 23

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

l(x; y) = − xy − log∑exp x j .

The first derivative is:

∇l(x; y) =
exp xi

∑exp x j
− 1i = y = p − 1i = y .

The second derivative is:

∇2l(x; y) = diag(p) − ppT ,

which does not depend on y.

E: Additional Experiment Details and Results

E.1 First- and Second-order Approximations

For all experiments, we use the MNIST and CIFAR-10 dataset and test three representative

augmentations: rotations between −15 and 15 degrees, random crops of up to 64% of the

image area, and Gaussian blur. We explore our approximation for kernel classifier models,

using either an RBF kernel with 10000 random Fourier features [29] or a learned LeNet

neural network [19] as our base feature map. The RBF kernel bandwidth is chosen by

computing the kernel alignment, as in Section 5.1. We optimize the models using stochastic

gradient descent, with learning rate 0.01, momentum 0.9, batch size 256, running for 15

epochs. We explicitly transform the images and add them to the dataset.

We validate two claims: (i) the approximate objectives are close to the true objective, and (ii)

training on approximate objectives give similar models to training on the true objective.

We plot the mean and standard deviation over 10 runs in Figure 4 and Figure 5. For claim

(i), we plot the objective difference, throughout the process of training a model on the true

objective, in Figure 4 (a, c, e, g, i, k) and Figure 5 (a, c, e, g, i, k). Objective difference closer

to 0 is better. The second-order approximation is better than the first-order and the second-

order without first-order approximation. For claim (ii), we train 5 models, each on different

objectives: true objective, first-order approximation, second-order approximation, second-

order without first-order approximation, and no augmentation objective. We measure the KL

divergence between the predictions given by the approximate models and the predictions

given by the model with true objective, as they are trained. Lower KL divergence means the

prediction distributions of the approximate model is more similar to the predictions made by

the true model. Figure 4 (b, d, f, h, j, l) and Figure 5 (b, d, f, h, j, l) show that the

approximate models trained on first-order approximation and second-order approximation

yield similar predictions to the model trained on the true objective, with the second-order

approximate model being particularly close to the true model.

Dao et al. Page 24

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

E.2 Kernel Alignment

For the experiment in Section 5.1, we use the same RBF kernel with 10000 random Fourier

features and LeNet, as in Section E.1. We compute the kernel target alignment by collecting

statistics from mini-batches of the dataset, iterating over the dataset 50 times. For the

MNIST dataset, we consider rotation (between −15 and 15 degrees), Gaussian blur,

horizontal flip, horizontal & vertical flip, brightness adjustment (from 0.75 to 1.25

brightness factor), contrast adjustment (from 0.65 to 1.35 contrast factor). For the CIFAR-10

dataset, we consider rotation (between −5 and 5 degrees), Gaussian blur, horizontal flip,

horizontal & vertical flip, brightness adjustment (from 0.75 to 1.25 brightness factor),

contrast adjustment (from 0.65 to 1.35 contrast factor). Accuracy on the validation set is

obtained from SGD training over 15 epochs, with the same hyperparameters as in Section E.

1, averaged over 10 trials.

E.3 Augmented Random Fourier Features

We use two standard image classification datasets MNIST and CIFAR-10, and a real-world

mammography tumor-classification dataset called Digital Database for Screening

Mammography (DDSM) [17, 5, 20]. DDSM comprises 1506 labeled mammograms, to be

classified as benign versus malignant tumors. The DDSM images are gray-scale and of size

224×224, which we resize to 64×64.

We use the same RBF kernels with 10000 random Fourier features as in Section E.1. We

apply rotations between −15 and 15 degrees for MNIST and CIFAR-10, and rotations

between 0 and 360 degrees for DDSM, since the tumor images are rotationally invariant. We

sample s = 16 angles to construct the augmented random Fourier feature map for MNIST

and CIFAR, and s = 36 angles for DDSM.

To make the MNIST and CIFAR classification tasks more challenging, we also rotate the

images in the test set between −15 and 15 degrees for MNIST, and between −5 and 5

degrees for CIFAR-10.

E.4 Feature Averaging for Deep Learning

In addition to the accuracy results in Section 5.3, we also explore the effect of feature

averaging on prediction disagreement throughout training. We plot the difference in

generalization between approximation and true objectives for LeNet in Figure 6, for rotation

between −15 and 15 degrees. We again observe that approximation at earlier layers saves

computation but can reduce the fidelity of the approximation.

E.5 Layerwise Feature Invariance in a ResNet

Finally, to provide additional motivation for the deep learning experiments in Section 5,

where our theory breaks down due to non-convexity, we explore invariance with respect to

deep neural networks. For each layer l of a deep neural network, we examine the average

difference in feature values when data points x are transformed according to a certain

Dao et al. Page 25

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

augmentation distribution T, using a model trained with data augmentation T0 which has

feature layers ϕl
T′:

△l, T , T′ = ∑
i = 1

n
E

z T xi

1
ϕl

T′ xi
ϕl

T′ xi − ϕl
T′(z) 2

(8)

Specifically, in Figure 7, we examine the ratio of this measure of invariance for a model

trained with data augmentation using T, and trained without any data augmentation, Δl,T,T/

Δl,T,∅, to see if and how training with a specific augmentation makes the layers of the

network more invariant to it. We use a standard ResNet as in He et al. [16] with three blocks

of nine residual units (separated by vertical dashed lines), an initial convolution layer, and a

final global average pooling layer, implemented in TensorFlow9, trained on CIFAR-10 and

averaged over ten trials. We see that training with an augmentation indeed makes the feature

layers of the network more invariant to this augmentation, with the steepest change in the

earlier layers (first residual block), and again in the final layer when features are pooled and

averaged.

References

[1]. Bishop CM Training with noise is equivalent to tikhonov regularization. Neural computation, 7(1):
108–116, 1995.

[2]. Burges CJC Geometry and invariance in kernel based methods. Advances in Kernel Methods, pp.
89–116, 1999.

[3]. Chapelle O, Weston J, Bottou L, and Vapnik V Vicinal risk minimization In Leen TK, Dietterich
TG, and Tresp V (eds.), Advances in Neural Information Processing Systems 13, pp. 416–422.
MIT Press, 2001.

[4]. Cireşan DC, Meier U, Gambardella LM, and Schmidhuber J Deep, big, simple neural nets for
handwritten digit recognition. Neural Computation, 22(12):3207–3220, 2010. [PubMed:
20858131]

[5]. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle
M, et al. The cancer imaging archive (TCIA): maintaining and operating a public information
repository. Journal of digital imaging, 26(6):1045–1057, 2013. [PubMed: 23884657]

[6]. Cristianini N, Shawe-Taylor J, Elisseeff A, and Kandola JS On kernel-target alignment. In Neural
Information Processing Systems, 2002.

[7]. Cubuk ED, Zoph B, Mane D, Vasudevan V, and Le QV Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:180509501, 2018.

[8]. Decoste D and Schölkopf B Training invariant support vector machines. Machine Learning, 46(1):
161–190, 2002.

[9]. Demyanov S, Bailey J, Kotagiri R, and Leckie C Invariant backpropagation: how to train a
transformation-invariant neural network. arXiv:150204434, 2015.

[10]. Dosovitskiy A, Springenberg JT, Riedmiller M, and Brox T Discriminative unsupervised feature
learning with convolutional neural networks. In Neural Information Processing Systems, 2014.

[11]. Dosovitskiy A, Fischer P, Springenberg JT, Riedmiller M, and Brox T Discriminative
unsupervised feature learning with exemplar convolutional neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38(9):1734–1747, 2016. [PubMed: 26540673]

9https://github.com/tensorflow/models/tree/master/official/resnet

Dao et al. Page 26

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/tensorflow/models/tree/master/official/resnet

[12]. Goodfellow I, Bengio Y, and Courville A Deep Learning. MIT Press, 2016 http://
www.deeplearningbook.org.

[13]. Graham B Fractional max-pooling. arXiv:14126071, 2014.

[14]. Györfi L, Kohler M, Krzyzak A, and Walk H A distribution-free theory of nonparametric
regression. Springer Science & Business Media, 2006.

[15]. Haasdonk B and Burkhardt H Invariant kernel functions for pattern analysis and machine
learning. Machine Learning, 68(1):35–61, 2007.

[16]. He K, Zhang X, Ren S, and Sun J Identity mappings in deep residual networks. In European
Conference on Computer Vision, 2016.

[17]. Heath M, Bowyer K, Kopans D, Moore R, and Kegelmeyer P The digital database for screening
mammography. Digital mammography, pp. 431–434, 2000.

[18]. Krizhevsky A and Hinton G Learning multiple layers of features from tiny images. 2009.

[19]. LeCun Y, Bottou L, Bengio Y, and Haffner P Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[20]. Lee RS, Gimenez F, Hoogi A, and Rubin D Curated breast imaging subset of ddsm. The Cancer
Imaging Archive, 2016.

[21]. Leen T From data distributions to regularization in invariant learning. In Neural Information
Processing Systems, 1995.

[22]. Lu X, Zheng B, Velivelli A, and Zhai C Enhancing text categorization with semantic-enriched
representation and training data augmentation. Journal of the American Medical Informatics
Association, 13(5):526–535, 2006. [PubMed: 16799127]

[23]. Maurer A and Pontil M Empirical Bernstein bounds and sample variance penalization. In
Conference on Computational Learning Theory, 2009.

[24]. Mroueh Y, Voinea S, and Poggio TA Learning with group invariant features: A kernel
perspective. In Neural Information Processing Systems, 2015.

[25]. Muandet K, Fukumizu K, Dinuzzo F, and Schölkopf B Learning from distributions via support
measure machines In Pereira F, Burges CJC, Bottou L, and Weinberger KQ (eds.), Advances in
Neural Information Processing Systems 25, pp. 10–18. Curran Associates, Inc., 2012.

[26]. Muandet K, Fukumizu K, Sriperumbudur B, Schölkopf B, et al. Kernel mean embedding of
distributions: A review and beyond. Foundations and Trends R in Machine Learning, 10(1–2):1–
141, 2017.

[27]. Namkoong H and Duchi J Stochastic gradient methods for distributionally robust optimization
with f-divergences. In Neural Information Processing Systems, 2016.

[28]. Namkoong H and Duchi JC Variance-based regularization with convex objectives. In Neural
Information Processing Systems, 2017.

[29]. Rahimi A and Recht B Random features for large-scale kernel machines. In Neural Information
Processing Systems, 2007.

[30]. Raj A, Kumar A, Mroueh Y, Fletcher PT, and Schölkopf B Local group invariant representations
via orbit embeddings. International Conference on Artificial Intelligence and Statistics, 2017.

[31]. Ratner AJ, Ehrenberg H, Hussain Z, Dunnmon J, and Ré C Learning to compose domain-specific
transformations for data augmentation. In Neural Information Processing Systems, 2017.

[32]. Rifai S, Dauphin YN, Vincent P, Bengio Y, and Muller X The manifold tangent classifier. In
Neural Information Processing Systems, 2011.

[33]. Sajjadi M, Javanmardi M, and Tasdizen T Regularization with stochastic transformations and
perturbations for deep semi-supervised learning. In Neural Information Processing Systems,
2016.

[34]. Schölkopf B, Burges C, and Vapnik V Incorporating invariances in support vector learning
machines. In International Conference on Artificial Neural Networks, 1996.

[35]. Sietsma J and Dow RJ Creating artificial neural networks that generalize. Neural Networks, 4(1):
67–79, 1991.

[36]. Simard P, Victorri B, LeCun Y, and Denker J Tangent prop-a formalism for specifying selected
invariances in an adaptive network. In Neural Information Processing Systems, 1992.

Dao et al. Page 27

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[37]. Simard P, LeCun Y, Denker J, and Victorri B Transformation invariance in pattern recognition—
tangent distance and tangent propagation. Neural Networks: Tricks of the Trade, pp. 549–550,
1998.

[38]. Teo CH, Globerson A, Roweis ST, and Smola AJ Convex learning with invariances. In Neural
Information Processing Systems, 2008.

[39]. Tibshirani R and Wasserman L Nonparametric regression and classification, 2018 URL http://
www.stat.cmu.edu/~larry/=sml/NonparametricPrediction.pdf.

[40]. Uhlich S, Porcu M, Giron F, Enenkl M, Kemp T, Takahashi N, and Mitsufuji Y Improving music
source separation based on deep neural networks through data augmentation and network
blending. In International Conference on Acoustics, Speech and Signal Processing, 2017.

[41]. van der Wilk M, Bauer M, John S, and Hensman J Learning invariances using the marginal
likelihood In Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, and Garnett R
(eds.), Advances in Neural Information Processing Systems 31, pp. 9960–9970. Curran
Associates, Inc., 2018.

[42]. Zhang C, Bengio S, Hardt M, Recht B, and Vinyals O Understanding deep learning requires
rethinking generalization. In International Conference on Learning Representations, 2017.

[43]. Zhao J, Li J, Zhao F, Yan S, and Feng J Marginalized CNN: Learning deep invariant
representations. In British Machine Vision Conference, 2017.

Dao et al. Page 28

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.stat.cmu.edu/~larry/=sml/NonparametricPrediction.pdf
http://www.stat.cmu.edu/~larry/=sml/NonparametricPrediction.pdf

Figure 1:
For the MNIST dataset, we validate that (a) the proposed approximate objectives ĝ(w) and

g(w) are close to the true objective g(w), and (b) training on the approximate objectives leads

to similar predictions as training on the true objective. We plot the relative difference

between the proposed approximations and the true augmented objective, in terms of

difference in objective value (1a) and resulting test prediction disagreement (1b), using the

non-augmented objective as a baseline. The 2nd-order approximation closely matches the

true objective, particularly in terms of the resulting predictions. We observe that the

accuracy of the approximations remains stable throughout training (1c). Full experiments are

provided in Appendix E.

Dao et al. Page 29

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Accuracy vs. kernel target alignment for RBF kernel and LeNet models, for MNIST (left)

and CIFAR-10 (right) datasets. This alignment metric can be used to quickly select

transformations (e.g., MNIST: rotation) that improve performance and avoid bad

transformations (e.g., MNIST: flips).

Dao et al. Page 30

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
Accuracy gain relative to baseline (no augmentation) when averaging at various layers of a

LeNet network. Approximation at earlier layers saves computation but can reduce the

fidelity of the approximation.

Dao et al. Page 31

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4: MNIST Dataset.
The difference in objective value (a,e,i,c,g,k) and prediction distribution (b,f,j,d,h,l) (as

measured via the KL divergence) between approximate and true objectives. In all plots, the

second-order approximation tends to closely match the true objective, and to be closer than

the first-order approximation or second-order component alone.

Dao et al. Page 32

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5: CIFAR-10 Dataset.
The difference in objective value (a,e,i,c,g,k) and prediction distribution (b,f,j,d,h,l) (as

measured via the KL divergence) between approximate and true objectives. In all plots, the

second-order approximation tends to closely match the true objective, and to be closer than

the first-order approximation or second-order component alone.

Dao et al. Page 33

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
Difference in generalization between approximate and true objectives for LeNet in terms of

KL divergence in test predictions, for MNIST (a) and CIFAR-10 (b) datasets.

Dao et al. Page 34

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:
The ratio of average difference in features under an augmentation (8) when the network is

trained with that augmentation, to when it is trained without any data augmentation, using a

ResNet trained on CIFAR-10, averaged over ten trials. We see that in all but the first one or

two layers, the network trained with the augmentation is indeed more invariant to it, with the

steepest increase in invariance in the first block of layers and in the last global average

pooling layer.

Dao et al. Page 35

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dao et al. Page 36

Table 1:

Performance of augmented random Fourier features on MNIST, CIFAR-10, and DDSM

Model MNIST CIFAR-10 DDSM

Acc. (%) Time Acc. (%) Time Acc. (%) Time

No augmentation 96.1 ± 0.1 34s 39.4 ± 0.5 51s 57.3 ± 6.7 27s

Traditional augmentation 97.6 ± 0.2 220s 45.3 ± 0.5 291s 59.4 ± 3.2 61s

Augmented RFFs 97.6 ± 0.1 54s 45.2 ± 0.4 124s 58.8 ± 5.1 34s

Proc Mach Learn Res. Author manuscript; available in PMC 2019 November 27.

	Abstract
	Introduction
	Related Work
	Data Augmentation as a Kernel
	Markov Chain Augmentation Process.
	Classification Yields a Kernel.
	Takeaways.

	Effects of Augmentation: Invariance and Regularization
	General Augmentation Process.
	Data Augmentation as Feature Averaging
	Data Augmentation as Variance Regularization
	Validation of Approximation
	Connections to Prior Work
	Invariant kernels.
	Robust optimization.
	Tangent propagation.

	Practical Connections: Accelerating Training With Data Augmentation
	A Fast Kernel Metric for Augmentation Selection
	Kernel alignment metric.

	Efficient Augmentation via Random Fourier Features
	Intermediate-Layer Feature Averaging for Deep Learning
	Connection to tangent propagation.

	Conclusion
	Omitted Proofs and Results From Section 3
	Kernel Transformations and Special Cases
	Additional Propositions for Section 4
	Variance Regularization Terms for Common Loss Functions
	Additional Experiment Details and Results
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Table 1:

