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DeNTNet: Deep Neural Transfer 
Network for the detection of 
periodontal bone loss using 
panoramic dental radiographs
Jaeyoung Kim1, Hong-Seok Lee1, In-Seok Song2* & Kyu-Hwan Jung   1*

In this study, a deep learning-based method for developing an automated diagnostic support system 
that detects periodontal bone loss in the panoramic dental radiographs is proposed. The presented 
method called DeNTNet not only detects lesions but also provides the corresponding teeth numbers 
of the lesion according to dental federation notation. DeNTNet applies deep convolutional neural 
networks(CNNs) using transfer learning and clinical prior knowledge to overcome the morphological 
variation of the lesions and imbalanced training dataset. With 12,179 panoramic dental radiographs 
annotated by experienced dental clinicians, DeNTNet was trained, validated, and tested using 11,189, 
190, and 800 panoramic dental radiographs, respectively. Each experimental model was subjected to 
comparative study to demonstrate the validity of each phase of the proposed method. When compared 
to the dental clinicians, DeNTNet achieved the F1 score of 0.75 on the test set, whereas the average 
performance of dental clinicians was 0.69.

Periodontal disease caused by dental bacterial infection is one of the most common human diseases affecting 
gums and the support structure of the teeth. Periodontitis is an inflammatory disease which can result in perio-
dontal bone loss (PBL) and ultimately leads to loosening or loss of teeth if not diagnosed and treated properly1. 
Therefore, early detection and management of PBL plays a crucial role in improving the clinical outcome of per-
iodontal disease. To acquire valuable information for the diagnosis and treatment planning of PBL, radiological 
exams, including bitewing, periapical, and panoramic radiographs, have been widely used in clinical practices. 
While intra-oral images such as bitewing and periapical radiographs have been routinely taken for the diagnosis 
of PBL, extra-oral panoramic radiographs which capture the entire mouth have been widely used for their advan-
tages over intra-oral images such as lower radiation exposure, better patient comfort, faster and easier procedure, 
and wider field of view2,3. However, detecting and diagnosing PBL in panoramic dental radiographs is considered 
a difficult task with a low intra and inter-examiner agreement rate due to their complex structures and low reso-
lution4 as shown in Fig. 1.

Deep convolutional neural networks (DCNNs) have recently been actively adopted in medical image analysis 
with successful applications to computer-aided detection (CADe) and diagnosis (CADx)5–8. While the majority 
of these studies focus on analyzing images from radiology, pathology, dermatology, and ophthalmology, studies 
dealing with various dental imaging modalities using DCNNs have also been conducted recently9. In addition 
to the aforementioned works which focus on caries and plaque, some studies also deal with periodontal dis-
ease10,11. Lee et al.10 used intra-oral images for the detection of periodontally compromised teeth, whereas Krois 
et al.11 proposed a DCNN-based method for the detection of PBL in panoramic dental radiographs. The proposed 
method in Krois et al.11 however has some limitations: their DCNN is trained using manually cropped teeth 
patches, the dataset used in their study is small, and their DCNN architecture is shallow.

In this study, we develop a fully automated method to detect PBL in panoramic dental radiographs. By exploiting 
transfer learning and lesion correlation prior information, the proposed DCNN named DeNTNet is able to accurately 
detect PBL, outperforming human experts when tested on data consisting of all teeth types. To be more clinically 
applicable, DeNTNet is trained to predict the existence of PBL for each tooth and is thus capable of providing the teeth 
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numberings of predicted lesions. To the best of our knowledge, this is the first study to propose a multi-phase deep 
learning framework to detect PBL in whole panoramic dental radiographs with teeth numbering.

Materials and Methods
This study was approved by the institutional review board of Korea University Anam Hospital(IRB 
No.2016AN0267) with a waiver of informed consent. The dataset collection and experiments were performed in 
accordance with the approved ethical guidelines and regulations.

Data collection and annotation.  A total of 12,179 panoramic dental radiographs were retrospectively 
collected from Korea University of Anam Hospital after removing identifiable patient information during the 
period between 1st Jan. 2014 and 14th Feb. 2016. The radiographs were taken with devices from multiple vendors: 
DENTRI (HDXWILL, South Korea), Hyper-XCM (Asahi, Japan), CS 9300 (Carestream Dental, USA), Papaya 
(Genoray, South Korea), and PHT-30LFO (Vatech, South Korea). Only one radiograph per patient is included by 
excluding all follow-up exams taken during data collection, and the patients’ gender and age distribution is 
described in the appendix. Since the intra and inter-examiner agreement of PBL is considered to be low4,11, five 
dental clinicians who are experienced dental hygienists with 5, 9, 16, 17, 19 years of practice for assessing dental 
radiographs independently masked the PBL lesions and recorded the corresponding tooth number for annota-
tion. During the course of data collection, the annotation quality was continuously monitored by a separate dental 
expert who has been in clinical dental practice for over 15 years as a board-certified oral and maxillofacial sur-
geon. For teeth numbering, the Federation Dentaire Internationale (FDI) teeth numbering system (ISO-3950) 
was used12 and there are 32 teeth in total, as shown in Fig. 2. To construct the reference dataset, the five teeth-level 
annotations were aggregated using the following rule: 
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 where i is the data index ( =N 12, 179), j is the tooth index ( =T 32), and l is the annotator index ( =L 5). Here 
we set =C 3R  which corresponds to majority voting. We randomly split the dataset into training ( =N 11, 198tr ), 
validation ( =N 190val ), and test ( =N 800tst ) sets.

Overall framework.  The overall framework of the proposed method consists of multiple stages, as illustrated 
in Fig. 2. At the first stage, we trained a region of interest (ROI) segmentation network to extract the teeth related 
region. In the next stage, a lesion segmentation network was trained to predict the PBL lesions. By exploiting 
the encoder part of this lesion segmentation network as a pre-trained model, we trained a classification network 
that predicts the existence of PBL in each tooth. To further improve performance, we also train a separate classifi-
cation network, that predicts the existence of PBL lesions specifically for the premolar and molar teeth types. The 
two classification networks are ensembled to make the final PBL lesion prediction. The detailed procedures are 
described in the following sections, and the contribution of each stage to the final PBL detection performance is 
also analyzed in the ablation study.

Figure 1.  Sample panoramic dental radiographs and annotated PBL lesions. (Top) Normal cases without 
annotated periodontal bone loss lesion, (Bottom) Abnormal cases with annotated lesion masks. The annotators 
also provided corresponding teeth numbers of the PBL lesions.
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Region of interest segmentation.  As can be seen in Fig. 1, there is a wide variability in the field of view 
and contextual information in the panoramic dental radiographs, depending on the patients and devices. This 
variability impedes the detection of PBL lesions, which are only relevant in the teeth regions in the radiograph. To 
accommodate this variability, we trained a segmentation network which automatically extracts the ROI. The ROI 
segmentation model f R has an U-shaped architecture employed by Ronneberger et al.5 which consist of an 
encoder part fE

R and a decoder part fD
R. The detailed architecture of our ROI segmentation model can be found in 

the appendix.
To train and validate the ROI segmentation network, we randomly selected 440 panoramic dental radiographs 

from the entire training dataset (N=11,189). The ROI segmentation network was trained using 400 randomly 
sampled radiographs until its performance validated on the remaining 40 radiographs converged. The ROIs were 
annotated as binary polygon masks by an experienced dental clinician, starting from the right temporomandibu-
lar joint (TMJ) connected in order of the right mandible, left mandible, and left TMJ as shown in Fig. 2(a). The 
radiographs and their corresponding masks were resized to resolution ×512 1024.

We used binary cross-entropy with L2 regularization defined below as the loss function LR for the ROI segmen-
tation network 
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 where n denotes the number of pixels in the radiograph indexed by i, yi
R is the binary label for pixel i, ŷi

R is the 
predicted label for pixel i, and λ is a regularization parameter which we set to −10 4. The ROI segmentation net-
work was trained for 50 epochs using the Adam optimizer13 and the initial learning rate was set to −10 4 obtained 
from hyperparameter tuning.

After training, the predicted ROI masks were post-processed with a morphology operation filling the holes in 
the segmented mask using binary_fill_hole function in the SciPy package14. The convex hull of the result-
ing masks was computed using the OpenCV15convexHull function and the regions in the corresponding 
bounding box were extracted and resized to ×512 1024. Finally, the extracted image excluding the black back-
ground area outside of the predicted mask in the radiograph was normalized using z-score. The validation dice 
coefficient increased from 0.95 to 0.98 after post-processing.

Pre-training for transfer learning.  While the goal of the proposed framework is to provide tooth level predic-
tion, there are a limited number of positive PBL examples for each tooth(the number can be found in the appendix). 
This lack of data and class imbalance is even more severe for the molar teeth, which is problematic for training deep 
neural networks, where an abundant training dataset is necessary to learn complex and diverse patterns such as PBL 
in radiographs. We work around this issue by employing transfer learning, which utilizes the learned weight from one 

Figure 2.  Overall procedure for training DeNTNet. (a) ROI segmentation network used to extract teeth 
regions; (b) PBL lesion segmentation network as a pre-trained model; (c) Tooth-level PBL classification network 
with transferred weight; (d)Tooth-level PBL classification network for premolar (PM) and molar (M) teeth with 
transferred weight.
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task as the initial weight of a new network, which is then trained for a different task. Transfer learning is especially 
useful in medical image analysis and has been widely adopted in this domain because acquiring annotated medical 
data is expensive and time-consuming7.

We trained a lesion segmentation network f S with the same U-shape architecture as the ROI segmentation 
network, which learns to extract salient features of PBL as shown in Fig. 2(b). The PBL lesion segmentation model 
has the same network architecture as the ROI segmentation network f R but has a different loss function. 
Specifically, focal loss was used to address the imbalance between positive and negative samples in the pixel 
level16: 
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 where n is the number of pixels indexed by i in the ROI-extracted radiograph and γ denotes the focal loss param-
eter, which was set as 2 in our study. Here the PBL lesion segmentation masks provided by five dental clinicians 
were aggregated using the following rule: 
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 where i is the index of the pixel in the ROI-extracted radiograph and l is the index of annotator ( =L 5). In order 
to enhance recall rate and facilitate learning various features of PBL, we set =C 1S  which means yi

S is the union of 
masks annotated by the five dental clinicians. The lesion segmentation network was trained for 50 epochs using 
Adam optimizer, and the initial learning rate was set to −10 5 obtained by hyperparameter tuning. The entire train-
ing dataset (N  = 11,189) was used to train the lesion segmentation network until its performance on the valida-
tion dataset ( =N 190 was maximized. Data augmentation was performed using random rotation ≤ 10 degrees, 
horizontal and vertical shift ≤10%, and shift of brightness, sharpness, contrast ≤15%.

Tooth-level PBL classification.  In clinical dental practice, it is mandatory to report the dental disease 
along with the teeth numbers of the lesions. However, providing lesion segmentation masks requires additional 
effort to assign teeth numbers to the corresponding lesion, which is subjective and time-consuming. Therefore, 
to make the computer-assisted diagnostic support system more clinically applicable in dental practice, it is desir-
able to provide teeth number for the detected lesions. Therefore, we formulated the PBL detection problem as a 
multi-label classification task where the existence or absence of PBL is predicted simultaneously for each tooth.

As mentioned in the previous section, training this multi-label network directly from tooth-level annotations 
with randomly initialized weights requires a plethora of training examples for each tooth to learn diverse and 
complex representation of PBL lesions. To deal with the scarcity of positive training examples in the tooth-level 
annotations, we transferred the weights from the encoder part fE

S of the lesion segmentation network f S to the 
multi-label classification network f A as pre-trained weights. Two additional convolution blocks, one global aver-
age pooling layer, and two fully connected layers are attached to the end of the encoder fE

A. Finally, the output 
layer consists of 32 nodes, which correspond to the binary classification output for each tooth. The detailed archi-
tecture of the tooth-level classification model can be found in the appendix. All the layers, including the encoder 
part initialized with the transferred weights from the lesion segmentation network, were trained for the 
tooth-level classification task.

Another difficulty which arises in PBL classification is that premolar and molar teeth represent a more com-
plex morphological structure, which hinders the detection of PBL in the panoramic dental radiographs. To over-
come this difficulty, another tooth-level classification network f B was trained specifically for the premolar and 
molar teeth. While f A and f B share the same network architecture, f B was trained with a vertical split of the ROI 
image as the input, generated by f R, and the label-masked multi-label as the output as shown in Fig. 2(d). Here 
the label-masks were applied to incisors and canines by assigning zero to the corresponding labels; therefore, f B 
takes as input an ROI image and is trained to predict PBL in only premolar and molar teeth. The transferred 
weight from fE

S was also used to initialize f B. To train the teeth-level classification model =f f f{ , }C A B , focal 
loss with L2 regularization is used for each output node computed as: 
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 where N  is the number of training examples indexed by i, j is the corresponding tooth index, k is the trainable 
weight index, and γ denotes the focal loss parameter, which was set to 2. We applied the same data augmentation 
technique as in the pre-training for transfer learning section above. Both f A and f B were jointly trained using the 
entire training dataset (N =11,189) until their performance on the validation dataset (N =190) converged. 
Because f B takes the vertical split of ROI images as illustrated in Fig. 2, the effective number of training samples 
for f b is twice ( =N 22,378) the number of the training dataset. As stated in Equation 4, the majority vote of the 
annotators for each tooth was used as target labels to train the model.

At the inference phase, we aggregated the prediction of f A and f B as follows: 
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 where j is the tooth type index and In Ca Pr Mo{ }, { }, { }, { } denotes the index set of incisor, canine, premolar, and 
molar teeth, respectively. xROI is a ROI image with resolution ×512 1024 given by the output of f R and xROI/2 is 
its vertical split image with resolution ×512 512. α is a hyperparameter which was set to .0 1 in our study attained 
by hyperparameter tuning.

Auxiliary co-occurrence loss.  While the encoder part of the tooth-level classifier is shared to extract salient 
features for PBL detection, the predictions for each tooth at the output layer are made independently without 
considering the clinical knowledge that PBL lesions frequently co-occur across horizontally adjacent teeth. As 
shown in Fig. 3, there is a high co-occurrence of PBL among incisors and canines, while the co-occurrence among 
premolar and molar teeth is lower in both maxillary (upper jaw) and mandibular (lower jaw) teeth. Also, the third 
molar had noticeably low co-occurrence of PBL with other teeth except the third molar at the opposite side.

To exploit this prior information for improving the generalization performance of PBL detection, auxiliary 
co-occurrence loss is computed as: 
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 where both j and ′j  are the tooth index, yj is the binary label derived from Eq. (4), ŷj is the network output, and ′Cjj  
is the element of the co-occurrence matrix ∈ ×C k k, and =k( 16) is the number of teeth in the upper or lower 
teeth. =Z cmax j j is the normalization term which guarantees all cj’s lie between 0 and 1.

The auxiliary co-occurrence loss was applied separately for upper and lower teeth based on their respective 
co-occurrence matrix, and the final loss function LF used to train the tooth-level classification network is defined 
as 

β= + ⋅ + ⋅∈ ∈
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 where LC is focal loss defined in Eq. 5, β is a hyperparameter set to .0 01, and ∈1 j U{ } and ∈1 j L{ } correspond to the 
indicator function for the upper and lower teeth, respectively. We trained the tooth-level classification network 
for 100 epochs using Adam optimizer and the initial learning rate was set to −10 5 which was obtained by hyperpa-
rameter tuning.

Results
We compared the performance of DeNTNet on the test set consisting of 800 radiographs with the performance 
of each dental clinician who participated in the annotation. We also conducted an ablation study to quantitatively 
analyze the contribution of each training phase of DeNTNet.

PBL detection performance.  The teeth-level performance of DeNTNet and five dental clinicians in 
PBL detection on the test dataset is summarized in Table 1. Each human expert’s performances were calculated 
by comparing the expert’s decision (PBL present/absent) on the target tooth with the majority voting among 
human experts, which served as the ground truth. The model’s performances were attained using its teeth-level 

Figure 3.  Co-occurrence matrix among teeth with PBL in the training dataset. (Left) Correlation matrix among 
maxillary (upper jaw) teeth, (Right) Co-occurrence matrix among mandibular (lower jaw) teeth.
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classification prediction outputs with varying operating points. We measured the area under the receiver operat-
ing characteristics curve (AUROC), F1 score, sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV). The average performance of five dental clinicians was 0.85 in AUROC, 0.69 in F1 score, 
0.78 in sensitivity, 0.92 in specificity, 0.62 in PPV, and 0.96 in NPV. The baseline DeNTNet, trained directly from 
the original radiograph without using either transfer learning or auxiliary loss, showed comparable performance 
to the average of five dental clinicians. However, when the proposed multi-phase training, including ROI seg-
mentation, pre-training for transfer learning, auxiliary loss, and ensembled classification was applied, DeNTNet 
outperformed dental clinicians with respect to the F1 score as shown in Fig. 4. The balanced setting, which was 
selected to maximize the F1 score, achieved the F1 score of 0.74, while high sensitivity and high specificity set-
tings achieved F1 scores of 0.71 and 0.73, respectively. The high sensitivity operating point was selected such that 
the specificity is close to the worst dental clinician’s, whereas the high specificity operating point was selected 
such that the sensitivity of DeNTNet is close to the worst dental clinician’s. The detailed performance of dental 
clinicians and DeNTNet for each tooth and teeth type can be found in the appendix.

Ablation study.  We conducted an ablation study to quantitatively assess the contribution of each step in our 
proposed training framework. Each additional step improved the F1 score achieved by DeNTNet, as shown in 
Table 2. The baseline performance improved from 0.66 to 0.68 after applying the ROI segmentation step, which 
removes regions in the panoramic dental radiograph unnecessary for detecting PBL, thus standardizing the clas-
sification models’ inputs. Transferring pre-trained weights from the lesion segmentation model further improved 
the performance by facilitating the training of the tooth-level classification model. Adopting an auxiliary 
co-occurrence loss also improved performance by exploiting prior clinical knowledge when training the model. 
Finally, ensembling the classification model f B specialized for detecting PBL in premolar and molar teeth with the 
multi-label classification network f A considerably improved the performance in these teeth types, which thereby 
improved the overall performance.

Discussion
Panoramic dental radiography is one of the most widely and frequently taken dental examinations which capture 
the entire mouth in a single 2D image. It is generally used as an initial evaluation of the condition of bone struc-
ture and soft tissue in the maxillofacial area. While intra-oral bitewing and periapical radiography are also widely 
used for diagnosing dental disease, extra-oral panoramic dental radiography has several advantages over these 
tooth-specific imaging methods. First of all, panoramic dental radiography provides better patient comfort and 
acceptance as the procedure is faster and easier for both the patient and dental staff than bitewing and periapical 
radiography, which require inserting a sensor into the patient’s mouth. Furthermore, it exposes less radiation 
and reduces infection control compared to intra-oral images. Finally and most importantly, panoramic dental 
radiography is a better screening examination when considering the field of view as it can provide more coverage 
for diagnosing periodontal bone defects, periapical lesions, and pathological jaw lesions. When combined with 
automated detection of dental lesions and teeth numbering, computer-assisted diagnostic support systems can 
substantially improve efficiency and reduce workload for clinical dental practices.

There are a few limitations in this study. The first limitation is that there is still room for improvement in PBL 
detection. Panoramic dental radiographs capture a wide field of view, which results in low resolution for each 
individual tooth. This hinders the detection of local morphological changes in PBL, and consequently, the overall 
sensitivity performance of both dental clinicians and DeNTNet for PBL detection is limited, as shown in Table 1. 
Further, although model ensembling improved the performance of PBL detection and thus outperforms human 
experts when tested on data including all teeth types, the DeNTNet’s performance on just the third molar (also 
known as wisdom teeth) is considerably lower than that attained by dental clinicians(examples of false negative 
cases with PBL in third molar can be found in the appendix). This is mainly because of the limited availability of 
third molar examples due to wide morphological variations with respect to patient demographics in this study. 
Due to the lack of third molar examples, we decided to use a relatively small validation dataset in order to fully 

Performance Measure AUROC F1 score Sensitivity Specificity PPV NPV

Clinician 1 0.84 0.69 0.74 0.93 0.65 0.95

Clinician 2 0.84 0.68 0.75 0.92 0.61 0.96

Clinician 3 0.85 0.68 0.80 0.91 0.59 0.96

Clinician 4 0.87 0.70 0.83 0.91 0.61 0.97

Clinician 5 0.85 0.70 0.78 0.92 0.64 0.96

Clinician Average 0.85 0.69 0.78 0.92 0.62 0.96

DeNTNet(Baseline) 0.92 0.66 0.66 0.94 0.65 0.94

DeNTNet(Balanced setting) 0.95 0.75 0.77 0.95 0.73 0.96

DeNTNet(High sensitivity setting) 0.95 0.71 0.87 0.90 0.60 0.97

DeNTNet(High specificity setting) 0.95 0.73 0.74 0.96 0.77 0.95

Table 1.  Performance comparison of the proposed method and human clinicians on the test dataset. AUROC is 
the area under receiver operating characteristic curve, F1 score is the harmonic mean of the precision and recall, 
PPV is the positive predictive value, and NPV is the negative predictive value. The performance of DeNTNet 
was measured with various operating point settings.
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expose the model to infrequently occurring examples while training instead of searching for better hyperpa-
rameters on a larger validation dataset. To fully benefit from data-driven methods such as deep learning, more 
annotated data must be collected, and a dedicated model for detecting PBL in the third molar may prove useful.

Second, deep learning-based methods should illuminate the rationale behind how predictions are made in 
order to be clinically applicable. However, most deep learning methods are considered to be a ’black-box’ because 
they cannot intuitively explain how predictions are made. DeNTNet is also based on DCNNs and provides pre-
dictions directly from the panoramic dental radiographs without explanations. However, to make the model at 
least interpretable, we applied Grad-CAM17 which is a widely used method for visualizing class activation maps 
(CAM)18. As shown in Fig. 5, the model accurately highlights the PBL lesions, which coincide with the anno-
tations of the dental clinicians. When integrated into a computer-assisted diagnostic system, this visualization 
capability strengthens the model’s reliability to clinicians and patients.

Finally, each step in the multi-stage approach proposed critically impacts the final performance of the model. 
For example, when the ROI segmentation fails, in spite of DeNTNet’s very high and stable performance, the 
subsequent steps become unreliable. Therefore, developing a fully end-to-end approach which predicts PBL for 
each tooth directly from the original panoramic dental radiograph is a promising future direction when a larger 
dataset becomes available.

Conclusion
In this study, a fully automated method for PBL detection with tooth numbering in panoramic dental radiograph 
was proposed. Through the multi-step training framework, the proposed model was able to achieve a PBL detec-
tion performance superior to that of dental clinicians. We expect this approach to substantially benefit clinical 
practices by improving the efficiency of diagnosing PBL and reducing the workload involved in reporting tooth 
numbers.

Figure 4.  Performance of DeNTNet and five dental clinicians in the detection of PBL. ROC curves of both 
baseline (yellow curve) and improved (green curve) DeNTNet (green curve) are shown. The high sensitivity and 
high specificity operating point of DeNTNet is also displayed for all teeth. (All Teeth) The performance for all 
32 teeth, (Incisor) For 8 upper and lower incisors, (Canine) For 4 upper and lower canines, (Premolar) For 8 
upper and lower premolars, (Molar) For 12 upper and lower molars.

ROI Segmentation
Pre-trained 
Weight

Auxiliary 
Loss

Ensembled 
Network Incisor Canine Premolar Molar All Teeth

0.64 0.67 0.69 0.65 0.66

√ 0.71 0.68 0.68 0.67 0.68

√ √ 0.73 0.71 0.67 0.69 0.70

√ √ √ 0.74 0.72 0.69 0.73 0.72

√ √ √ √ 0.72 0.70 0.75 0.80 0.75

Table 2.  Ablation study to quantitatively analyze the contribution of each step in the training procedures: ROI 
segmentation, pre-training for transfer learning, auxiliary co-occurrence loss and ensembling classification 
models. The F1 scores are shown for each teeth type and all teeth.
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Further clinical and external validation is necessary for the adoption of the proposed method in clinical prac-
tice. Expanding the targeted dental disease of the proposed framework beyond PBL also remains for future work.

Data availability
The data used in current study were collected from Korea University Anam Hospital and is available only for the 
granted research. However, the data can be made available if requested within data protection and regulation 
guideline.
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Figure 5.  Panoramic dental radiograph examples with dental clinicians’ annotations and DeNTNet activation 
maps. (Top) Original input panoramic dental radiographs; (Middle) PBL lesion masks annotated by dental 
clinicians; (Bottom) Class activation map highlighting the most salient region in the image for PBL prediction; 
The red area in the activation map corresponds to a stronger activation region; (First column) A case with 
vertical periodontal bone loss; (Second column) A case with horizontal periodontal bone loss; (Third column) 
A case with generalized severe periodontal bone loss with both vertical and horizontal bone loss.
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