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Relationship of common variants 
in MPP7, TIMP2 and CASP8 genes 
with the risk of chronic achilles 
tendinopathy
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Previous etiologic studies have indicated that both environmental and genetic factors play important 
roles in the occurrence and development of chronic Achilles tendinopathy (AT). A recent study 
documented the results of the largest genome-wide association study for chronic AT to date, indicating 
that MPP7, TIMP2 and CASP8 may be involved in the occurrence and development of chronic AT. In this 
study, we aimed to investigate whether MPP7, TIMP2 and CASP8 were associated with susceptibility 
to chronic AP in a Han Chinese population. A total of 3,680 study subjects comprised 1,288 chronic 
AT cases, and 2,392 healthy controls were recruited. Forty-four tag SNPs (7 from CASP8, 20 from 
MPP7, and 17 from TIMP2) were genotyped in the study. Genetic association analyses were performed 
at both single marker and haplotype levels. Functional consequences of significant SNPs were 
examined in the RegulomeDB and GTEx databases. Two SNPs, SNP rs1937810 (OR [95%CI] = 1.20 
[1.09–1.32], χ2 = 13.50, P = 0.0002) in MPP7 and rs4789932 (OR [95%CI] = 1.24 [1.12–1.37], χ2 = 17.98, 
P = 2.23 × 10−5) in TIMP2, were significantly associated with chronic AT. Significant eQTL signals for 
SNP rs4789932 on TIMP2 were identified in human heart and artery tissues. Our results provide further 
supportive evidence for the association of the TIMP2 and MPP7 genes with chronic AT, which supports 
important roles for TIMP2 and MPP7 in the etiology of chronic AT, adding to the current understanding 
of the susceptibility of chronic AT.

Chronic Achilles tendinopathy (AT) is a degenerative disease in both athletes and the general population1. 
Approximately 11% of the populations worldwide develop chronic AT in their lifetime2, which is difficult to treat 
and requires prolonged treatment and rehabilitation. Previous etiologic studies have indicated that environmen-
tal factors and self-diseases play important roles in the occurrence and development of chronic AT, such as age 
over 60 years, overuse, renal failure and diabetes mellitus3. Nevertheless, many case-control studies have found 
significant association signals between single nucleotide polymorphisms (SNPs) and chronic AT in Europeans4–7. 
Since chronic AT is a multifactorial disease with a complex genetic component, additional candidate genes should 
be investigated.

A recent study documented the results of the largest genome-wide association study (GWAS) for chronic AT 
to date, identifying borderline significant evidence of an association of rs1937810 in membrane protein palmi-
toylated 7 (MPP7) gene to Achilles tendon injury8. Moreover, this study also tested the association between pre-
viously reported SNPs and Achilles tendon injury, including COL5A1, MMP3, TNC, and ADAMTS14. However, 
only the rs4789932 variant in the tissue inhibitor of the metalloproteinase 2 (TIMP2) gene and the rs1045485 
variant in the caspase-8 (CASP8) gene had moderate evidence for replication8. Based on the above results, MPP7, 
TIMP2 and CASP8 may be involved in the occurrence and development of chronic AT.

Accumulating evidence shows that the disruption of extracellular matrix (ECM) homeostasis may lead to 
excessive tenocyte apoptosis and eventually cause chronic AT9,10. Hence, genes that encode proteins with a role 
in maintaining the integrity of the tendon ECM and tenocyte apoptosis might associate with chronic AT. TIMP2 
plays a role in inhibiting the activity of metalloproteinases, which could regulate ECM integrity. Decreasing RNA 
levels of TIMP2 have been demonstrated in the human degenerate Achilles tendon compared to healthy tissue11. 
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In addition, serum TIMP2 protein remains high even as long as three years post-Achilles tendon injury12. CASP8 
is an important part of the apoptosis pathway. Studies have indicated that the apoptosis pathway can induce ten-
don apoptosis in ECM remodeling by MMPs following tissue injury13. In addition, researchers have also found 
the upregulation of CASP8 in tendinopathy14. MPP7 is a CREB target and its functional mediator15. Previous 
studies have demonstrated that CREB can regulate TIMP2 in oral cancer HSC-3 cells16. Hence, MPP7 may reg-
ulate TIMP2 and finally influence ECM, resulting in chronic AT. Considered collectively, these data suggest that 
variability in chronic AT susceptibility may be related to the variants of MPP7, TIMP2 and CASP8. Although 
there are studies on the association between MPP7, TMIP2, CASP8 and AT, the studies only focus on Caucasians 
and Africans. Given of genetic heterogeneity of chronic AT in different populations, replications of the study in 
different populations would be desirable to validate the results. To date, no information has been available on the 
Han Chinese population between these genes and chronic AT. Therefore, in our study, we aimed to investigate 
whether the MPP7, TIMP2 and CASP8 genes were associated with susceptibility to chronic AT in a Han Chinese 
population.

Methods
Study subjects.  In the study, 3,680 study subjects comprised 1,288 chronic AT cases, and 2,392 healthy 
individuals were collected from Honghui Hospital of Xi’an Jiaotong University between June 2014 and May 2018. 
These samples come from a shared sample database that needs to be authorized, and the sample size of this data-
base is constantly expanding. Since the subjects involved in the study of Nie et al17. were also from this sample 
database, the inclusion and exclusion criteria in details for our study subjects can refer to the study of Nie et al.17. 
Notably, to restrict the genetic heterogeneity of the participants, all of the subjects enrolled were born in the local 
area. Characteristic information for our study subjects were summarized in Table 1. There were no obvious dif-
ferences between both groups (cases and controls) in age, gender, smoking and alcohol drinking, but a significant 
difference was found in BMI. Informed consent was written by each participant. The study was carried out based 
on the ethical guidelines of the Declaration of Helsinki (version 2002) and was approved by the Ethics Committee 
of Honghui Hospital of Xi’an Jiaotong University.

SNP selection and genotyping.  Tagged SNPs with minor allele frequency (MAF) > = 0.1 in MPP7 and 
TIMP2 and MAF > = 0.05 in CASP8 based on 1000 genome data points of Han Chinese populations were chosen 
for genotyping, and the r2 criterion used for tagging was 0.5 for these gene regions. A total of 44 SNPs (7 from 
CASP8, 20 from MPP7, and 17 from TIMP2) were genotyped in the study (Supplemental Table S1). All SNPs 
were not in the exon regions of MPP7 TIMP2 and CASP8 genes. Following the manufacturer’s protocol (Genomic 
DNA kit, Axygen Scientific, Inc., CA, USA), we extracted genomic DNA from peripheral blood leukocytes. A 
high-throughput Sequenom MassARRAY platform (Sequenom, San Diego, CA, USA) was utilized for SNP gen-
otyping. Briefly, the signals from the platform were automatically analyzed by Sequenom Typer 4.0 software, 
and genotype data were generated from the processed results. To estimate the genotyping quality, 5% of samples 
were repeated for genotyping. With a concordance rate of 100%, the quality of genotyping data was confirmed. 
The case/control status of the samples was blinded to the technicians during the genotyping process. All SNPs 
had MAFs greater than 0.05 and were in Hardy-Weinberg equilibrium in our control samples (Supplemental 
Table S1).

Statistical analyses.  Single SNP analyses were performed with χ2 tests at the genotypic and allelic levels. 
Linkage disequilibrium (LD) blocks were estimated according to the algorithm published in the study of Gabriel 
et al.18, and haplotypic analyses were conducted on these LD blocks. Single SNP analyses were also stratified in 
gender, smoking and alcohol drinking status. In addition, to further examine the potential gene by gene interac-
tions among the three genes, we conducted case-only analyses for multiple SNP pairs19. All genetic association 
and interaction analyses mentioned above were conducted using Plink20. LD plots of CASP8, MPP7 and TIMP2 
were made using Haploview21. We applied Bonferroni’s corrections to address issues of multiple comparisons. The 
significance threshold of the P value was 0.05/44 ≈ 0.001 in single SNP analyses.

Variables Cases (N = 1,288) Controls (N = 2,392) Statistics P-value

Age, years 41.1 ± 8.6 40.9 ± 8.4 T = 0.70 0.49

BMI, kg/m2 25.9 ± 1.7 25.5 ± 1.7 T = 6.07 <0.001

Gender (%)

   Male 958 (74) 1778 (74)

   Female 330 (26) 614 (26) χ2 = 7.27 × 10−30 1.00

Smoking (%)

   Yes 146 (11) 261 (11)

   No 1142 (89) 2131 (89) χ2 = 0.11 0.74

Alcohol Drinking (%)

   Yes 312 (24) 575 (24)

   No 976 (76) 1817 (76) χ2 = 0.007 0.93

Table 1.  Characteristic information for our study subjects.
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Bioinformatics analyses.  The Function of significant SNPs were examined in RegulomeDB22. RegulomeDB 
is a public database designed for noncoding SNP annotations through integrating data from the ENCODE pro-
ject and other published literature. We have also examined the association between the significant SNPs and the 
expression levels of their relevant genes in many human tissues in the GTEx database23.

Results
Significant genetic association signals.  We identified two SNPs, SNP rs1937810 (OR [95% 
CI] = 1.20[1.09–1.32], χ2 = 13.50, P = 0.0002) in MPP7 and rs4789932 (OR [95% CI] = 1.24[1.12–1.37], 
χ2 = 17.98, P = 2.23 × 10−5) in TIMP2, to be strongly correlated with the susceptibility to chronic AT (Table 2). 
Significant signals were identified at both the genotypic and allelic levels. The C alleles of both SNPs were asso-
ciated with the increased risk of chronic AT. The results of single SNP analyses are presented in Supplemental 
Table S2. LD structures were constructed (Supplemental Figure S1, S2 and S3), and 12 LD blocks were obtained 
from our genetic data. All results of haplotype-based association analyses are summarized in Supplemental 
Table S3, which indicated the similar association pattern with single marker-based association analyses.

Stratification and gene by gene interaction analyses.  Stratification analyses were performed for both 
SNP rs1937810 and rs4789932 in gender, smoking and alcohol drinking status. The genetic effects of both SNPs 
were not significantly different in the stratified groups (Supplemental Table S4). Although the association signals 
in some stratified groups were not significant, this might be due to the limited statistical power introduced by the 
reduced sample size. A total of 599 SNP pairs were analyzed for gene by gene interactions among CASP8, MPP7 
and TIMP2. Although 23 SNP pairs were identified as nominally significant (Supplemental Table S5), no SNP pair 
survived for multiple comparison corrections.

Functional consequences of SNP rs1937810 and rs4789932.  Since both significant SNPs were 
noncoding variants, they do not alter the protein sequence translated by the genes. We examined the potential 
functional consequences of both SNPs in RegulomeDB. RegulomeDB has a self-developed score system with 
a score ranging from 1–7. A higher score indicates less functional significance. SNP rs1937810 has a score of 
6, and SNP rs4789932 has a score of 4. Both SNPs showed very limited functional consequences. In addition 
to RegulomeDB, we also examined both SNPs in the GTEx database for their eQTL patterns. No significant 
eQTL signals were identified for SNP rs1937810 on MPP7 after adjusting for multiple comparisons (Supplemental 
Table S6). Significant eQTL signals for SNP rs4789932 on TIMP2 were identified in human heart and artery tis-
sues (Fig. 1 and Supplemental Table S7).

CHR POS Gene SNP Status

Genotypic Analyses

χ2 P

Allelic Analyses

OR[95%CI] χ2 PCC CT TT C T

10 28175021 MPP7 rs1937810 Cases 259 608 421 1126 1450

Controls 354 1172 866 17.69 0.0001 1880 2904 1.20[1.09–1.32] 13.50 0.0002

17 78928193 TIMP2 rs4789932 Cases 200 584 504 984 1592

Controls 281 1029 1082 17.42 0.0002 1591 3193 1.24[1.12–1.37] 17.98 2.23 × 10−5

Table 2.  Results of genotypic and allelic association analysis for SNP rs1937810 and rs4789932. CHR: 
chromosome; POS: position.

Figure 1.  eQTL signals for SNP rs4789932 on TIMP2. The threshold of P values is indicated by a dotted line.
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Discussion
With the fast development and application of sequencing and genetic association analyses for studying genetic 
susceptibility of complex diseases, candidate gene-based association studies have successfully identified suscepti-
bility loci for many complex diseases24–37. In this study, we identified two SNPs, rs1937810 in MPP7 and rs4789932 
in TIMP2, as significantly associated with the disease status of chronic AT in Chinese Han populations. Both 
SNPs have been reported in genome-wide association screens for AT conducted by Kim et al.8, and the direction 
of effect size of both SNPs in our study was in accordance with this previous report, which was conducted based 
on a mixed population mainly comprised of study subjects with European ancestry. Furthermore, the significant 
signals in TIMP2 gene were also identified in Han Chinese population from the 2019 study of Nie et al.17.

Genetic markers of CASP8 were not identified to be significantly associated with chronic AT in our samples. 
However, in a study performed by Kim et al., SNP rs1045485 in CASP8 was significantly associated with chronic 
AT8. In the present study, this SNP was not analyzed because of its limited polymorphic nature in Chinese popu-
lations. Therefore, the nonsignificant signals of CASP8 could be at least partly explained by different LD structures 
between Chinese Han and European populations. To investigate the contribution of CASP8 to the risk of chronic 
AT in Chinese Han populations, a set of higher density markers should be selected and genotyped in the future.

Previous studies have demonstrated a potential biological connection among protein products of CASP8, 
TIMP2 and MPP713–16. In the present study, we examined the pair-wise gene by gene interactions. However, 
no significant findings were obtained. We should be careful to interpret these negative results because inter-
action analyses often require a larger sample size (for the same level of statistical power) compared to single 
marker-based association analyses. In addition, we tested 599 SNP pairs, which resulted in severe multiple com-
parisons. To address this problem, we applied Bonferroni’s correction, which is considered a very conservative 
method. Thus, in the future, a larger sample size and a better designed study are still needed to thoroughly inves-
tigate the potential epistasis patterns among the three genes.

MPP7 is a member of the Membrane-Associated Guanylate Kinase (MAGUK) subfamily of proteins, which 
was found in a tripartite complex with DLG1 and LIN7A or LIN7C38. Many studies have reported ectopic calcifi-
cation in tendons in clinical samples and in animal models, which eventually leads to chronic AT with an increase 
in the rupture rate39. A previous GWAS study identified a significant association between bone mineral density 
(BMD) scores and MPP740. Moreover, bone mass was lower in a mpp7 knock-down zebrafish compared with the 
wide-type, suggesting that MPP7 is closely related to bone metabolism41. In addition, a case-control association 
study also found that MPP7 is a susceptibility gene for osteoporosis42. Hence, MPP7 may regulate bone formation 
and increase the rate of endochondral ossification, leading to chronic AT. In addition, the imbalance between 
matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) leads to the excessive 
degradation of extracellular matrix (ECM) in chronic AT patients43. Among these proteins, TIMP2 is a general 
endogenous inhibitor of MMPs that inhibits soluble and membrane-bound MMPs44. Previous studies have found 
that patients with chronic AT showed significantly lower expression levels of TIMP2 in human degenerate AT com-
pared to healthy tissue45. Additionally, aging was found to significantly reduce the expression level of TIMP2 in rab-
bit patellar tendons46. Furthermore, researchers have also found a significant mRNA expression change in TIMP2 
tendons in an AT rat model47. Hence, TIMP2 may play an important role in tendon degradation and chronic AT 
because expression changes have been speculated to disrupt the TIMP/MMP balance and adversely alter ECM 
homeostasis. Both rs1937810 and rs4789932 were noncoding SNPs. Therefore, these SNPs cannot alter the protein 
structure encoded by genes. Our bioinformatics analyses showed that both SNPs had very limited functional con-
sequences in the regulation of gene expression. In this sense, it is likely that both SNPs were just surrogates of some 
underlying ungenotyped variants. These variants with true effects could be common polymorphisms, as we have 
selected and genotyped in this present study, or they could be a set of rare or low-frequency variants that contribute 
to the risk of chronic AT together. As a candidate gene-based association study, we only genotyped a set of tag SNPs, 
and the information coverage of these SNPs might not be sufficient. In the future, sequencing-based studies should 
be conducted to thoroughly investigate the genetic architecture of MPP7 and TIMP2.

Significant eQTL signals for SNP rs4789932 on TIMP2 were identified from tissues of human heart and artery 
based on data extracted from GTEx. Nevertheless, we need to be careful to interpret these results. First, the tar-
geted tissues for chronic AT should be tendon. Unfortunately, this type of tissue was not included in the GTEx 
database. Significant eQTL hits identified in human heart and artery tissues might offer us very limited informa-
tion for the potential effects of this SNP on TIMP2 in tendons and therefore might be irrelevant to the pathology 
of chronic AT. In addition, data from GTEx were collected from individuals with unknown status on chronic AT. 
A comparison of the gene expression levels of TIMP2 in chronic AT cases and controls could be more informative 
from the present study. Therefore, functional studies are needed in the future to investigate the eQTL patterns of 
these significant SNPs on genes to which they mapped.

This present study suffered from several limitations. First, population stratifications as a potential confounder 
might be a problem and might introduce false positive signals. As a candidate gene-based association study, we 
cannot perform any statistical procedure, such as principal component analysis, to address this issue. However, in 
the sample recruitment process, we applied specific inclusion criteria to restrict the genetic background and het-
erogeneity of our study subjects. We believe that this strategy would at least partly address this problem. Another 
limitation is that in the present study, we do not have a replication set to replicate the significant hits. In the future, 
replication studies, especially those designed based on other populations, are still needed.

In summary, our results provide further supportive evidence that TIMP2 and MPP7 contribute to the risk of 
chronic AT. Both SNPs rs1937810 in MPP7 and rs4789932 in TIMP2 may confer the risk of chronic AT and be 
useful in the informative assessment of the genetic risk for chronic AT susceptibility. Combined with previous 
findings, we provided evidence to support important roles for TIMP2 and MPP7 in the etiology of chronic AT, 
adding to the current understanding of the susceptibility of chronic AT.
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