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Neurochemical mechanisms for memory processing during
sleep: basic findings in humans and neuropsychiatric
implications
Gordon B. Feld 1,2,3 and Jan Born 4,5

Sleep is essential for memory formation. Active systems consolidation maintains that memory traces that are initially stored in a
transient store such as the hippocampus are gradually redistributed towards more permanent storage sites such as the cortex
during sleep replay. The complementary synaptic homeostasis theory posits that weak memory traces are erased during sleep
through a competitive down-selection mechanism, ensuring the brain’s capability to learn new information. We discuss evidence
from neuropharmacological experiments in humans to show how major neurotransmitters and neuromodulators are implicated in
these memory processes. As to the major excitatory neurotransmitter glutamate that plays a prominent role in inducing synaptic
consolidation, we show that these processes, while strengthening cortical memory traces during sleep, are insufficient to explain
the consolidation of hippocampus-dependent declarative memories. In the inhibitory GABAergic system, we will offer insights how
drugs may alter the intricate interplay of sleep oscillations that have been identified to be crucial for strengthening memories
during sleep. Regarding the dopaminergic reward system, we will show how it is engaged during sleep replay, but that
dopaminergic neuromodulation likely plays a side role for enhancing relevant memories during sleep. Also, we briefly go into basic
evidence on acetylcholine and cortisol whose low tone during slow wave sleep (SWS) is crucial in supporting hippocampal-to-
neocortical memory transmission. Finally, we will outline how these insights can be used to improve treatment of neuropsychiatric
disorders focusing mainly on anxiety disorders, depression, and addiction that are strongly related to memory processing.
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INTRODUCTION
Sleep benefits the long-term storage of memories [1–4]. However,
it is important to note that successful memory relies on at least
three distinct processes that are influenced by sleep in different
ways. Encoding or learning is the process that initially establishes
the memory trace, whereas retrieval is the process of recalling a
trace from memory. The third process is an active process of
stabilizing the memory trace during the retention period between
the two and has been coined as consolidation [5, 6]. Consolidation
is thought to profit most profoundly from sleep. At the beginning
of the twentieth century one of the first experimental accounts of
sleep’s memory effect was published by Jenkins and Dallenbach
[7]. Their work extended Hermann Ebbinghaus’ seminal work on
forgetting curves [8] that showed a pronounced improvement
after 1 day and has since been replicated twice more [9]. Their
approach compared declarative memory performance (see Box 1
for an introduction to declarative and procedural memory) after a
retention interval of sleep with that after a retention interval of
wakefulness and found less forgetting in the sleep condition.
Importantly, this improvement was not attributed to an active
(consolidation) process, but rather explained through an absence
of interference, since during sleep encoding of new stimuli is

reduced. Limiting sleep’s role for memory to a passive protection
rather than to an active consolidation process may explain why
researchers initially did not dwell on the topic much longer.
A major breakthrough in sleep research further contributed to

this. In 1929, Hans Berger discovered that brain activity can readily
be measured on the surface of the scalp. Applying this technique
during sleep led to the discovery of the distinct sleep stages (see
Box 2 for a brief introduction of the different sleep stages and
associated hallmark oscillations) rapid eye movement (REM) sleep
and non-rapid eye movement (NonREM) sleep [10, 11]. While the
importance of this discovery for the field of sleep cannot be
overstated, it was unfortunate that sleep and memory researchers
mainly focussed on REM sleep rather than NonREM sleep for most
of the rest of the twentieth century due to its similarity to waking
brain activity. However, a second breakthrough occurred in the
field of animal electrophysiology, based on the discovery of
neurons (place cells) in the hippocampus that fired only at specific
places in an open field [12], which was early on identified as a
potential code for memory [13]. Interestingly, it was soon
discovered that hippocampal place cell firing during wake
exploration influenced firing during subsequent sleep [14] and
that coincident firing patterns of place cells that developed during
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awake learning re-emerged during subsequent sleep, and
specifically during slow wave sleep (SWS) [15]. This finding of
potentially active memory processing during sleep rekindled the
field and research-efforts have been accelerating ever since.
Importantly, this finding was extended to human research using

a unique experimental approach, where memory contents are
associated with sensory stimuli that can be used to target this
content specifically during sleep. In their experiments, Rasch et al.
[16] used a card-pair location task similar to the game Concentra-
tion. During learning, participants were exposed to the smell of
roses and this smell was then used during sleep for targeted
reactivation of the associated memory task. Strikingly, this
memory cueing procedure was only effective during SWS, which
in humans is the deepest form of NonREM sleep, but not during
REM sleep or wakefulness. In fact, later extensions showed that
targeted reactivation during wakefulness—similar to that used
during sleep—can even have a detrimental effect on memory [17]
providing evidence for the unique properties SWS has for
consolidation. This technique has since been firmly established
as a standard methodology to probe sleep and memory
consolidation. It has been shown that individual memories can
be targeted [18, 19], that procedural motor memories can also be
boosted [20, 21], and targeted memory activation can greatly
enhance the effectivity of sleep to consolidate [22]. In fact, there
are now first attempts to use it as an augmentation for
psychotherapy (e.g., ref. [23]).
In the following, the main two theories that try to explain sleep-

dependent memory consolidation, active systems consolidation
and the synaptic homeostasis hypothesis will be introduced. Next,
we will run through human neuropharmacological work that has
scrutinized the four major neurotransmitter systems glutamate,
gamma-amino-butyric-acid (GABA), dopamine, and acetylcholine

as well as the stress-hormone cortisol to identify their role during
sleep-dependent memory processing. Focussing on work in
humans, it is important to acknowledge that a significant portion
of the work referenced in this review was performed by the
authors’ lab and that the field of sleep and memory research
would benefit from more labs undertaking the burdensome work
of running pharmacological studies in humans. There is a dire
need of an attempt at independently replicating most of the
findings. Neuropharmacological work in humans is important as it
can shed light on mechanisms without the need of subsequent
translation. However, it comes at the expense of somewhat limited
experimental control, e.g., drugs cannot be directly infused into
specific brain areas. Finally, we discuss how basic findings in the
area of sleep and memory research might inform therapeutic
strategies for neuropsychiatric disorders giving details for anxiety
disorders, depression, and addiction. We conclude by naming
some of the most pressing challenges to current neuropharma-
cological sleep research. Although we do mention findings in
other transmitter systems in passing, we do not aim to be
comprehensive.

THEORETICAL FRAMEWORKS
The field of sleep and memory is in the fortunate position of
having two strong theories that have been developed to
accommodate its findings. The first is active systems consolidation
(Fig. 1), which has been most elaborately tested in the declarative
domain [2, 24], but is formulated as a general principle that is
applicable also to non-declarative forms of memory [25] and even
in non-neuronal immunological memory [26]. Systems consolida-
tion was formulated as a solution to the plasticity-stability
dilemma [27, 28], i.e., that in a sequential learning process a
memory system must hold useful information stable and protect it
from being overwritten by incoming new information, while at the
same time allowing plastic changes for new learning [29]. During
learning, memories traces are initially encoded into a fast
changing transient store and are then gradually transferred into
a slow changing permanent store [30]. In the declarative domain,
new associations are stored in the hippocampus that acts as a hub
binding together cortical information [31] and these connections
are later redistributed to the neocortex [30, 32, 33]. Systems
consolidation uses synaptic consolidation (including forms of
synaptic long-term potentiation and transcription of immediate
early genes) as a subroutine in neuronal assemblies to strengthen
representations locally. Active systems consolidation suggests that
the gradual redistribution of synaptic connections moving the
representation towards neocortical networks is most readily
achieved during NonREM sleep, specifically SWS [24]. It has been
suggested that, during active wakefulness, a high tone of
acetylcholine enables encoding into the hippocampus, whereas,
during SWS, a low tone allows information to flow from the
hippocampus to the neocortex [34]. Essentially, during wakeful-
ness, sensory information is able to flow from the cortex to the
hippocampus to encode associations, but this neocortico-
hippocampal dialog is reversed during SWS [35]. Mechanistically,
replay in the hippocampus is thought to be initiated by the
neocortical slow oscillation [36] to co-occur with its rising flank
and associated sleep spindle activity [37, 38]. Replay information
coincides with sharp wave-ripples, which themselves nest into the
excitable troughs of spindles [37, 39], and thus are ideally suited to
induce plastic processes [40, 41] thereby redistributing the
memory trace towards the cortex. Coordinated replay in the
hippocampus and the cortex occurring in the same sequence as
during wake activity has been suggested to crucially support this
redistribution [42]. Whereas most of this work was based on
recordings of place cell activity during spatial experience, more
recent work shows that sleep-dependent consolidation likewise
occurs after fear context learning, where no clear sequence of

Box 1: Memory domains: memory can be subdivided into
different domains that rely on different brain structures

On the first level, the differentiation between declarative and procedural memory
is most common. Declarative memory is further subdivided into episodic
memory and semantic memory. Episodic memory deals with individual events,
for example, the memory details of your last birthday party. Semantic memory on
the other hand deals with concepts, such as the memory about what you would
usually expect to happen at a birthday party. Both forms of memory are
connected, inasmuch, as experiencing several birthday parties will be essential to
derive the more general concept of a birthday party. Declarative memory and
episodic memory in particular are thought to rely on the hippocampus for initial
encoding and overlap with explicit (or conscious) memory, i.e., memory contents
that can be explicitly talked about. This type of memory is also often referred
to as hippocampus-dependent memory. Procedural memory refers to memory
that is learned more implicitly such as motor and perceptual skills. It relies on a
specific set of brain region, including the striatum, cerebellum, and
sensory cortex.

Box 2: Sleep stages and associated brain oscillations: human
sleep science principally differentiates between four primary
sleep stages as measured by polysomnography

Sleep stage 1 (NonREM1) is a transition phase that is marked by increasingly
slower electroencephalogram (EEG), a reduction of alpha activity below 50% of a
30 s epoch and often rolling eye movements. Sleep stage 2 (NonREM2) is the
most abundant sleep stage and is signified by the emergence of sleep spindles
(12–15 Hz) and k-complexes (large-negative spikes followed by a slower positive
wave). Sleep stages 3 and 4 (NonREM3) that for clinical purposes have recently
been lumped together are hallmarked by very-slow high-amplitude (>75 µV)
delta activity (0.5–2 Hz). REM sleep that is sometimes also referred to as
paradoxical sleep is identified by a faster mixed-frequency EEG that is wake-like
and is accompanied by rapid eye movements and muscle atonia. Slow
oscillations (~0.75 Hz) that occur during NonREM2-3 (as k-complexes in
NonREM2) are thought to differ from delta activity both functionally and
regarding their production mechanism, although their discrimination in the
human EEG is difficult, and mainly relies on the frequency criteria. The high-
amplitude slow oscillations, with an even lower frequency than the 1–4 Hz delta
waves, play a crucial role in coordinating replay events with sleep spindles to
enhance plasticity.
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events is evident, and is supported by other forms of coordinated
network activity [43]. In fact, when place cell firing was not
restricted by a linear track, replay from a freely explorable
environment was not limited to trajectories the animal had
experienced but covered Brownian diffusion like random trajec-
tories [44]. These findings and the fact that novel environments
elicit much longer lasting replay [45], cast doubt on the necessity
of strictly sequential replay for sleep-dependent memory
consolidation.
The second theory explaining sleep’s beneficial effect on

memory is down-selection theory that developed from the synap-
tic homeostasis hypothesis. This theory originates from a different
perspective on sleep and memory that focusses on homeostatic
needs of the brain. It states that most learning in the brain relies
on some form of Hebbian plasticity, i.e., an increase in connection
strength between neurons during learning [46]. This potentiating
of connections is thought to come at the price of increased
demands for energy and space that cannot be sustained
indefinitely [47, 48]. Evidence from experiments comparing
glutamatergic (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid-AMPA) receptor density at the active sites of synapses have
supported this view, as excitatory receptors are upregulated after
longer phases of wakefulness and downregulated after sleep [49].
Similarly, dendritic spines, morphological correlates of

potentiation, show net upregulation during wakefulness and
downregulation during sleep in mice [50, 51]. Importantly, this
process has been suggested to be specific leaving stronger
synapses intact [52]. In humans, it was shown using transcranial
magnetic stimulation that sleep restores the capability of the
cortex for long-term potentiation-like plasticity [53]. Importantly,
these results show that synaptic up- and downregulation can
occur in both sleep and wakefulness, but that the absolute
amount of each is different, leading to a net downscaling during
sleep. In humans, the most convincing evidence for a physiolo-
gical homeostatic process active during sleep comes from studies
of new learning after sleep. Here, it was shown that participants
are able to encode information better, if they are allowed to sleep
before learning [54]. This effect seems to be mediated by SWS, as
manipulations of this sleep stage led to altered encoding
capabilities in young and old participants [55, 56]. The latest
iteration of this theory accounts for the abundance of memory
enhancing and replay findings related to sleep, by suggesting a
mechanism that chooses connections that should be down-
regulated, sparing those connections engaging in newly formed
memory representations [4]. Intriguingly, the sharp wave-ripples
that have been shown to be strong markers of reactivation have
been shown to also support downregulation of synapses in the
hippocampus [57]. In the motor cortex, synaptic pruning during
REM sleep that balances excessive plasticity during learning has
been shown to improve subsequent learning [58, 59]. However, to
support a direct involvement of downregulation in memory
consolidation more empirical evidence linking selective synaptic
downscaling to improved memory function should be produced
in future (for a more in depths critique of the synaptic homeostasis
hypothesis, see refs. [60, 61]).
Integrating active systems consolidation and the synaptic

homeostasis hypothesis leads to a seeming contradiction of the

Neocortex

Hippocampus

Neocortex

Hippocampus

Active systems consolidation

Learning

Retrieval

C
on

solidation

Neocortex

Hippocampus

Fig. 1 Three stages of memory formation. Memory performance is
affected by the efficient execution of learning the information by
encoding the memory trace, consolidating the trace for long-term
storage, and subsequently successfully retrieving the trace. Active
systems consolidation ascribes sleep a vital role for the consolida-
tion step. In a nutshell, a memory is learned during wakefulness,
consolidated during sleep, and retrieved again during wakefulness.
For example, if you meet Jane at the beach and she shows off her
new red car, neocortical sites process this information, however, the
hippocampus associates all four items of this memory acting as a
hub that binds the information into an episodic representation.
Therefore, the hippocampus does not hold the actual information,
but rather its unique combination. During subsequent sleep, the
hippocampus replays the associative trace allowing the slow
learning cortical networks to form an associative trace of their
own (this may include recruitment of the prefrontal cortex to
succeed the hippocampus as a hub, which is not depicted here for
simplicity). To form representations outside the hippocampus,
systems consolidation relies on processes of synaptic consolidation
as a subroutine (including long-term potentiation) to strengthen
connections of the representation locally. With ongoing systems
consolidation, the cortical trace becomes sufficient to retrieve the
information without recruitment of the hippocampus and you will
know that Jane drives a red car and likes going to the beach. Within
this framework, there is a complementary role for homeostatic
processes as proposed by the synaptic homeostasis hypothesis,
inasmuch as the hippocampal trace may be removed to make space
for new learning, when the cortical trace has been established and it
is no longer needed. Additionally, there is room for further pruning
of the cortical trace making it more efficient after it has been firmly
established. Importantly, the described process likely does not
complete within one single night of sleep, but will take several
nights. In addition, the cortical trace loses most of the episodic
features of your meeting with Jane leaving only the semantic
content
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same mechanisms being related both to the strengthening and
weakening of memory traces. However, the fate of a memory trace
may be mediated by its relevance for the future. For example, the
instruction that a list of word-pairs will be retrieved after sleep
enables sleep’s beneficial effect [62]. Similarly, rewards and
emotions can modulate the strengthening effect of sleep on
memory [63–68]. Therefore, while sleep has been clearly linked to
the consolidation of relevant memories, it may also serve the
function of erasing irrelevant ones. In addition, sleep likely
homeostatically restores hippocampal function for encoding after
systems consolidation has made the traces held there redundant,
thereby honing the memory store for ideal function [69]. Ideally,
future research will break down which sleep phenomena link to
which function individually for each memory domain and/or brain
region. For example, there seems to be some evidence that
NonREM sleep strengthens synapses within the cortex [59, 70–72],
while both NonREM and REM sleep act together to downregulate
them in the hippocampus [57, 73], which would be ideally suited
for a well-functioning declarative memory system. While active
systems consolidation argues that on the long run memories can
become independent of the hippocampus, there is also evidence
from animal and human studies showing increased firing rates as
well as a time-limited increase in blood oxygen level-dependent
(BOLD) activity in the hippocampus, respectively, caused by

processes during initial sleep after learning [74, 75]. Delineating
the time course and specificity of potentiation and downregula-
tion during sleep are important future research objectives.

GLUTAMATERGIC NEUROTRANSMISSION
Learning in the brain is thought to mainly rely on Hebbian
plasticity where neurons that are active together get connected
more tightly, so that activating one neuron will soon activate the
other, i.e., what fires together wires together [46]. Glutamatergic
long-term potentiation (LTP) is the most studied mechanism of
such synaptic potentiation, and this form of synaptic consolidation
is indeed viewed by many as the main substrate of high-level
learning in the brain (for details [76, 77]). In this framework, the
AMPA receptor transmits neuronal activation from one neuron to
the other and the N-methyl-D-aspartate (NMDA) receptor enables
plastic processes, i.e., the strengthening of the connection
between the neurons through AMPA receptors.
In an attempt to shed light on the involvement of AMPA and

NMDA receptors during sleep-dependent memory consolidation,
we ran a series of pharmacological experiments in humans (Fig. 2).
First, we tested our hypothesis that sleep reactivation of memory
traces leads to memory strengthening via glutamatergic processes
in the cortex, as there is evidence from cats that sleep-dependent

a  Memory reactivation during sleep
Neocortex

Reactivation

b  Glutamatergic LTP

Glutamate
AMPAR

Reactivation

NMDAR

Plastic
processes

Signal
transduction

Mg2+

d  Ketamine

Glutamate
AMPAR

Reactivation

NMDAR

Plastic
processes

Signal
transduction

e  D-Cycloserine

Drug acts on 
glycine binding 
site

Glutamate
AMPAR

Reactivation

NMDAR

Plastic
processes

Signal
transduction

c  Caroverine

Mg2+

Glutamate
AMPAR

Reactivation

NMDAR

Plastic
processes

Signal
transduction

Fig. 2 Glutamatergic system neuroplasticity during sleep. aMemory reactivation seems ideally suited to support Hebbian plasticity (i.e., a kind
of synaptic consolidation), where coincidentally activated excitatory neurons form stronger connections. b Glutamatergic LTP is the most well-
studied form of such plasticity. Broadly speaking, in response to glutamate signaling AMPA receptors are responsible for maintaining signal
transduction, whereas, NMDA receptors initiate plastic processes. Plasticity goes along with an increase in AMPA receptor availability at the
active zone, but it also acts via pre-synaptic increases in transmitter release and structural changes. c Blocking the AMPA receptor prevents
signal transduction leaving the post-synaptic neuron’s membrane potential at hyperpolarized levels and thus preventing plasticity signals via
the NMDA receptor. If reactivation spreads via glutamatergic neurotransmission, this should block memory consolidation, which is true for
cortical memories. However, for hippocampus-dependent declarative memories no such effect is evident. d Blocking the NMDA receptor
directly with Ketamine leaves glutamatergic signal transduction intact, but blocks plastic processes. Again, this drug blocks consolidation of
cortical memories but not hippocampal memories. e Enhancing NDMA receptor function with D-cycloserine that acts via the glycine-binding
site and thereby boosting plasticity, on the other hand, greatly improved sleep-dependent consolidation of hippocampal memories
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ocular dominance plasticity in the visual cortex is mediated by
NMDA-receptor activation [78]. The first experiment investigated
the effect of pharmacologically blocking AMPA and NMDA
receptors during post-learning sleep [79]. Participants learned a
visual texture discrimination task that mainly relies on plastic
changes to the visual cortex for encoding [80] and is strongly
dependent on NonREM sleep for synaptic consolidation of those
traces [81]. In two different groups, caroverine was used to block
AMPA receptors and ketamine to block NMDA receptors during
sleep. Caroverine is a quinoxaline-derivative that at low doses can
be used in humans to block AMPA receptors. Compared to
placebo, participants performed significantly worse across reten-
tion when they were infused with either of the drugs during sleep.
In line with our hypothesis, this result highlights that memory
consolidation that relies on reactivation of the local memory trace
is susceptible to blocking neuronal information transduction via
the AMPA receptor, which coincidentally blocks plastic processes,
as well as blocking coincidence detection via the NMDA receptor
that leaves signal transduction intact and blocks only plastic
changes.
Importantly, performance of the visual texture discrimination

task above does not essentially rely on the hippocampus [80].
Therefore, sleep-dependent performance gains might primarily
reflect synaptic consolidation within the cortical storage sites
rather than systems consolidation from the hippocampus to the
neocortex [29]. Although, this does not exclude that
hippocampus-dependent systems consolidation during sleep can
also contribute to more gradually emerging gains in perceptual
skill [25]. Against this backdrop, we expanded these findings to
the declarative domain, where the hippocampus plays a crucial
role already in the initial expression of the memory that is later
replaced by neocortical structures [33]. We ran a follow-up study
using a word-pair task that has been shown to recruit the
hippocampus during learning [82] and robustly depends on
NonREM sleep for consolidation [83–85]. Within the active systems
consolidation framework, we hypothesized that blocking AMPA
and NMDA receptors would impair hippocampal memory
reactivations and the transmission of reactivated information to
the cortex, similarly, as it impairs cortical memory consolidation.
We again used caroverine and ketamine to block AMPA and
NMDA receptors during early NonREM sleep, after learning [86].
Participants retrieved the word-pairs after sleep and performance
was compared to placebo nights. Surprisingly, retention perfor-
mance, i.e., the difference in word-pairs remembered at retrieval
minus those remembered at learning, was affected by neither of
the drugs indicating that these important receptors do not
contribute to declarative memory consolidation during sleep. This
difference to the initial study is likely due to the recruitment of
hippocampus-dependent systems consolidation processes during
sleep that affect word-pair memory directly, but may change
visual texture discrimination memory, if at all, only with
substantial delay.
However, we ruled out the possibility of complete disengage-

ment from consolidation during sleep for the NMDA-receptor, in
these experiments, by using D-cycloserine in a similar paradigm
[86]. D-cycloserine acts as co-agonist at the glycine-binding site of
the NMDA-receptor and thereby positively modulates its function
[87]. It has been shown to enhance retention, if given acutely after
learning [88]. Our participants received the drug before going to
sleep, after learning the word-pairs, and retrieval was tested the
next evening, due to the longer half-life of D-cycloserine. Here,
participants retained more word-pairs if they were given the drug
rather than placebo. A control group that was not allowed to sleep
during the retention interval did not benefit from the treatment.
Taken together, these findings indicate that active systems
consolidation does not recruit the usual form of LTP for plasticity
as outlined above, but that the NMDA receptor nevertheless plays
some essential role. Crucially, in the absence of AMPA receptor

engagement, there must exist an alternative form of information
transfer that could be recruited by ripples. Identifying such a
mechanism seems all the more important since our attempts to
further scrutinize the glutamatergic system by applying the
metabotropic glutamate receptor 5 blocker fenobam did not
show any effects on sleep-dependent memory consolidation or
forgetting (Feld, Bergmann, Alizadeh-Asfestani, Stuke, Wriede,
Soekadar and Born, unpublished data). This rules out that our
report of a lack of effect of blocking NMDA and AMPA receptors
can be explained by a functional shift within the glutamatergic
system itself during sleep [89, 90].
In an attempt to scrutinize whether active systems consolida-

tion and associated NMDA receptor-mediated processes leads to
diminished encoding capacity after sleep, we performed an
additional study that focussed on retro-active interference
rather than consolidation [91]. Participants again learned
word-pairs in the evening and retained them until the next
evening, but were then asked to learn a new set of word-pairs
that partially overlapped with the original word-pairs. Thereby
allowing us to investigate the retro-active interference elicited
by the originally learned information [92], after it is consolidated
by sleep. We predicted that enhanced consolidation during
sleep—elicited by a D-cycloserine-induced enhancement of
NMDA-receptor activity—would be accompanied by an increase
in retro-active interference and, thus, reduce new learning.
However, this was not the case, and D-cycloserine rather
generally increased the amount of learning regardless of sleep
occurring during the retention interval. These results can be
taken to suggest that some forms of synaptic renormalization as
predicted by synaptic homeostasis theory [47] occur indepen-
dent of sleep, possibly via a type of sleep-independent active
decay [93]. In fact, NMDA-receptor-dependent weakening of
synaptic connections during ripples [57] provides such a
mechanism. It seems that precise timing of reactivation in
hippocampal sub-regions during ripples plays an important role
determining whether a connection is potentiated or not [40],
whereby, these findings suggest potential mechanisms for
simultaneous selective strengthening of relevant traces and
weakening of irrelevant traces. However, currently it remains
unclear what factors determine the direction of plasticity.
This set of studies demonstrates that active systems consolida-

tion of declarative memory during sleep likely recruits a mode of
plasticity not essentially relying on glutamatergic transmission in
hippocampo-cortical networks, and, in this way, contrasts with
learning during wakefulness, where glutamatergic LTP in the
hippocampus has been established as the major correlate of
encoding traces. This might be due to the unique neuromodu-
latory and neurooscillatory environment offered by deep NonREM
sleep. It is therefore important to acknowledge that sleep does not
simply augment processes involved in the formation of memory
traces but transforms them. In this sense, the recent finding that
sharp wave-ripples depotentiate synaptic connections in the
hippocampus and that blocking NMDA receptors impairs this
process [57] and the broad evidence for a transfer of memory
traces to the cortex during sharp wave-ripples (e.g., ref. [41]) offers
the intriguing possibility that replay supports both active systems
consolidation and homeostatic needs in the hippocampus. In this
framework, memories are being wiped little by little from the
hippocampus at the rate at which they are being established in
the neocortical networks [69]. To shed light onto this, studying the
intracellular signaling cascades that translate neurotransmitter
signals into plastic changes will be essential [1, 94]. For example,
eliciting LTP at a synapse primes downstream processes to
simultaneously prevent long-term depression at that synapse via
a glycogen synthase kinase 3 beta-related pathway within the
post-synaptic neuron [95]. Such a metaplastic process could be
used by replay in a switch like manner to tag individual synapses
for increased or reduced downscaling during sleep.
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GABAERGIC NEUROMODULATION
GABA, the main inhibitory neurotransmitter of the brain,
contributes to all of the major sleep EEG rhythms and GABAergic
neurons, mainly in the ventrolateral preoptic area, that inhibit
arousal centers in the brainstem, hypothalamus, and basal
forebrain have been identified as crucial for sleep induction and
maintenance [96]. Correspondingly, GABA A receptors have early
on been targeted to enhance sleep in disorders such as insomnia,
however, so far none of the drugs has been without drawbacks
such as un-physiological sleep [97]. In this regard, it is possible to
differentiate between GABA A-positive modulators and GABA A
agonists, the former enhancing more shallow NonREM sleep and
sleep spindle activity at the expense of SWS and REM sleep.
Whereas, the latter enhance SWS and associated slow wave
activity at the cost of other sleep stages [98, 99].
In active systems consolidation, the primary oscillations of

NonREM sleep take an important role of coordinating the
hippocampo-neocortical dialog [36, 100–102]. Briefly, slow
oscillatory activity (<1 Hz) that consists of down-states with
widespread cortical silence and up-states of wake-like activation
coordinate with fast cortical spindles (12–15 Hz) that occur most
frequently during the down-to-up-state transition of the slow
oscillation [103] and enhance cortical plasticity through the
influx of calcium into pyramidal cells ([104, 105], see Fig. 3).
Sharp wave-ripple-associated replay that rides on the troughs of
the sleep spindle thus arrives at the cortex in an ideal
environment to exert plastic changes [37–39, 41, 106]. This
fine-tuning of oscillations is thought to play a crucial role for
delivering sleep’s beneficial effects and, correspondingly,
disrupting these activity patterns by inhibiting parvalbumin-
positive interneurons in hippocampal circuitry interferes with
sleep-dependent memory consolidation [107, 108]. Rhythmic
stimulation of these neurons can even reverse the detrimental
effects of sleep-deprivation on memory [74].
Sleep-dependent declarative memory consolidation can be

enhanced by applying transcranial direct current or alternating
current electric stimulation that mimics slow oscillatory activity
[109, 110]. Therefore, to pharmacologically boost memory
consolidation a recent experiment used the GABA reuptake
inhibitor tiagabine, which is known to enhance SWS and
associated slow wave activity (0.5–2 Hz) by tonically activating
GABA receptors [99, 111, 112]. During learning, participants
encoded a declarative word-pair task as well as a procedural
finger sequence tapping task and then received the drug orally
before going to bed [113]. The next evening retrieval was tested,
when the drug had washed out. Although we robustly replicated a
stark increase in SWS and even found strongly increased slow
oscillatory activity, we did not find any behavioral evidence for
improved memory retention. In fact, procedural memory con-
solidation was even significantly impaired. This effect was likely
due to a decrease in fast and slow sleep spindles and disruption of
sleep spindle-to-slow oscillation coupling that was also evident in
the treatment condition. In addition, the endogenous signal from
inhibitory neuronal populations that drive plasticity during sleep
may have been disrupted by the increased GABAergic tone [114].
Sleep spindles have been found consistently to be linked to

declarative and procedural memory consolidation [115–119] and
this link is further underlined by another experiment using a
GABAergic agent. Mednick et al. [120] used the GABA A receptor-
positive modulator zolpidem that is known to enhance fast
spindle activity during NonREM sleep [98]. Participants learned a
declarative word-pair task and a procedural finger sequence
tapping task before receiving the drug. The drug positively
affected the amount of word-pairs retained and this effect was
directly related to the enhancement of sleep spindles induced by
zolpidem. This effect is likely due to the strong memory enhancing
effects of spindles [121], especially when they occur during the
slow oscillation upstate [122].

These studies demonstrate that care must be taken, when
developing sleep-inducing drugs not to interfere with the
intricate pattern of oscillations that drive important processes
during sleep.

DOPAMINERGIC NEUROMODULATION
Dopamine plays a central role for reward-related memory
processing [123, 124], dopaminergic imbalances contribute to
several neuropsychiatric disorders, including schizophrenia and
depression [125], and reward-related learning mechanisms are
central in the pathogenesis of addiction [126]. For declarative
memory formation, the hippocampus-ventral-striatum-ventral-
tegmental-area-hippocampus feedback loop plays a crucial role,
where dopaminergic input from the ventral tegmental area (VTA)
to the hippocampus—as a reward signal—effectively gates what
enters long-term memory [127]. In their seminal paper, Adcock
et al. [128] asked participants to learn a motivated learning task
that promised an item specific amount of reward for successful
recognition 1 day later. As learning took place in a magnetic
resonance imaging (MRI) scanner, they were able to show that
coordinated activity between the hippocampus and the ventral
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Sharp-wave 
(3-4Hz)

0.5 seconds

1 second

Spindle 
(12-15Hz)

Tiagabine

Tiagabine

Zolpidem

Orchestrated oscillations support 
memory consolidation

Ripples (80-150Hz)

Neocortex

Hippocampus

Fig. 3 GABAergic system interactions with sleep oscillations. The
tightly linked cardinal oscillations observed during sleep are
essential for memory consolidation. The neocortical slow oscillation
plays the role of a clock that drives the hippocampal sharp-waves/
ripples to occur during sleep spindle troughs. Spindle-ripple events
are thus time-locked to occur during the up-state of the slow
oscillation, when excitation of the cortex is facilitated. Additionally,
reactivation of memories that coincides with ripples can thereby
profit from plasticity promoting properties of spindles, such as
increases in intracellular calcium activity, to strengthen cortical
memory traces. GABAergic drugs influence the generation and the
interplay of these oscillations. The GABA reuptake inhibitor
tiagabine enhances activity of the system tonically and thereby
strongly enhances the amount of slow wave activity, including slow
oscillations observed during NonREM sleep. However, it also leads to
a reduced spindle to slow oscillation coupling, which explains that
this boost does not improve memory consolidation. Zolpidem, a
GABA A-positive modulator, on the other hand acts in a phasic
manner, since enhanced receptor action must first be activated by
GABA excretion. It strongly enhances the amount of sleep spindles
and, concomitantly, enhances declarative memory consolidation
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striatum, as well as functional connectivity between the two
areas predicts whether items are recognized 1 day later.
It is important to consider whether this circuitry is recruited

exclusively during learning and reward contingencies are no
longer available to alter consolidation during sleep. Paradigms
showing that rewards can affect memory retroactively over a 24 h
interval, if related information is rewarded after learning, provide
evidence against this idea [129–131]. Importantly, such a boosting
effect of retro-active rewards on procedural memory can even be
elicited, if the reward simply is promised after encoding as long as
participants sleep during the retention interval [132] and a
beneficial effect of sleep on reward-related memory is also
observed in the declarative domain [67, 68]. However, there are
also accounts of negative reinforcement impairing sleep-
dependent memory consolidation [133], no effect of rewards
over the SWS-rich first half of the night [134] and reward
information generalizing across a period of sleep [135], rendering
the role of reward for sleep-dependent memory consolidation less
consistent.
There exist two competing accounts, how sleep may selectively

benefit high-reward memories (Fig. 4). Studies using simultaneous

electrophysiological recordings could show that hippocampal
replay precedes and likely drives replay of motivationally relevant
patterns in the ventral striatum [136, 137]. Evidence for sleep
replay also occurring in the ventral tegmental area [138] offers the
possibility that replay in the hippocampus accesses dopaminergic
neuromodulation during sleep via a feedback loop that acts
similar to wake. Alternatively, highly relevant memories may be
tagged by a dopaminergic process during learning that simply
enhances replay of these memories during sleep without further
dopaminergic involvement. Evidence for this account comes from
a study where optogenetically enhancing dopaminergic inputs to
the hippocampus during maze learning did not alter initial
learning performance [139]. However, replay of task-related cells
was enhanced during post training sleep and crucially post sleep
memory performance was enhanced by this manipulation.
The question of dopamine involvement during sleep was

investigated in humans using a variant of the motivated learning
task mentioned above [128] and pramipexole a dopamine d2-like
receptor agonist [140]. Dopamine d2-like receptors are expressed
post-synaptically in the hippocampus and regulate plasticity [141],
but are also expressed as pre-synaptic auto-receptors regulating
dopamine secretion [142]. In the task, participants had to learn
pictures of interiors and landscapes, which were preceded by a
symbol signaling a high or low reward for later successful retrieval.
Importantly, pictures were shown for a short or a long duration
thereby effectively controlling for encoding strength. Before
sleeping, after learning, participants ingested pramipexole and
recognition was tested the next evening. In the placebo condition,
recognition was better for highly rewarded pictures than for lowly
rewarded ones, as well as for long duration pictures versus short
duration pictures. In the treatment condition, the advantage of
high over low reward was wiped out, whereas, the benefit of
encoding strength persisted. This result demonstrates that it is
possible to influence the selectivity of sleep-dependent consolida-
tion through dopaminergic interventions that can shift consolida-
tion from highly to less relevant items.
We have recently followed up this work to investigate whether

dopamine is necessary for this effect by using the dopamine d2-
like receptor blocker sulpiride ([143], bioRxiv). Otherwise relying
on the exact same procedures, we found that blocking
dopaminergic neurotransmission with a dose of sulpiride that
has been shown to block ~60% of d2-like receptors [144] did not
affect the highly over lowly rewarded memory advantage of sleep.
This means that using an antagonist instead of an agonist of the
d2-like dopamine receptor did not reverse the effects found
initially. While this does not exclude effects mediated by d1-like
dopamine receptors, it may indicate that dopamine plays a less
crucial role for selective consolidation of rewarded information
during sleep and emphasizes the likelihood of a dopaminergic
mechanism during learning that tags memories for sleep
reactivation. Accordingly, it was found that wake replay in the
VTA is more closely linked to reward-related task information than
sleep replay in the VTA [145], offering the possibility that wake
replay of dopaminergic afferents to the hippocampus is used to
tag relevant memories for later dopamine-independent sleep
replay. Importantly, these findings cannot be explained by replay
frequency being merely affected by memory strength rather than
relevance, since more weakly encoded memories are in fact more
likely to be replayed during rest [146] and benefit more from sleep
[147].
Overall, it seems most likely that reward-related specificity of

active systems consolidation is mediated via an up- or down-
regulation of reactivation frequency rather than a recruitment of
dopaminergic neuromodulation. In this scenario, dopaminergic
activity during learning would tag high-reward memories for
preferential reactivation during later active systems consolidation
periods. Such a tag could be established similar to the mechanism
described for synaptic potentiation in the synaptic tagging and

Reward
centres

Selective enhancement of relevant 
memories during sleep

Neocortex

Hippocampus

Pramipexole
Sulpiride

Fig. 4 Dopaminergic neuromodulation for reward-related mem-
ories. During sleep-dependent memory consolidation, relevant (i.e.,
rewarded) memories are consolidated better than less relevant
memories. In our example, it may be highly relevant to remember
that Jane likes to come to the beach, as you want to meet her again.
During wake encoding, selective memory enhancement of reward-
related information is thought to be established through dopami-
nergic neuromodulation from the VTA onto hippocampal plasticity.
Extending this framework to sleep, a reward circuitry perspective
explains selective consolidation by hippocampal reactivation driving
reactivation in the reward centers of the brain (ventral striatum and
VTA) that lead to a dopaminergic neuromodulatory signal enhan-
cing neuroplasticity in the hippocampus via a feedback loop.
However, dopamine also plays a major wake-promoting role and
dopamine interventions have led to mixed results. Alternatively,
relevance may lead to stronger consolidation by enhancing the
reactivation probability of some memories over others through
mechanisms already effective during encoding (magenta arrows
from hippocampus to neocortex). This would allow the strengthen-
ing of rewarded memories without the recruitment of dopaminergic
activity during sleep, but does necessitate that some form of
dopamine-dependent tag is set during learning. In future, other
reward-related neurotransmitter systems may be shown to also play
an important role, such as the endocannabinoid system
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capture hypothesis [148]. One could also speculate on the
possibility that reward modulation is passed to other less well-
studied neurotransmitter systems, such as the endocannabinoid
system, during sleep. This lipid molecule signaling pathway is
intricately linked to stress and sleep regulation [149, 150], but also
is involved in processes of metaplasticity in the hippocampus
[151, 152] and reward processing [153]. The role of this pathway in
sleep-dependent consolidation needs to be examined.

ACETYLCHOLINE
Among the neurotransmitters of the brain, acetylcholine (ACh)
plays an important and possibly the best-characterized role for
active systems consolidation. It was early on speculated that high
levels of ACh are critical to enable learning by allowing
information to flow from the cortex to the hippocampus, where
associations can be bound together [34], also based on
experimental evidence in humans showing that blocking muscar-
inergic ACh receptors immediately after learning word lists
impaired later performance [154]. Low levels during sleep on
the other hand are important for consolidation, as they reverse the
direction of information flow. Essentially, cholinergic tone has
been suggested to determine the direction of the hippocampal to
neocortical dialog that is critical for transfer of declarative memory
in the active systems consolidation framework [35, 155]. However,
cholinergic processes that influence plasticity and network
properties are diverse [156], so that future research should
attempt to more directly link acetylcholine to the direction of
information flow in the hippocampo-cortical system.
For causal evidence of an involvement of cholinergic tone in

sleep-dependent memory consolidation, Gais et al. used the
cholinesterase inhibitor physostigmine to increase cholinergic
tone during early SWS-rich retention sleep, after participants had
learned a hippocampus-dependent declarative word-pair task and
a procedural mirror tracing task [157]. The increased cholinergic
tone specifically disrupted the retention of word-pairs while
leaving procedural mirror tracing unaffected and this effect was
not observed, if participants stayed awake during retention. This
finding highlights the importance of low acetylcholine during the
first half of the night for successful active systems consolidation.
More recent evidence of the effect of blocking muscarinergic

ACh receptors with scopolamine on declarative learning showed
that it impairs paired associate learning and increases effects of
proactive interference [158]. Further, an experiment that simulta-
neously blocked nicotinergic and muscarinergic ACh receptors
using mecamylamin and scopolamine, respectively, reduced
participants’ ability to encode new declarative memories while
sparing procedural ones, which emphasizes the importance of
high-cholinergic tone for new learning of hippocampus-
dependent contents [159]. This intervention also enhanced
consolidation of declarative content during wakefulness, which
indicates that cholinergic tone can even allow successful
consolidation without recruitment of full-blown SWS and its
hallmark oscillations. In light of this clear evidence for a
functionally important dip of acetylcholine during the first half
of the night, it seems prudent to again suggest a revision of the
still widely accepted recommendation of administering cholines-
terase inhibitors at bedtime in Alzheimer’s patients [160].
Interestingly, a recent study using targeted memory reactivation

to boost declarative memory found no detrimental influence of
increasing cholinergic tone during sleep with physostigmine on
the reactivation benefit [161]. In this study, participants learned a
card-pair location task while smelling an associated odor, which
was presented again during subsequent SWS and compared to a
sham condition. One group of participants also received the
cholinesterase inhibitor physostigmine. In contrast to expectation,
increased cholinergic tone did not block the benefit of cued
reactivation. This may indicate that exogenously targeted memory

reactivation does not enhance active systems consolidation but
rather acts on processes of memory strengthening within the
hippocampus, which would strongly limit any interpretation of
targeted memory reactivation studies. To this end, it has recently
been modeled that the hippocampus might even be able to
support a form of systems consolidation within its own networks
[162].

CORTISOL
The adrenal gland hormone cortisol plays a similarly complex
role for the different phases of memory formation. It circulates
within the blood and enters the brain [163], where it acts
especially in the hippocampus as a neuromodulatory transmitter
that affects plasticity in an inverted u-shape manner with
medium levels of corticosterone (the homolog for cortisol in the
rat) eliciting maximum potentiation [164, 165]. Its plasma
concentration follows a circadian rhythm of low concentration
during the first half of the night, increasing concentration across
the second and a peak after awakening, to then decline again
across the day [166]. SWS suppresses cortisol release [167]
and acute psycho-social stressors facilitate it [168, 169].
Enhanced levels of cortisol at learning or shortly thereafter can
increase retention especially of emotional content [170, 171],
whereas, enhanced levels at retrieval impair the recall of
emotional content [172, 173]. Interestingly, rather than a linear
effect of cortisol on retrieval it seems that again medium
amounts are ideal and cortisol action follows an inverted u-
shape [174, 175]. This effect is likely due to different cortisol
affinities of the two cortisol receptors of the brain. In line with
this, it has been shown that blocking mineralocorticoid
receptors impairs memory retrieval in humans, whereas block-
ing glucocorticoid receptors enhances it [176].
Regarding retention, increased cortisol levels during learning

seem to mediate the access of emotional declarative material to
processes of consolidation during sleep but not during wakeful-
ness [177] and this effect of high cortisol during learning is
reversed for procedural memory consolidation during sleep [178].
During sleep, the precise level of minimal cortisol during the first
SWS-rich half of the night seems to be critical. An early study
administered the glucocorticoid receptor agonist dexamethasone
in a split night paradigm to mimic increased levels of cortisol
[179]. This treatment prevented consolidation of declarative word-
pair memory but did not affect non-declarative visomotor skills.
This relationship again seems to follow an inverted u-shape, as the
administration of the cortisol synthesis inhibitor metyrapone,
producing minimum cortisol levels, impaired the consolidation of
neutral declarative memories [180]. Indicating that the precise low
level of cortisol found during SWS is essential for active systems
consolidation. In this regard, it is interesting to mention a
pharmacological study in rats using direct infusion of corticoster-
one into the hippocampus during retention [181]. Mirroring
findings in the cholinergic system, the infusion blocked consolida-
tion of an object place recognition task (an equivalent of a
declarative task in humans) during sleep, but enhanced con-
solidation during the wake state. This indicates that sleep and
wake consolidation seem to be regulated by glucocorticoid-
related processes with low levels of cortisol possibly facilitating
the hippocampal cortical dialog ([182, 183]) critical to active
systems consolidation. Overall, the diverse effects of cortisol on
memory formation are relatively well understood, which can be
attributed to careful consideration of effects during different
arousal states, internal rhythms and memory phases. In light of the
suggestion of using cortisol treatments in clinical settings, e.g., to
prevent post-traumatic stress disorder by administering hydro-
cortisone after acute trauma [184], it should be emphasized that
the exact timing and dosing of any such therapy will be of the
upmost importance.
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NEUROPSYCHIATRIC IMPLICATIONS
From a sleep research point of view, it is generally very interesting
that neuropsychiatric disorders often come hand in hand with
sleep disorders. For example, schizophrenic patients show a
marked reduction in sleep spindle activity during NonREM sleep
[185] and, correspondingly, boosting SWS with transcranial electric
stimulation has been shown to normalize memory performance in
these patients [186]. This relationship seems even more significant
in disorders, where behavioral therapy that relies on new learning
and thus memory formation to transform behavior is a key
technique for treatment [187], such as in anxiety [188], depression
[189], and addiction [190]. Therefore, in these cases, it may be
sensible to treat comorbid sleep disturbances before attempting
to treat the primary disorder to enhance the efficacy of cognitive
behavior therapy. Improving sleep is even more relevant for
Alzheimer’s disease, where a direct causal link between disturbed
sleep and disease pathology is becoming more and more clear
([191], also covered in this issue of NPPR in detail). Next to this
general principle, there exist further specific insights that link
sleep-dependent memory consolidation to neuropsychiatric
disorders.

Phobias
Specific phobias that entail being afraid of and avoiding certain
objects or places are among the most prevalent anxiety
disorders [192, 193]. Their conceptualization as a consequence
of learned behavior goes back to John Watson and his (in)famous
experiments with little Albert [194] and the two process model
introduced by Orval Mowrer [195]. Briefly, this theory assumes that
fearing an object or place is learned through classical conditioning
and operant conditioning maintains this fear through avoidance
of the fearful object or place that acts as negative reinforcement.
Although there exists some debate about the precise nature of the
learning procedures involved, it is commonly agreed that
exposure therapy that tries to extinguish the fear memory is
among the most powerful therapeutic options for this form of
anxiety disorder [196]. In a landmark study, Hauner et al. [197]
showed that fear memories can be extinguished during sleep.
Here, participants underwent contextual fear conditioning, either
while smelling the scent of oranges or pine trees. Only one of the
odors was presented again during subsequent SWS and
participants showed stimulus-specific fear extinction the next
day, which putatively resulted from cuing the fear memory at a
time, i.e., NonREM sleep, when the associated emotional arousal is
diminished or even entirely suppressed. This may be a promising
therapeutic option in patients that are overwhelmed by conven-
tional exposure therapy, however, finding adequate stimuli to
present during sleep poses a significant challenge. Although
another study in humans found similar effects [198], there also
exists some contradictory evidence from animal work regarding
extinction during sleep [199, 200] and so far attempts at directly
cueing exposure therapy sessions with associated odors has failed
[23]. Possibly, a more promising avenue to utilize sleep’s memory
processing capacity would be to use drugs such as D-cycloserine
that have been shown to augment exposure therapy [201]. In fact,
our finding of enhanced memory consolidation by D-cycloserine
during sleep [86] may open a therapeutic window wherein only
successful exposure therapy sessions could be boosted by
administration during the subsequent night, leaving failures to
be forgotten [202].

Depression
It has long been known that patients suffering major depression
are biased towards remembering negative events [203], and it has
been suggested that a competition between negative and
positive memories may lie at the root of this disorder, as well as
its therapeutic improvement [204]. In this regard, sleep and
especially REM sleep have been suggested to play an important

role for the preferential consolidation of emotional memory [205–
207]. In an important contribution to this area, Payne et al. [64]
were able to show that emotional scenes selectively profit from
sleep. Participants’ memory for emotional items was enhanced at
the cost of neutral backgrounds on which they were placed.
Interestingly, the consolidation process seems to strip the
emotional memories from their arousal and valence features,
making them seem more similar to neutral memories regarding
the activation of emotion processing networks in the brain [65].
This has led to the proposal that REM sleep may perform an
important function that allows the brain to store information
about emotional events without the emotional tone [208]. An
alternative view proposes that REM sleep increases the immediate
(i.e., as indicated by measures of the autonomic nervous system)
emotional response, while SWS enhances top-down control over
the elicited emotions, possibly by strengthening cortical traces
through active systems consolidation [209]. This view fits with the
REM sleep suppressive effects found in most antidepressants
[210], as well as the prevalence of sleep disturbance in depressed
patients especially the dysregulation of REM sleep [211], which
may indicate that this process is a prominent driver of the
negative memory bias in depressed patients. In any case, this
opens the possibility that directly targeting memory consolidation
during REM sleep pharmacologically rather than coincidentally
through a side effect could be an effective adjunct therapy in
depression.

Addiction
Similar to anxiety, a two process theory of drug addiction has
been developed [126, 212], where the positive effects of the
substance are connected to the context of consuming it through
classical conditioning. The drug taking context then takes on the
role of a secondary reinforcer and cues drug seeking behavior. It
has been shown that exposure therapy can effectively attenuate
neural cue-reactivity to substance stimuli [213], which opens the
intriguing possibility of exposing addicts undergoing rehabilita-
tion to drug-specific odor stimuli during sleep to extinguish their
effect. Distinct substance-specific odors are likely easier to
identify here than in anxiety disorders, e.g., the most frequently
abused substance alcohol has a distinct smell, whereas spiders
do not. Another possible route of therapy could use classical
conditioning of unconditioned stimuli to shape behavior and
some evidence has become available that this very low-level
type of learning can be achieved during human sleep [214]. In
fact, such a paradigm has already been used successfully in
smokers to pair unpleasant smells with the smell of cigarettes
during sleep, which reduced smoking behavior [215]. These
therapeutic strategies could be accompanied by pharmacologi-
cal interventions targeting the dopaminergic system aimed at
boosting alternative behavior.
In sum, sleep’s memory reprocessing offers a so far underused

window of opportunity to treat neuropsychiatric disorders. A
precise knowledge of the mechanisms involved and especially the
unique plastic processes governing sleep-dependent consolida-
tion will be indispensable when attempting this.

FUTURE DIRECTIONS AND CLINICAL IMPLICATIONS
While significant progress has been made in deciphering the
neurochemical mechanisms of sleep-dependent memory proces-
sing, the sheer complexity and the vast difference to wake
encoding machinery is only beginning to be appreciated.
Pharmacological research in humans will remain of essence to
identify the mechanisms without the burdensome and often
impossible work of translation. However, increasing regulatory
requirements and extremely high costs may make this work less
attractive than other lines of neuroscientific inquiry in the field of
human sleep and memory research. In addition, animal research

Neurochemical mechanisms for memory processing during sleep: basic. . .
GB Feld and J Born

39

Neuropsychopharmacology (2020) 45:31 – 44



will have to complement the human work to make use of
substances not available in humans and to rule out redundant
pathways. For example, with respect to the role of glutamatergic
transmission, it would be very informative to block NMDA- and
mGlu5-receptors simultaneously to rule out that either takes over
the function of the other. However, this requires carefully
weighing whether the experiments can truly do without harnes-
sing the complexity of human behavior. Correspondingly, animal
in-vitro work will have to consider how it can model sleep’s-
specific neurochemical and neurooscillatory milieu, else it risks
painting a completely false picture of plasticity during sleep.
To end on a more positive note: the research presented here

already offers several attractive candidates to develop applied
interventions. In addition, targeted memory reactivation para-
digms could be elegantly combined with pharmacological
interventions to fine tune long-term memory stores, erasing
unwanted maladaptive memories and replacing them with
alternatives. It is important to acknowledge that sleep is not
merely an idle state that can, e.g., be used to minimize the
experience of cognitive side effects of pharmacological treat-
ment, as is evidenced by the misguided recommendation to
administer cholinesterase inhibitors before bedtime so that
nausea and vertigo do not disturb patients during waking hours.
Such a new perspective may also reinvigorate the development
of novel neuropharmacological drugs that currently seems
caught in a rut.
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