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Abstract
Molecular classifications of colorectal cancer are benefitting cancer research by providing

insights into subtype-specific disease prognosis and improved therapeutic interventions.

Different conventional DNA markers, such as microsatellite instability, CpG island methyl-

ator phenotype, chromosomal instability, and BRAF and KRAS mutations, have been used

to classify colorectal cancer patients but have not yet shown promising prognostic values.

Here, for the first time, to the best of our knowledge, we show a classification of colorectal

cancer tumors from Saudi Arabian patients based on the gene expression profile. An exist-

ing method of colorectal cancer subtyping has been applied to the gene expression profile

of tumors from Saudi colorectal cancer patients. A survival analysis was done on the pre-

dicted colorectal cancer subtypes. In silico functional analyses were conducted on the gene

signature used for the subtype prediction. The predicted subtypes showed a distinct but

statistically insignificant overall survival distribution (log-rank test, P¼ 0.069). A comparison

of the predicted subtypes in Saudi colorectal cancer patients with that of French patients

showed significant dissimilarity in the two populations (Chi-square test, P¼ 0.0091).

Functional analyses of the gene signatures used for subtyping suggest their association

with “cancer” and “gastrointestinal diseases.” Most of the signature genes were found

differentially expressed in colorectal cancer tumors compared to adjacent normal tissues.

This classification framework might facilitate the treatment of colorectal cancer patients.
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Introduction

Colorectal cancer (CRC) is the third-leading cancer type of the
estimated number of new cancer cases and deaths in the 2010
United States (US) population with 142,570 (9%) new cases
and 51,370 (9%) deaths, respectively.1 In the Saudi population,

it is the most frequent type of cancer in males (13.9%) and

third-frequent in females (10.2%) (Saudi Cancer Registry,

2013). The cancer mortality rate due to CRC in the Saudi pop-

ulation is 12.5% in males and 11.1% in females (http://www.

who.int/cancer/country-profiles/sau_en.pdf). Substantial
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efforts have been made to understand and characterize the

disease according to availablemolecular determinants such as

microsatellite instability (MSI),2,3 BRAF and KRAS mutation

status,4 and CpG island methylator phenotype (CIMP)5 to

classify CRC patients to achieve a predictable treatment out-

come (i.e. prognosis). However, the patient groups classified

by these molecular markers individually or in combination

showed a remarkable difference in therapeutic response and

patient survival, contributing to the well-known notion of

CRC being a heterogeneous disease.6,7 Numerous methods

to further subtype the CRC tumors/patients based on clinical,

pathological, genomic, genetic and epigenetic features have

been proposed in the recent past.5,8–13 In a large-scale multi-

dimensional analysis, a hypermutant group of CRC tumors

has been revealed which was not fully explained by the MSI

status and 24 genes were found hypermutated providing sev-

eral new therapeutic targets.13 In the last five years, a plethora

of research publications focused on the problem of CRC sub-

typing and most of them used the gene expression profile

(GEP) of the tumor samples employing unsupervised hierar-

chical clustering methods.14–19 These methods are indepen-

dent of each other and differ in gene expression platforms (for

e.g. Affymetrix HGU133plus2 and Agilent gene chips), meth-

ods of clustering, and patient cohorts in training and valida-

tion sets. Unsurprisingly, thesemethods resulted in a different

number of subtypes or classes of CRC tumors with three,16,17

five,15,18,19 and six14 subtypes.
In the present study, we used a genome-wide mRNA

expression dataset of 48 matched normal and tumor
sample pairs from Saudi CRC patients using Affymetrix
exon arrays.20 We applied one of the existing GEP-based
CRC subtyping methods14 on this dataset to predict the
various subtypes present among the CRC patients. The
predicted subtypes differ in the overall survival probabili-
ties showing the prognostic value of the subtyping.
Functional analyses concluded the biological relevance of
the gene signature used for CRC subtyping. Differential
gene expression (DGE) analysis was done to show that
most of the genes from the signature list were significantly
differentially expressed in the CRC tumor tissues com-
pared to the corresponding normal tissues samples.

Materials and methods

Ethical approval and sample collection

The study was approved ethically by the Institutional
Review Board (IRB) of King Abdullah International
Medical Research Center after a review process. The CRC
patients were recruited for the study and the tissue samples
were collected after the informed consent was signed by
the patients.

The samples were collected either through biopsies or
surgical resections during the patients’ first presentation at
the clinic for CRC diagnosis. The tumor and matched
normal tissue samples were collected from 48 patients total-
ing 96 samples for further studies. All cases regardless of

their surgical stage and histological grade were included in
this study. The inclusion criteria for the tumor samples
were (i) confirmation of histological consistency of speci-
mens with colon adenocarcinoma by a board certified
pathologist (ii) and retention of >60% tumor cell nuclei in
the specimens. The tissue samples from each selected CRC
patient that contained no tumor cells and physically adja-
cent (>2 cm apart) to the tumor site were designated as
matched normal samples. In addition, the patients have
not received any CRC-related therapeutic intervention
prior to the time of the biopsy. The patient and tumor char-
acteristics are shown in Table 1.

Exon microarray

The tumor and normal tissue specimens weighed between
10 and 30 mg. The tissue samples were stored in an
RNAlater (Ambion) at 4�C for 24 h followed by freezing
and storage at �20�C. RNA was extracted from these tis-
sues using a Macherey Nagel RNA extraction kit
(Germany) in a single preparation. The quality and quan-
tity of the extracted RNAwere checked using a Nanodrop
(Thermo Fischer Scientific, USA).

The genome-wide GEP of the tumor and matched
normal samples were obtained using GeneChipTM
Human Exon 1.0 ST Arrays from Affymetrix, following
the manufacturer’s protocol. This array is also used to
study alternative splicing in human genome on a
genome-wide scale. In the GeneChipTM Human Exon 1.0
ST Arrays, multiple probes on different exons summarize
the expression value of all transcripts for the same gene. In
this study, we obtained the expression value at gene level
using these exon arrays. The raw signal intensity data in the
form of CEL files were extracted using Expression Console
Software from Affymetrix. All the data from this study
were previously submitted to the GEO database with the
accession numbers GSE50421 and GSE77434.

Quality control and preprocessing of raw data

Before starting the downstream analysis of the exon micro-
array data, quality control (QC) experiments were done
using the “oligo” package written in R based on
BioConductor.21 Extensive QC analyses were conducted
to ensure the quality of our exon array data.

The preprocessing process (refers to the series of com-
plex statistical methods) comprised of different steps of
microarray data analysis (i) background correction, (ii)
quantile normalization, and (iii) summarization of the
exon probes intensities at gene level. These steps were con-
ducted using the RMA22–24 (Robust Multichip Average)
method implemented in the “oligo” package.

CRC subtype prediction method

We used a previously published subtype prediction
method based on GEP that classifies the CRC tumors/
patients in six different subtypes.14 This subtyping
method was based on unsupervised hierarchical clustering
of GEP from 443 samples of the training dataset and 1029
samples from the validation dataset which showed that the
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samples were clustered into six clusters or subtypes. Each
subtype was characterized based on different clinicopath-
ological, phenotypic, and mutation datasets. The molecular
subtypes were robust because of the method adopted: (i) a
consensus clustering method using both gene and sample
resampling (1000 resampling using 90% of genes and sam-
ples in each resampling) leading to stable results, (ii) the
large number of samples (n¼ 443) processed with the same
experimental procedure to obtain subtypes, (iii) the classi-
fication metrics (Euclidean/Pearson) that provide the same
results. Moreover, the clinical and biological characteristics
of the subtypes remained conserved in the large validation
dataset collected across different centers in different
conditions.14

For the creation of the subtype predictionmodel, five top
up-regulated and five top down-regulated genes were
selected from each subtype and a centroid-based predictor
was built. To predict/assign a subtype to a new sample, a
standard distance-to-centroid approach was used.25 This
prediction approach, developed previously, has been
implemented in the R package “citccmst.”14 There are var-
ious steps underlying the prediction algorithm as men-
tioned in the manual of “citccmst” in R. The steps are
briefly described here for the sake of clarity.

1. Mapping the genes from our CRC tumor expression
dataset to the 57 discriminating genes/probes used
in the centroid calculation in “citccmst” from the dis-
covery dataset.14

2. Averaging expression measures per gene symbol
both in our CRC dataset and in the citccmst discovery
dataset. Both our CRC data and the citccmst discov-
ery set data are reduced to discriminating probes/
genes measured in both datasets.

3. Recomputing the centroids of the six subtypes using
the citccmst discovery dataset from step 2.

4. Computing the distances of each of the CRC samples
to the six centroids.

5. Assigning each sample to the subtype(s) based on the
closest distance to the centroids. If the sample is close
to many centroids, the sample is considered as a
“mixed” subtype. If the distance of a sample to the
closest centroid is too far to confidently assign the
sample to a given subtype, the sample is considered
as an “outlier”. Both the mixed and outlier cases are
considered as uncertain and might be removed
from analysis.

Thus, in the present study, the “citccmst” (http://cit.
ligue-cancer.net) R package was used to predict the sub-
types of CRC samples.

Chi-square test and logistic
regression analysis

The subtype prediction results using our CRC dataset were
compared to the French dataset using a Chi-square test. To
rule out the possibility of confounding factors, in explain-
ing the observed difference in the populations, we have re-
analyzed the relationship between the population and the
distribution of subtypes controlling for age, gender, and
stage of the disease using generalized logistic regression
and found no effect of those confounding variables. In the
light of these additional analyses, we suggest that the
observed difference in the distribution of subtypes is
more likely inherent to the patient population. We have
included these findings in Table 2.

Table 1. Patient and tumor characteristics of CRC cohorts.

Characteristics Our dataset (n547)

CIT discovery

dataset (n5443) P-value

Mean age (SD, range) in years 62 (13, 28–97) 67 (14, 22–97) 0.0195^^

Sex (male/female) (percent) 19/28 (40.4/59.6) 237/206 (53/47) 0.0880^

TNM stage (percent)

I 1 (2.1) 27 (6) <.0001^

II 7 (14.9) 198 (45)

III 39 (83) 164 (37)

IV 0 (0) 54 (12)

Adjuvant chemotherapy (percent)

Yes 26 (55.3) 161 (45) 0.0674*

No 20 (42.6) 200 (55)

NA 1 (2.1) 1

Tumor location

Proximal 13 (27.7) 176 (40) 0.1060^

Distal 34 (72.3) 267 (60)

Median follow-up (SD, range), months 36.6 (24, 0–69.6) 50 (39, 0–201)

Relapse (percent)

Yes 4 (8.5) 109 (30) <.0001^

No 39 (83) 250 (70)

NA 4 (8.5) 3

^P-value was calculated based on Chi-square test.

*P-value was calculated based on Fisher’s Exact test.

^^ P-value was calculated based on two sample t-test.

CRC: colorectal cancer.
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Survival analysis

The patients’ overall survival probabilities were analyzed
using the Kaplan–Meier estimator. The Kaplan–Meier esti-
mator is a non-parametric statistical test that estimates the
survival function from patients’ survival data. The overall
survival is defined as the time from the diagnosis or the
start of treatment of CRC until the patient remains alive.
The overall survival probabilities were plotted for the six
predicted subtypes. The survival distribution of each
molecular subtype manifests the biological significance of
the subtype. The survival distributions were compared
using a log-rank test. The R software package “survival”
and “survminer” were used for the Kaplan–Meier survival
analysis and the SAS procedure “Phreg” was used for the
Cox-regression.

DGE analysis

The genes which are significantly differentially expressed
in the tumor samples, compared to the corresponding
normal samples, have been identified by the use of linear
models through the R/Bioconductor software package
“Limma.”26 This package has the capability of analyzing
comparisons between many genes simultaneously. It is
also designed for analyzing complex experiments with a
variety of experimental designs. Here, the analysis was
focused on identifying the genes expressed differentially
in the case of CRC tissue samples and matching this list
with 57 genes signature used for subtyping.

Functional analyses of gene signature used
for subtyping

To identify the most relevant biological pathway related to
the 57 gene signatures, we used the Ingenuity Pathway
Analysis (IPA) tool (www.ingenuity.com). This web-based
tool provides the statistical measure of the presence of the
gene set in various biological pathway datasets. The value
(–log*P-value) of 2 for e.g. explains that there is a 1% pos-
sibility that the gene set is present in the pathway through
random chance. It means that the score of 2 or more equates
to a 99% confidence that the genes are present in the specific
pathway. The analysis also maps the gene set on the rele-
vant biological gene networks and ranks the networks
based on a score. It also provides biomarker information

if any of the genes in the gene set have features that could
be considered as a biomarker.

A gene set enrichment analysis (GSEA) was conducted
to further analyze the overlap of the 57 gene signatures
with other relevant existing data sets using the freely avail-
able MsigDB (http://software.broadinstitute.org/gsea/
msigdb/annotate.jsp).

The overall analyses strategy adopted in the current
study has been summarized as an illustration in Figure 1.

Results

Outlier detection

We tested the CRC samples for any anomalies or outliers in
the exon microarray data generation. The proximity-based
models, such as the clustering method, marked two sam-
ples as potential outliers. In addition, a principal compo-
nent analysis and heatmap also highlighted the same two
samples as potential outliers. Those two samples (050911–
01-TS and 073011–01-TS) were eliminated from the dataset
for all the downstream analysis.

CRC subtypes using the tumor GEP

The pre-processed and normalized GEP of tumor samples
from CRC patients were used to classify the CRC tumors
into subtypes using one of the existing methods of CRC
subtyping.14 The “citccmst” method classified the samples
into six different subtypes C1, C2, C3, C4, C5, and C6 with
14, 2, 3, 3, 13, 11 (two samples were removed as outliers)
samples in each subtype, respectively. A PCA plot was also
generated by the classification method to show the distri-
bution of samples along the two-dimensional space (Figure
2). The upper and lower panels in Figure 2 are the PCA
plots showing the “citccmst discovery dataset” and our
“input dataset,” respectively. We also intended to compare
the subtype prediction results using our CRC dataset with
that of the discovery dataset of the citccmst study.14 The Chi-
square test suggests that these two populations (Saudi and
French) of tumor samples were significantly different (P-
value¼ 0.0091) in the context of the proportion of different
CRC molecular subtypes (Figure 3). Generalized logistic
regression analysis showed no effect of possible confound-
ing factors such as age, gender, and disease stage (Table 2).

Table 2. Associations to the six subtypes using multinomial logistic regression.

Parameters

Subtype-C2

(OR (95%CI)

Subtype-C3

(OR (95%CI)

Subtype-C4

(OR (95%CI)

Subtype-C5

(OR (95%CI)

Subtype-C6

(OR (95%CI) P-value

Age 1.022 (0.976; 1.07) 1.006 (0.957;1.058) 0.991 (0.938;1.048) 1.036 (0.996;1.078)* 1.004 (0.961; 1.05) 0.4378

Gender M vs. F 0.329 (0.104;1.038)* 1.533 (0.425;5.533) 1.84 (0.449;7.534) 0.782 (0.303; 2.02) 0.483 (0.159;1.474) 0.1053

Stage II vs. I 1.422 (0.162;12.48) 1.844 (0.141;24.05) 912E3 (�2172;1E154) 0.707 (0.114;4.362) 2.056 (0.156;27.13) 0.8966

Stage III vs. I 0.779 (0.085;7.187) 1.256 (0.092;17.23) 186E4 (�2171;1E154) 0.425 (0.068;2.671) 1.002 (0.074;13.54) 0.8966

Stage IV vs. I 3E-7 (�3710;1E154) 49E�8 (�3956;1E154) 208E4 (�2171;1E154) 0.566 (0.022;14.89) 6.65 (0.229;192.8) 0.8966

Population Saudi

vs. French

0.169 (0.029;0.966)* 0.097 (0.01;0.894)* 0.179 (0.03;1.066)* 0.79 (0.264;2.365) 1.444 (0.4;5.215) 0.0313

OR: odds ratio; CI: confidence interval.

Note: P-value is reported from type 3 analysis of effects.

*P<0.1 is the modality P value.
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Prognostic value of the predicted subtypes

The patient’s survival data were analyzed to determine
the overall survival distribution after grouping the
patients into the predicted subtypes (Figure 4). The differ-
ences between the survival distribution of the subtypes

were compared using a log-rank test with an endpoint of
four year overall survival. The survival probabilities
among the six subtypes differ greatly though not statisti-
cally significant (P-value¼ 0.069). This might be due to
the insufficient number of subjects in each subtype. The
patients with C4 and C6 subtypes showed a poor outcome
in overall survival (median survival time 161 and 210
days) compared to patients with C1 and C5 subtypes
(median survival time 1304 and 1027, respectively). To
confirm this, we recoded our classification by combining
C4 and C6 into a single high-risk group, versus all other
subtypes as the low-risk group. This grouping has already
been reported in earlier literature.14 From our analysis,
this dichotomous classification led to significantly differ-
ent overall survival probabilities between the high-risk
group and the low-risk group (P-value¼ 0.0151)
(Figure 5).

Cox proportional hazard analysis

We performed a Cox analysis to determine the prognostic
value of the predicted subtypes controlling for other known
prognostic variables. Controlling for age, tumor size,
gender, types of therapy and metastasis status, the effect
of the predicted subtype was no longer statistically

Figure 1. Overall analysis methodolgy adopted in the current study. (A color version of this figure is available in the online journal.)

Figure 2. PCA plot showing the distribution of the CRC tumor samples in two

dimensional spaces into six subtypes. The upper and lower panels in the plot

display the sample distribution using “citccmst discovery dataset” and our “input

dataset,” respectively.
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significant (hazard ratio [HR]: 3.63, 95% CI: 0.794–16.603,
P¼ 0.097). However, age and metastasis status remained
statistically significant (HR: 0.89, 95% CI: 0.82–.96,
P¼ 0.0152), (HR: 15.153, 95% CI: 1.74–132.19, P¼ 0.0048),
respectively.

Differential expression of gene signature
used for subtyping

The molecular subtypes predicted in this study were
based on 57 genes/probes selected from a previous
study for classification of CRC tumor samples. The pres-
ence of those genes in our CRC dataset prompted us to
check the expression profile of the genes. The matched
normal and tumor tissue samples for all the CRC patients
were used for the DGE analysis. The analysis resulted in
2866 genes being significantly differentially expressed in

the tumor tissues. Of the 2866 genes, 1610 genes were
down-regulated and 1256 genes were up-regulated.
Comparing the 57 gene signatures to the 2866 gene list
showed that there are 22 genes (22/57¼ 38% genes)
from the gene signatures which are significantly differen-
tially expressed in our CRC dataset. The volcano plot
shows the DGE of the gene signatures in the CRC dataset
(Figure 6).

Figure 3. Comparison of subtype proportion from our CRC (“internal,” red bar) dataset with that of the French (“citccmst,” green bar) dataset. (A color version of this

figure is available in the online journal.)

Figure 4. Survival plot showing the overall survival distribution of six predicted

subtypes of CRC patients.

Figure 5. Survival plot showing the overall survival distribution of low and high

risk subtype groups. (A color version of this figure is available in the

online journal.)
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IPA core analysis of the gene signatures

Gene signature used for classification is functionally
relevant as indicated by their association with cancer

Fifty-seven gene signatures were subjected to an ingenuity
pathway core analyses to analyze its functional relevance
(Figure 7). The most statistically significant function asso-
ciated with these genes was cancer followed by gastroin-
testinal disease, hereditary disorder, and metabolic disease.
The majority, 54/57 genes was associated with cancer,
while 48/57 genes were found to be associated with gas-
trointestinal diseases. This gene signature had only 4 genes
that were found to be associated with colorectal adenoma
(CA1, CA2, HSD11B2, and BEST2) but 44 genes were asso-
ciated with gastrointestinal neoplasia (Table S1).

Top network involving gene signature molecules is
significantly associated with cancer

We conducted a network analysis of the 57 genes used for
the classification (Figure 8). Eleven of these genes were part

Figure 6. Differential gene expression analysis of 57 genes in our CRC dataset.

Red solid circles represent 22 out of 57 genes found differentially expressed in

the CRC tumor dataset. (A color version of this figure is available in the

online journal.)

Figure 7. Ingenuity pathway analysis of 57 gene signature showing “cancer” as the most significant function associated with these genes. (A color version of this figure

is available in the online journal.)

Rashid et al. Molecular classification of colorectal cancer 1011
...............................................................................................................................................................



of the network which has a top score of 19. Only 3 of these
11 genes were found to be differentially expressed in our
CRC tumor samples compared to the matched normal
tissue samples. This network was functionally associated
with cancer, hematological disease, and immunological dis-
ease. Two miRNAs were also part of this network (miR-101
and miR-101-3p), which provide tools to modulate the
function of the genes. Further, we checked the differential
expression of some of the genes in the network and found
CA1 to be significantly down-regulated.

GSEA of 57 gene signatures. We used the molecular sig-
nature database (MsigDB) and GSEA software to determine
the overlap of these 57 genes with the available gene sets
present in MsigDB. The result (Table S2) showed that the
signature genes are associated with a number of cancer rel-
evant gene sets including gastric cancer, breast cancer, and
extracellular matrix proteins. Mapping the genes onto a
NCI-60 cell line expression profile present in the MsigDB
also showed that these genes are either highly up-regulated
(red color on heatmap) or highly down-regulated (blue
color on heatmap) with little intermediate colors
(Figure S1).

Biomarker analysis of the gene signatures

We conducted a biomarker analysis of the 57 gene signa-
tures to assess the potential of these genes as biomarkers for
diagnosis, efficacy, disease progression, and prognosis. Six
of these genes were found to be candidate biomarkers that
could be detected in human blood, plasma/serum, urine,
blood platelets, cytotoxic and effector T cells and large
intestine. Of these six genes, five (83%) were found to be
differentially expressed in our CRC tumor samples com-
pared to the matched normal tissue samples. CA2 and
HPSE were identified as genes which could be targets for
many drugs (Table 3).

Discussion

CRC is a very heterogeneous disease among patients and
hence it is difficult to classify it in a clinically relevant
manner. There have been several attempts to capture this
heterogeneity by proposing different classification schemes
that evolved with improved understanding of the molecu-
lar details pertaining to CRC. The latest scheme of classifi-
cation which is considered to be the most comprehensive
till date employed an amalgamation of classification
schemes from six groups.27 All six classification schemes
were based on the GEP from different populations and

Figure 8. Top scoring network containing 11 out of 57 genes indicating the association with cancer, hematological disease and immunological disease. (A color

version of this figure is available in the online journal.)
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platforms. In the present study, we aimed to enrich the
classification efforts by employing one of the six classifica-
tion schemes for subtyping CRC patient samples from
Saudi Arabia. We also analyzed the biological relevance
of the genes used for classification and found their associ-
ation with important biological functions and disease along
with pathways and networks.

Though the number of samples used by “citccmst” for
classification (n¼ 443) was much higher than our dataset
(n¼ 48), this particular classification scheme was able to
capture all six subtypes in our sample. This was expected
given that the smallest subtype group (C6) in the “citccmst”
dataset represents 10.2% which suggests that in our dataset
it could be expected to observe 4.8 subjects on average. Our
results suggest that the distribution of the subtypes across
our dataset and the “citccmst” CRC tumor samples are sig-
nificantly different (Chi-square test, P¼ 0.0091). One expla-
nation for these findings is that the patterns of the genes
involved in the subtyping differ across populations.
Another explanation could be that the distribution of the
subtypes might reflect the clinical heterogeneity between
our population and the original “citccmst” dataset. This is
apparent by the fact that patients in our dataset are youn-
ger, and with a lower proportion of stage IV compared to
the citccmst. The latter is more plausible given the fact that
the different subtypes reflect the underlying molecular
state of the cancer as described by Marisa et al.14 This is
an important feature of a subtyping scheme especially in
the context of personalized medicine where a method by
which clinicians could capture the entire molecular state of
that specific patient or a cohort of patients could be
required. To confirm the sensitivity of this classification
approach to the underlying state of the population of
interest, more studies need to be conducted in different
populations with different clinical presentations and
characteristics.

The prognostic value of the identified subtypes is evi-
dent by the survival pattern of the patients belonging to
specific subgroups. Though our dataset is limited by the
number of patients in each subgroup, the pattern of surviv-
al probability is similar in subgroups C4 and C6 exhibiting
the worst outcome, whereas C2 and C3 show the best prog-
nosis. Since there is no survival analysis available for the
validation datasets used byMarisa et al.,14 our data validate
the survival pattern associated with the predicted sub-
groups identified using the 57 genes signatures. Our data
suggest that patients within subtypes C4 and C6 have a
poor outcome which could be ascribed to the associated
molecular characteristics as discussed earlier. An interest-
ing observation in our analysis is that we could not estab-
lish a statistically significant effect of the subtyping in the
presence of other known prognostic variables such as age,
gender, andmetastasis status. Our results are not consistent
with the findings of Marisa et al. where it appears that the
subtyping does offer prognostic value beyond the other
prognostic variables that they have added in their model,
which may be due to our limited sample size. A study with
a larger pool of patients from different populations might
be important to validate the additional value of subtyping
beyond the currently known prognostic factors.

Further, we analyzed the biological relevance of the 57
genes’ signature in terms of the associated disease and net-
works. As expected, the most significantly associated dis-
ease was cancer followed by gastrointestinal disease.
However, only four genes were associated with colorectal
adenoma. Of these, the CA1 gene was significantly down-
regulated in our patient cohort which confirms previous
results in the TCGA data set.28 CA1 has also been used in
the gene classifier that is associated with the cellular phe-
notype18 and using a single cell approach.29 Usually classi-
fication of gene signatures with functionally relevant genes
is useful in explaining the biology of CRC subtypes. As we
have reported earlier, 28/30 genes used for the classifica-
tion were associated with CRC. However, these genes were
used to classify the tumor and normal samples.30 We fur-
ther analyzed the differential expression of the 57 genes
between our normal and matched cases and found some
of them to be significantly differentially expressed. We con-
structed a network of genes in the classification signature
based on their association. The most statistically significant
network had 11 of the 57 genes. Of these IGFBP5, IL1B and
NKD1 were found to be up-regulated, while CA1 and
TSPAN1 were down-regulated in our patient cohort. Out
of these 11 genes, 8 genes were not differentially expressed
in our CRC tumor samples. This may reflect the underlying
difference in gene expression program in Saudi CRC
patients. In the biomarker analysis using IPA, six (out of
57) genes were identified as potential biomarkers, and sur-
prisingly, five of the six genes were found to be differen-
tially expressed in our CRC tumor samples. It provides
evidence of the usability of these five genes as potential
biomarkers in Saudi CRC patients. Moreover, each of the
remaining 17 genes (22–5) which were shown to be differ-
entially expressed but not reported as biomarkers in the
IPA analysis from the Saudi CRC tumor samples, is a
target for further investigation as a potential biomarker in
the Saudi population.

We also checked the overlap of statistically significant
differentially expressed genes across the predicted sub-
types. There were a variable number of genes in each sub-
type that were differentially expressed with respect to the
rest of the subtypes. Most of the genes in each subtype were
common with one or more subtypes. However, some of the
genes are unique in each subgroup except for C3. These
unique genes provide an opportunity for suggesting sub-
type specific targets which may have utility as biomarkers.

Limitations

One obvious limitation of our study is the small sample size
and therefore a larger cohort of Saudi CRC patients might
be needed to confirm our observations. Our analysis did
not include classical features such as the CIMP, MSI, and
MMR status of the patients due to the low availability of the
patients’ samples.
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