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Summary

Because hospitalized preterm infants are vulnerable to infection, they receive frequent and often 

prolonged exposures to antibiotics. It is not known if the short-term effects of antibiotics on the 

preterm infant gut microbiota and resistome persist after discharge from neonatal intensive care 

units. Here, we use complementary metagenomic, culture based, and machine learning techniques 
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to interrogate the gut microbiota and resistome of antibiotic-exposed preterm infants, during and 

after hospitalization, and compare these readouts to antibiotic-naïve healthy infants sampled 

synchronously. We find a persistently enriched gastrointestinal antibiotic resistome, prolonged 

carriage of multidrug resistant Enterobacteriaceae, and distinct antibiotic-driven patterns of 

microbiota and resistome assembly in extremely preterm infants who received early life 

antibiotics. The collateral damage of early life antibiotic treatment and hospitalization in preterm 

infants is long-lasting. We urge development of strategies to reduce these consequences in highly 

vulnerable neonatal populations.

Introduction

Gut microbes play important roles in host health and disease throughout life, particularly in 

infancy1. Infant gut microbiota (IGM) assembly accelerates in the first months of life, 

following inoculation by organisms from mothers and the environment2, but stabilizes by 

approximately three years of age3. Antibiotics in this interval may disproportionately 

damage the host-microbiota ecosystem3–5. Indeed, emerging data suggest that early-life gut 

microbial alterations correlate with chronic metabolic and immune disorders later in 

life1,4,6–16, including allergies17, psoriasis18, adiposity19, diabetes20 and inflammatory 

bowel disease21–23. For most of these disorders, a causal link between antibiotic-mediated 

microbiota disruption and onset of pathology is lacking. However, antibiotics in infancy are 

associated with permanent immune alterations18,24 and inflammatory bowel disease in 

childhood23, highlighting the damaging long-term potential of early life antibiotic treatment.

Over 11% of live births worldwide occur preterm25, and preterm birth and its sequelae are 

prominent causes of childhood morbidity and mortality worldwide26. Because bacterial 

infections are frequent complications of preterm birth27, 79% of very low birthweight and 

87% of extremely low birthweight infants in US NICUs receive antibiotics within three days 

of birth29. The gastrointestinal tracts of even healthy infants harbor a diverse antibiotic 

resistome30, which is shaped by factors including antibiotics, diet, and environment31–33. 

Preterm IGM perturbation immediately following antibiotic treatment is characterized by 

decreased alpha diversity, increased Enterobacteriaceae abundance, and antibiotic-specific 

enrichment of antibiotic resistance genes (ARGs) and multidrug resistant organisms 

(MDROs)34. Because microbiota perturbation during infancy may be disproportionately 

damaging35,36, it is imperative to study the lasting effects of antibiotics and hospitalization 

on the preterm IGM. Prior studies of preterm infants report IGM recovery concomitant with 

NICU discharge37–39. However, these studies rely on culture or amplicon sequencing (e.g. 

16S rRNA) based analysis, which focus on taxa in the microbiota rather than the functions 

they collectively encode. Here, we analyze ~1.2 terabases of metagenomic DNA from 437 

infant stools, culture and sequence 530 bacterial isolates, and functionally select 300 

gigabases of metagenomic DNA for antibiotic resistance, to investigate the long-term 

consequences of antibiotic treatment on the preterm IGM.
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Metagenomic based analysis of the effect of antibiotics on the preterm IGM

To understand the long-term effects of prematurity and associated early life hospitalization 

and antibiotic therapy on the IGM, we performed whole metagenome shotgun sequencing of 

437 fecal samples from 58 infants over the first 21 months of life (Supplementary Fig. 1; 

Supplementary Fig. 2). Our cohort included 41 preterm infants sampled in the NICU at St. 

Louis Children’s Hospital and following discharge to home. One subset of this cohort (n=9) 

received scant antibiotic therapy neonatally (each received a single concurrent course of 

gentamicin and ampicillin for <7 days). The remaining 32 preterm infants received extensive 

antibiotics over the first 21 months (median (interquartile range (IQR)) 8 courses (6,10.3) 

and 29.5 days (41.63,68.3) antibiotic therapy). All infants in this cohort were classified as 

being born preterm ((median (IQR) gestational age at birth of 26 weeks (25,27)) with very 

low birth weights (median (IQR) 840 g (770,960)). Additionally, we included 17 antibiotic-

naïve, healthy early term40 or late preterm41 (median (IQR) gestational age at birth 36 weeks 

(36,37 weeks); “near-term”) infants of the same chronological age range, sampled 

synchronously with the preterm cohort.

We inferred bacterial taxonomic composition using MetaPhlAn42. Across all infants, 

Shannon diversity increased during a developmental phase before stabilizing (Fig. 1a). In 

near-term infants, microbiota Shannon diversity increases rapidly in the first month before 

plateauing, while preterm infant microbiota diversity increases more gradually and with 

greater variation (Fig. 1a). Enterobacteriaceae and Enterococcaceae dominate the preterm 

IGM in the first months of life. In contrast, early colonization by Enterobacteriaceae in near-

term infants precedes robust colonization with Bifidobacteriaceae (Fig. 1b; Supplementary 

Fig. 3). Enterococcaceae is significantly less abundant early in life (<4 months chronological 

age) in near-term compared to preterm infants (p<0.001, Wilcoxon), and Prevotellaceae is 

similarly less abundant later in infancy (>8 months chronological age) in preterm infants 

compared to near-term infants (p<1×10−10, Wilcoxon). Despite these differences, we 

observed predicted microbiota functional stability both over time and between groups (Fig. 

1c), as inferred by HUMAnN243. While it is likely that greater variation exists when finer 

functional category or predicted hosts of functions are taken into account, the invariability of 

microbiota functional capacity at this high level suggests that while prematurity, early life 

hospitalization, and antibiotic treatment drastically perturb taxonomic composition of the 

microbiota, a core set of microbial functions remains conserved across hosts44.

Low gut microbiota diversity is often associated with adverse health in infants45–47, 

children5, and adults48. To identify features associated with microbiota diversity, we 

regressed Shannon diversity on clinical variables (Methods, Supplementary Table 1) using a 

generalized linear mixed model with subject defined as individual effect. All variables in 

Supplementary Table 1 were included in initial modeling, and a final model was fit via 

backwards elimination of variables. After correcting for multiple comparisons, day of life 

was significantly associated with increased Shannon diversity (p<0.001), while recent 

(within 30 days of sample collection) administration of vancomycin (p<0.001), ampicillin 

(p<0.001), meropenem (p=0.009), or cefepime (p=0.012) was significantly associated with 

decreased diversity (Fig. 1d). No clinical variable included in the model other than antibiotic 

treatment was significantly associated with IGM diversity. The sparse model explained 57% 
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of the variance in Shannon diversity by the fixed effects (day of life and antibiotic 

treatments) alone, and an additional 12% by subject. The magnitude of the model estimate 

for day of life (0.002) was substantially less than those for recent antibiotics (vancomycin, 

−0.34; ampicillin, −0.60; meropenem, −0.42; cefepime, −0.46; oxacillin, −0.70). Thus, a 

single recent course of antibiotics has an effect on diversity of the same magnitude as the 

diversity increase observed over ~5–12 months of life. Across all infants in our cohort 

through the first 110 days of life, Shannon diversity of the microbiota was significantly 

lower in infants who received >1 course of antibiotics in the prior month (Fig. 1e). 

Accordingly, recent antibiotic treatment appears to be a key driver of microbiota diversity 

early in life.

Partial microbiota recovery following NICU discharge

While the taxonomic composition of the preterm infant microbiota clustered by both 

gestational age at birth and antibiotic treatment status (Adonis, p<0.001, Bray–Curtis), 

chronological age was a major driver of microbiota composition across all infants (Fig. 2a). 

We hypothesized that after observed early-life perturbation, the composition of the preterm 

microbiota would converge towards that of age-matched healthy, antibiotic-naïve, near-term 

infants within the first 21 months of life, but that microbiota ‘scars’ from this early-life 

disruption (e.g., enriched ARGs and MDROs) would persist.

To quantify the extent of this perturbation, we used random forests to regress the relative 

abundances of species in the microbiota of infants against their chronological age as 

previously described51. The minimum number of variables required for accurate prediction 

was 50 (Fig. 2b). We trained a model consisting of the 50 most informative predictors on the 

antibiotic-naïve, near-term infant subset to model healthy microbiota development, and 

subsequently refined and validated the model. The top age discriminatory taxa in the IGM of 

antibiotic-naïve, near-term infants were Faecalibacterium prausnitzii, Subdoligranulum sp., 

Ruminococcus gnavus, and Oscillobacter sp. (Fig. 2c). We used this sparse model to predict 

infant chronological age using the relative abundance of these 50 species. This prediction, or 

‘microbiota age,’ approximates relative microbiota maturity51. We observed a linear 

relationship between the chronological and microbiota ages of antibiotic-naïve, near-term 

infants, suggesting that the model accurately predicts near-term infant age. For preterm 

infants, however, predicted microbiota ages were younger than chronological age across 

several stages of development, indicating that microbiota development is disrupted in these 

infants. To better quantify the extent of disruption, we computed a microbiota for age Z-

score (MAZ) for each metagenome, as previously described51. Using a Z-score to compare 

age bins is necessary because this value reflects the variance of predicted age across infant 

microbiota development. Preterm infants who receive antibiotic treatment have significantly 

lower MAZs than near-term infants in the first months of life (Fig. 2e). However, by months 

12–15 of life, the MAZs of hospitalized preterm infants closely resemble those of healthy, 

antibiotic-naïve, near-term infants (Fig. 2f). Thus, despite transient delays in the 

development of the preterm IGM, the bacterial taxonomic composition converges on 

common structures with those of healthy, antibiotic-naïve, infants within the first 21 months 

of life (Fig. 2d).
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Antibiotic resistome of preterm IGM

We next characterized the antibiotic resistome encoded in the IGM of our cohort. We 

conducted functional metagenomic analysis53 of 217 preterm and term infant stools, selected 

to encompass the diversity in clinical variables in our cohort. We constructed 22 functional 

metagenomic libraries totaling 396 gigabase pairs (Supplementary Fig. 4; Supplementary 

Table 1; see Methods) with an average insert size of 2–3 kilobase pairs, selected libraries on 

sixteen antibiotics relevant to infants and children (Supplementary Table 3), and recovered 

resistant transformants for each antibiotic except meropenem (Supplementary Fig. 4). We 

found that the infant gut metagenome encoded transferrable resistance even to antibiotics 

rarely or never used in neonates, such as ciprofloxacin and chloramphenicol, and those that 

represent last lines of defense against MDROs, such as tigecycline and colistin. Only one of 

eight libraries constructed from stools of antibiotic-naïve, near-term infants encoded 

ciprofloxacin resistance (mediated by loci other than gyrA or parC), compared to six out of 

fourteen libraries constructed from preterm infant stools. This observation, given the scarce 

use of ciprofloxacin in neonates28, suggests either that acquired ciprofloxacin resistance 

occurs naturally in preterm infant gut bacterial communities, or that organisms resistant to 

ciprofloxacin are co-selected by other antibiotics to which they are resistant.

We sequenced resistance-conferring metagenomic inserts and assembled 874 unique ARGs. 

The median identity of these functionally-selected ARGs to the NCBI nr database was 

94.4%, while their median identity to the Comprehensive Antibiotic Resistance Database 

(CARD)54 was 32.0% (Fig. 3a). Hence, while most resistance determinants discovered in 

our functional selections have been previously sequenced, they have frequently not been 

assigned resistance functions, a discordance we have previously noted34. Functionally-

selected ARGs with low identity to CARD, while not canonical resistance genes widespread 

in the clinical setting at this point, represent candidates for or progenitors of clinical 

resistance genes given opportunity, mobilization, or evolution53,58. The predicted sources of 

resistance conferring ORFs (determined by best BLAST hit to the NCBI non-redundant 

protein database) were predominantly uncultured bacteria or Enterobacteriaceae (Fig. 3b). 

The identification of Enterobacteriaceae as likely hosts of ARGs in the IGM is consistent 

with current understanding of Enterobacteriaceae as prolific hosts and traffickers of 

ARGs55–57. Additionally, the identification of uncultured (189 ORFs) and unclassified (24 

ORFs) bacteria as sources of ARGs highlights the value of functional metagenomics as a 

culture- and sequence-unbiased method for characterizing resistomes58.

Highlighting the potential for lateral ARG exchange within the infant microbiome, 225 

contigs (6.4% of all contigs) recovered in functional selections encoded a mobile genetic 

element (MGE, Supplementary Fig. 5a–e). MGEs were most commonly observed in 

tetracycline selections (Supplementary Fig. 5f), but were also commonly observed in β-

lactam, chloramphenicol, gentamicin, and ciprofloxacin selections. We observed enrichment 

for MGEs on amoxicillin/clavulanate (p<0.01, hypergeometric test), tetracycline (p<0.01, 

hypergeometric test), and gentamicin (p<0.001, hypergeometric test). The synteny of 

functionally-selected ARGs with MGEs suggests the possibility of a mobilizable resistome 

in the IGM.
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We extended our resistome analysis using ShortBRED59 to quantify translated ARG 

abundance in all sequenced metagenomes with a custom database that included all ARGs 

from CARD as well as functionally-selected ARGs identified here. Resistomes clustered 

according to gestational age at birth and antibiotic treatment status (Fig. 3c, p<0.001, 

Adonis). The gut metagenomes of preterm infants encoded fewer unique ARGs than those of 

near-term infants (p<0.01, Wilcoxon, Fig. 3d). However, the cumulative resistome relative 

abundance was significantly higher in the IGM of preterm infants with early-plus-

subsequent antibiotic treatment compared to preterm infants with early-only antibiotic 

treatment and to antibiotic-naïve, near-term infants (p<0.05, Wilcoxon, Fig. 3e). There was a 

weak inverse correlation between taxonomic alpha diversity and cumulative resistome 

burden across all metagenomes (R2=0.09, Supplementary Fig. 6a), indicating that resistome-

enriched microbiota are dominated by a few species. Indeed, in 41 of the 54 metagenomes 

with a cumulative resistome of reads per kilobase per million mapped reads (RPKM) >5000, 

a single species comprised >50% of microbiota relative abundance. In 25 of these samples, 

the dominant species was E. coli (Supplementary Fig. 6b). Other dominant species were 

Enterococcus faecalis (n=5), Klebsiella pneumoniae (n=2), Staphylococcus epidermidis 
(n=2), Enterobacter aerogenes (n=2), Bifidobacterium breve (n=2), Pseudomonas 
aeruginosa, Bifidobacterium longum, and Citrobacter koseri (n=1 each). Thus, it appears 

that extreme prematurity, associated hospitalization, and antibiotic treatment select for one 

or two MDROs that dominate the IGM rather than enriching for a greater diversity of 

resistant organisms.

To define the developmental progression of the infant gastrointestinal resistome over the first 

months of life, we regressed the abundance of ARGs in a subset of antibiotic-naïve, near-

term infant gut metagenomes against the day of life for these infants using random forests52. 

We constructed a sparse model using the 50 most informative ARGs. The sparse model was 

subsequently applied to preterm samples to predict ‘resistome age.’ A clear developmental 

trajectory based on these 50 ARGs was evident in near-term infants (Fig. 3g). The 

developmental trajectory of the preterm infant gut resistome deviates from that of the 

antibiotic-naïve, near-term infants in prolonged carriage of some ARGs (e.g., oqxA, oqxB, 

catI, fosA5, cdeA), near absence of others (e.g., abeM), and a general increase in the 

normalized abundance of these genes in the gut across all timepoints (Fig. 3g). Overall, we 

found that the model only modestly predicted the chronological age of preterm infants (R2 = 

0.62, Fig. 3f), suggesting that distinct patterns of resistome development emerge based on 

antibiotic treatment status and gestational age at birth.

Persistence of multidrug resistant Enterobacteriaceae in the preterm IGM

Whole metagenome shotgun sequencing is a powerful method for describing gross 

microbiota composition and function but is less well equipped to elucidate strain level 

variation. The gut has been established as an early reservoir of bacteria that cause late onset 

bloodstream infections in neonates60 and is dominated by multidrug resistant (MDR) 

Proteobacteria34, but the extent to which these early colonizing strains persist in the IGM is 

poorly defined. We hypothesized that early life hospitalization and antibiotic treatment in 

preterm infants might create a gastrointestinal niche for such Proteobacteria that is not 

relinquished after discharge from the NICU. To better understand the persistence of specific 
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bacterial strains in the microbiota of infants in our cohort, we cultured pairs of stools 

collected 8–10 months apart from 15 infants (nine preterm and six near-term) on a series of 

selective agars (see Methods). We optimized culture conditions to isolate opportunistic 

extraintestinal pathogens known to be highly prevalent and abundant in the IGM as well as 

those that are frequently MDR. In total, we cultured 530 isolates from these 30 samples. We 

whole genome sequenced, assembled, and annotated 277 and 253 isolates from the preterm 

and near-term sets, respectively.

The species most frequently isolated by this direct selection were E. coli (n=139), K. 
pneumoniae (n=62), E. faecalis (n=50), Enterobacter cloacae (n=42), E. faecium (n=22), C. 
freundii (n=15), and K. oxytoca (n=14). We identified within-infant persistence of nearly 

identical strains of E. coli, E, cloacae, and K. variicola in samples collected from both 

preterm and near-term infants. These highly similar, persistent isolate pairs from preterm 

infants included isolates from samples collected both while in the NICU and following 

discharge (Fig. 4). Among the persistent isolates recovered were strains of E. coli ST405 and 

E. cloacae ST108, both of which are high-risk lineages known to encode extended-spectrum 

β-lactamases and NDM-family carbapenemases61–63. Each of the E. coli strains encoded a 

TEM-1 β-lactamase as well as an aac(3)-IId aminoglycoside acetyltransferase with predicted 

resistance to aminoglycosides, and each E. cloacae strain encoded an AmpC type β-

lactamase. The K. variicola strains each encoded oqxAB, the RND-type multidrug efflux 

pump64, and the chromosomal Klebsiella β-lactamase blaOKP-B-165 (Supplementary Table 

4). We isolated nearly identical MDR Enterobacteriaceae, as suggested by average 

nucleotide identity >99.997% (Fig. 4b,d,f) and core gene single nucleotide polymorphism 

distances (Supplementary Table 4), from the preterm IGM both in the NICU and following 

discharge. These data support an enduring and transmissible pathological microbiome “scar” 

associated with preterm birth, early life hospitalization, and antibiotic treatment.

Because Enterococcus species are prevalent and abundant in the preterm infant gut34, often 

MDR66, and cause nosocomial blood stream infections in preterm infants67, we investigated 

their resistance and virulence phenotypes. A particular concern among hospitalized 

populations is vancomycin resistant Enterococci (VRE)68. Of the 15 unique Enterococcus 
strains we isolated, ten were E. faecalis and five were E. faecium (Supplementary Fig. 7a). 

No E. faecalis, and two E. faecium isolates were resistant to vancomycin. However, no E. 
faecium strain formed a biofilm, while four of the E. faecalis strains formed robust biofilms 

at room temperature, and an additional six formed biofilms at 37˚C (Supplementary Fig. 7b). 

Interestingly, all biofilm forming strains were isolated from preterm infant stool. This is 

consistent with the prevailing understanding that early colonizers of the preterm infant gut 

are largely surface adapted strains that are prevalent in the NICU environment69. E. faecalis 
biofilm formers, while susceptible to vancomycin when planktonic, were resistant to this 

antibiotic when in biofilms (Supplementary Fig. 7c). Thus, despite the apparent tradeoff 

between vancomycin resistance and biofilm formation observed among Enterococcus 
strains, nearly all have evolved strategies for surviving vancomycin treatment. This is 

concerning given widespread usage of vancomycin (Table 1) and prevalence of 

Enterococcus colonization (Fig. 1b) in the NICU.
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Persistent metagenomic signature of antibiotic treatment in premature 

infants

To understand if prematurity, hospitalization, and antibiotic treatment have persistent effects 

on gut microbial content and function, we sought to identify metagenomic features that 

distinguish post-NICU discharge samples in preterm infants from age-matched samples from 

antibiotic-naïve, near-term infants. We used a supervised learning approach to classify 

samples as originating from a hospitalized preterm infant (including both early-only and 

early-plus-subsequent antibiotic treatment groups) or an antibiotic-naïve near-term infant 

residing at home, based on the relative abundance of bacterial taxa and ARGs in their IGM. 

Using a support vector machine, we identified the fifteen most informative features and 

constructed a model consisting of only these variables, which correctly classified all preterm 

and 15 of the 17 near-term samples (96.4% accuracy, Fig. 5a). Of the fifteen variables most 

important to model performance, six were ARGs and nine were bacterial taxa (Fig. 5b). The 

ARGs important to classification were the class A β-lactamase cfxA670, and five genes 

functionally selected on piperacillin or tetracycline, respectively. The highest identity 

BLAST hit of four of the functionally-selected ARGs was an ABC transporter, while the 

other was a MATE family efflux transporter. The predictive species were members of the 

order Clostridiales (Eubacterium rectale, Ruminococcus obeum, R. lactaris, Dorea 
formicigenerans, E. ventriosum, E. ramulus, E. eligens) and Bacteroidales (Prevotella copri, 
Barnesiella intestinihominis). Our model accurately identified if a preterm infant was 

hospitalized and received early life antibiotic treatment based on metagenome composition 

following NICU discharge despite high level architectural recovery.

Conclusion

By combining metagenomic sequencing, selective and differential stool culture paired with 

isolate sequencing, functional metagenomics, and machine learning, we demonstrate 

persistent metagenomic signatures of early life antibiotic treatment and hospitalization in 

preterm infants. This is manifest in an enriched gut resistome and persistent carriage of 

MDR Enterobacteriaceae, despite apparent recovery in microbiota maturity. Regardless of 

prematurity or antibiotic exposure, we observed little variation in the functional capacity of 

the microbiota, albeit when metagenomic reads are binned in broad functional categories. 

Our work highlights the need to integrate sequencing- and culture-based approaches for 

interrogating microbiota to reveal underappreciated effects of perturbations. These 

complementary methods provide data supporting a persistent metagenomic signature of 

early life hospitalization and antibiotic treatment associated with prematurity in the dynamic 

microbial community housed in the infant gut.

We were unable to isolate the effects of antibiotics from those of other adverse early life 

events coinciding with prematurity, such as extended hospitalization and illness. While an 

interventional study to probe these variables in neonates is infeasible, future animal studies 

could provide important insights into their relative contributions. Additionally, it is probable 

that yet to be defined environmental variables play a role in the co-development of the 

immune system and the microbiota, which would need to be addressed in future studies. 
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Despite these caveats, we supply compelling evidence for the underappreciated lasting effect 

of prematurity and associated hospitalization and antibiotic treatment on the microbiome. 

These perturbations may play a role in chronic pathologies associated with prematurity for 

which the etiology is unclear. From a clinical standpoint, our findings emphasize a necessity 

for alternatives to broad-spectrum antimicrobial therapy for managing infection in the 

NICU. This should entail therapeutic approaches such as narrow-spectrum antibiotics and 

probiotic therapies71, but also improved accuracy and speed of diagnostics to reduce 

unnecessary courses of antibiotics. It is unclear if these results are generalizable across 

NICUs. Future multicenter studies are important to reveal the effect of neonatal antibiotic 

stewardship practices in IGM development. While the metagenomic scars we identified may 

be implicated in sequelae of preterm birth such as neurodevelopmental72–74, metabolic75,76, 

cardiac77,78, and respiratory79,80 defects, further experiments with model systems including 

gnotobiotic animals are needed to link these enduring dysbioses and lasting pathologies.

Methods

Sample and metadata collection

All samples and patient metadata used in this study were collected as part of the Neonatal 

Microbiome and Necrotizing Enterocolitis Study (P.I.T., P.I.) or the St. Louis Neonatal 

Microbiome Initiative (B.B.W., P.I.) at Washington University School of Medicine and 

approved by the Human Research Protection Office (approval numbers 201105492 and 

201104267, respectively). Samples were obtained from infants after parents provided 

informed consent. Because very few hospitalized preterm infants are antibiotic naïve, we 

stratified our cohort for sample analysis by antibiotic exposure and gestational age at birth, 

with a subset of individuals with early antibiotic exposure only (N=9) with no antibiotic 

exposure outside the first week of life, a subset of individuals with early and subsequent 

antibiotic exposure (N=32), and a subset of late preterm or early term infants (N=17) who 

were not hospitalized and were antibiotic-naïve over the first months of life (Table 1). All 

stools produced were collected and stored as previously described1,2. In total, 437 samples 

collected longitudinally from 58 infants were shotgun sequenced and included in all 

metagenomic analysis.

Metagenomic DNA extraction

Metagenomic DNA was extracted from approximately 100 mg of stool samples using the 

PowerSoil DNA Isolation Kit (MoBio Laboratories) following the manufacturer’s protocol 

with the following modification: samples were lysed by two rounds of two minutes of bead 

beating at 2.5k oscillations per minute for 2 minutes followed by 1 minute on ice and 2 

additional minutes of beadbeating using a Mini-Beadbeater-24 (Biospec Products). DNA 

was quantified using a Qubit fluorometer dsDNA BR Assay (Invitrogen) and stored at 

−20˚C.

Metagenomic sequencing library preparation

Metagenomic DNA was diluted to a concentration of 0.5 ng/μL prior to sequencing library 

preparation. Libraries were prepared using a Nextera DNA Library Prep Kit (Illumina) 

following the modifications described in Baym et al, 20153. Libraries were purified using 
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the Agencourt AMPure XP system (Beckman Coulter) and quantified using the Quant-iT 

PicoGreen dsDNA assay (Invitrogen). For each sequencing lane, 10 nM of approximately 96 

samples were pooled three independent times. These pools were quantified using the Qubit 

dsDNA BR Assay and combined in an equimolar fashion. Samples were submitted for 

2×150 bp paired-end sequencing on an Illumina NextSeq High-Output platform at the 

Center for Genome Sciences and Systems Biology at Washington University in St. Louis 

with a target sequencing depth of 2.5 million reads per sample.

Rarefaction analysis

To determine the appropriate sequencing depth necessary to fully characterize infant gut 

microbiota composition and function, 17 representative metagenomes that were sequenced 

most deeply were subsampled at the following read depths: 8000000, 7000000, 6000000, 

5000000, 4000000, 3000000, 2000000, 1000000, 100000, and 10000. Subsampled 

metagenomes were profiled using MetaPhlAn 2.04 to determine species richness at each 

depth. Rarefaction was only used to establish an appropriate sequencing depth, and 

subsampled metagenomes were not used for any downstream analyses.

Metagenome profiling

Prior to all downstream analysis, Illumina paired-end reads were binned by index sequence. 

Adapter and index sequences were trimmed and sequences were quality filtered using 

Trimmomatic v0.365 using the following parameters: java -Xms2048m -Xmx2048m -jar 
trimmomatic-0.33.jar PE -phred33 ILLUMINACLIP: NexteraPE-PE.fa:2:30:10:1:true 
SLIDINGWINDOW:6:10 LEADING:13 TRAILING:13 MINLEN:36. Relative abundance 

of species was calculated using MetaPhlAn 2.04 (repository tag 2.2.0). Relative abundance 

tables were merged using the merge_metaphlan_tables.py script. Abundance of metabolic 

pathways was determined using HUMAnN26. Raw count values were normalized for 

sequencing depth, collapsed by ontology, and tables were merged using the 

humann2_renorm_table, humann2_regroup_table, and humann2_join_tables utility scripts.

Construction of metagenomic libraries from infant gut samples for functional selection

We constructed 22 functional metagenomic libraries by pooling metagenomic DNA from 9–

10 stools per library, encompassing 396 gigabase pairs (Gb) of metagenomic DNA with an 

average library size of 18 Gb (Supplementary Fig. 4; Supplementary Table 1) and an average 

insert size of 2–3 kilobase pairs (kb). Approximately 5 μg purified extracted total 

metagenomic DNA was used as starting material for metagenomic library construction. To 

create small-insert metagenomic libraries, DNA was sheared to a target size of 3,000bp 

using the Covaris E210 sonicator following manufacturer’s recommended settings (http://

covarisinc.com/wp-content/uploads/pn_400069.pdf). Sheared DNA was concentrated by 

QIAquick PCR Purification Kit (Qiagen) and eluted in 30 μl nuclease-free H2O. Then the 

purified DNA was size-selected by using BluePippin instrument (Sage Science) to a range of 

1000–6000 bp DNA fragment through a premade 0.75% Pippin gel cassette. Size selected 

DNA was then end-repaired using the End-It DNA End Repair kit (Epicentre) with the 

following protocol
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1. Mix the following in a 50 μl reaction volume: 30 μl of purified DNA, 5 μl dNTP 

mix (2.5 mM), 5 μl 10X End-Repair buffer, 1 μl End-Repair Enzyme Mix and 4 

μl nuclease-free H2O.

2. Mix gently and incubate at room temperature for 45 min.

3. Heat-inactivate the reaction at 70°C for 15 min.

End-repaired DNA was then purified using the QIAquick PCR purification kit (Qiagen) and 

quantified using the Qubit fluorometer BR assay kit (Life Technologies) and ligated into the 

pZE21-MCS-1 vector at the HincII site. The pZE21 vector was linearized at the HINCII site 

using inverse PCR with PFX DNA polymerase (Life Technologies)

1. Mix the following in a 50 μl reaction volume: 10 μl of 10X PFX reaction buffer, 

1.5 μl of 10 mM dNTP mix (New England Biolabs), 1 μl of 50 mM MgSO4, 5 μl 

of PFX enhancer solution, 1 μl of 100 pg μl 21 circular pZE21, 0.4 μl of PFX 

DNA polymerase, 0.75 μl forward primer (5’ GAC GGT ATC GAT AAG CTT 

GAT 3’), 0.75 μl reverse primer (5’ GAC CTC GAG GGG GGG 3’) and 29.6 μl 

of nuclease free H2O to a final volume of 50 μl.

2. PCR cycle temperature as follows: 95°C for 5 min, then 35 cycles of [95°C for 

45 s, 55°C for 45 s, 72°C for 2.5 min], then 72°C for 5 min.

Linearized pZE21 was size-selected (~2,200bp) on a 1% low melting point agarose gel 

(0.5X TBE) stained with GelGreen dye (Biotium) and purified by QIAquick Gel Extraction 

Kit (Qiagen). Pure vector was dephosphorylated using calf intestinal alkaline phosphatase 

(CIP, New England BioLabs) by adding 1/10th reaction volume of CIP, 1/10th reaction 

volume of New England BioLabs Buffer 3, and nuclease-free H2O to the vector elute and 

incubating at 37°C overnight before heat inactivation from 15 min at 70°C. End-repaired 

metagenomic DNA and linearized vector were ligated together using the Fast-Link Ligation 

Kit (Epicentre) at a 5:1 ratio of insert:vector using the following protocol

1. Mix the following in a 15 μl reaction volume: 1.5 μl 10X Fast-Link buffer, 0.75 

μl ATP (10 mM), 1 μl FastLink DNA ligase (2 U/μl), 5:1 ratio of metagenomic 

DNA to vector, and nuclease-free H2O to final reaction volume.

2. Incubate at room temperature overnight.

3. Heat inactivate for 15 min at 70°C.

After heat inactivation, ligation reactions were dialyzed for 30 min using a 0.025 um 

cellulose membrane (Millipore catalogue number VSWP09025) and the full reaction volume 

used for transformation by electroporation into 25 μl E. coli MegaX (Invitrogen) according 

to manufacturer’ srecommended protocols (http://tools.invitrogen.com/content/sfs/manuals/

megax_man.pdf). Cells were recovered in 1 ml Recovery Medium (Invitrogen) at 37°C for 

one hour. Libraries were titered by plating out 0.1 μl and 0.01 μl of recovered cells onto 

Luria–Bertani (LB) agar plates containing 50 μg/ml kanamycin. For each library, insert size 

distribution was estimated by gel electrophoresis of PCR products obtained by amplifying 

the insert from 36 randomly picked clones using primers flanking the HincII site of the 

multiple cloning site of the pZE21 MCS1 vector (which contains a selectable marker for 

kanamycin resistance). The average insert size across all libraries was determined to be 3 kb, 
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and library size estimates were calculated by multiplying the average PCR-based insert size 

by the number of titered colony forming units (CFUs) after transformation recovery. The rest 

of the recovered cells were inoculated into 50 ml of LB containing 50 μg/ml kanamycin and 

grown overnight. The overnight culture was frozen with 15% glycerol and stored at −80°C 

for subsequent screening.

Functional selections for antibiotic resistance

Each metagenomic library was selected for resistance to each of 16 antibiotics (at 

concentrations listed in Supplementary Table 3 plus 50 μg/ml kanamycin for plasmid library 

maintenance) was performed using LB agar. Of note, as our library host, E. coli, is 

intrinsically resistant to vancomycin, we are unable to functionally screen for loci conferring 

resistance to this antibiotic. Further, the use of kanamycin as the selective marker for the 

metagenomic plasmid library results in low-level cross-resistance with other aminoglycoside 

antibiotics, resulting in a higher required minimum inhibitory concentration for gentamicin. 

For each metagenomic library, the number of cells plated on each antibiotic selection 

represented 10x the number of unique CFUs in the library, as determined by titers during 

library creation. Depending on the titer of live cells following library amplification and 

storage, the appropriate volume of freezer stocks were either diluted to 100 μl using MH 

broth + 50 μg/ml kanamycin or centrifuged and reconstituted in this volume for plating. 

After plating (using sterile glass beads), antibiotic selections were incubated at 37°C for 18 

hours to allow the growth of clones containing an antibiotic resistance conferring DNA 

insert. Of the 352 antibiotic selections performed, 296 yielded antibiotic-resistant E. coli 
transformants (Supplementary Fig. 4). After overnight growth, all colonies from a single 

antibiotic plate (library by antibiotic selection) were collected by adding 750 μl of 15% LB-

glycerol to the plate and scraping with an L-shaped cell scraper to gently remove colonies 

from the agar. The slurry was then collected and this process was repeated a second time for 

a total volume of 1.5 mL to ensure that all colonies were removed from the plate. The 

bacterial cells were then stored at −80°C before PCR amplification of antibiotic-resistant 

metagenomic fragments and Illumina library creation.

Amplification and sequencing of functionally-selected fragments

Freezer stocks of antibiotic-resistant transformants were thawed and 300 μl of cells pelleted 

by centrifugation at 13,000 revolutions per minute (r.p.m.) for two minutes and gently 

washed with 1 mL of nuclease-free H2O. Cells were subsequently pelleted a second time 

and re-suspended in 30 μl of nuclease-free H2O. Re-suspensions were then frozen at −20°C 

for one hour and thawed to promote cell lysis. The thawed re-suspension was pelleted by 

centrifugation at 13,000 r.p.m. for two minutes and the resulting supernatant was used as 

template for amplification of resistance-conferring DNA fragments by PCR with Taq DNA 

polymerase (New England BioLabs)

1. Mix the following for a 25 μl reaction volume: 2.5 μl of template, 2.5 μl of 

ThermoPol reaction buffer (New England BioLabs), 0.5 μl of 10 mM 

deoxynucleotide triphosphates (dNTPs, New England Biolabs), 0.5 μl of Taq 

polymerase (5 U/μl), 3 μl of a custom primer mix, and 16 μl of nuclease-free 

H2O.
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2. PCR cycle temperature as follows: 94°C for 10 min, then 25 cycles of [94°C for 

45 s, 55°C for 45 s, 72°C for 5.5 min], then 72°C for 10 min.

The custom primer mix consisted of three forward and three reverse primers, each targeting 

the sequence immediately flanking the HincII site in the pZE21 MCS1 vector, and staggered 

by one base pair. The staggered primer mix ensured diverse nucleotide composition during 

early Illumina sequencing cycles and contained the following primer volumes (from a 10 

mM stock) in a single PCR reaction: (primer F1, CCGAATTCATTAAAGAGGAGAAAG, 

0.5 μl); (primer F2, CGAATT CATTAAAGAGGAGAAAGG, 0.5 μl); (primer F3, 

GAATTCATTAAAGAGGAGAAAGGTAC, 0.5 μl); (primer R1, 

GATATCAAGCTTATCGATACCGTC, 0.21 μl); (primer R2, 

CGATATCAAGCTTATCGATACCG, 0.43 μl); (primer R3, 

TCGATATCAAGCTTATCGATACC, 0.86 μl). The amplified metagenomic inserts were then 

cleaned using the Qiagen QIAquick PCR purification kit and quantified using the Qubit 

fluorometer HS assay kit (Life Technologies).

For amplified metagenomic inserts from each antibiotic selection, elution buffer was added 

to PCR template for a final volume of 200 μl and sonicated in a half-skirted 96-well plate on 

a Covaris E210 sonicator with the following setting: duty cycle, 10%; intensity, 5; cycles per 

burst, 200; sonication time, 600s. Following sonication, sheared DNA was purified and 

concentrated using the MinElute PCR Purification kit (Qiagen) and eluted in 20 μl of pre-

warmed nuclease-free H2O. In the first step of library preparation, purified sheared DNA 

was end-repaired

1. Mix the following for a 25 μl reaction volume: 20 μl of elute, 2.5 μl T4 DNA 

ligase buffer with 10 mM ATP (10X, New England BioLabs), 1 μl dNTPs (1 

mM, New England BioLabs), 0.5 μl T4 polymerase (3 U/μl, New England 

BioLabs), 0.5 μl T4 PNK (10 U/μl, New England BioLabs), and 0.5 μl Taq 

Polymerase (5 U/μl, New England BioLabs).

2. Incubate the reaction at 25°C for 30 min followed by 20 min at 75°C.

Next, to each end-repaired sample, 5 μl of 1 μM pre-annealed, barcoded sequencing adapters 

were added (adapters were thawed on ice). Barcoded adapters consisted of a unique 7-bp 

oligonucleotide sequence specific to each antibiotic selection, facilitating the de-

multiplexing of mixed-sample sequencing runs. Forward and reverse sequencing adapters 

were stored in TES buffer (10 mM Tris, 1 mM EDTA, 50 mM NaCl, pH 8.0) and annealed 

by heating the 1 μM mixture to 95°C followed by a slow cool (0.1°C per second) to a final 

holding temperature of 4°C. After the addition of barcoded adapters, samples were 

incubated at 16°C for 40 min and then for 10 min at 65°C. Before size-selection, 10 μl each 

of adapter-ligated samples were combined into pools of 12 and concentrated by elution 

through a MinElute PCR Purification Kit (Qiagen), eluting in 14 μl of elution buffer (10 mM 

Tris-Cl, pH 8.5). The pooled, adaptor-ligated, sheared DNA was then size-selected to a 

target range of 300–400 bp on a 2% agarose gel in 0.5X TBE, stained with GelGreen dye 

(Biotium) and extracted using a MinElute Gel Extraction Kit (Qiagen). The purified DNA 

was enriched using the following protocol
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1. Mix the following for a 25 μl reaction volume: 2 μl of purified DNA, 12.5 μl 2X 

Phusion HF Master Mix (New England BioLabs), 1 μl of 10 mM Illumina PCR 

Primer Mix (5’-AAT GAT ACG GCG ACC ACC GAG ATC-3’ and 5’-

CAAGCAGA A GAC GGC ATA CGA GAT-3’), and 9.5 μl of nuclease-free 

H2O.

2. PCR cycle as follows: 98°C for 30 s, then 18 cycles of [98°C for 10s, 65°C for 

30 s, 72°C for 30s], then 72°C for 5 min.

Amplified DNA was measured using the Qubit fluorometer HS assay kit (Life Technologies) 

and 10 nM of each sample were pooled for sequencing. Subsequently, samples were 

submitted for paired-end 101-bp sequencing using the Illumina Next Seq platform at the 

DNA Sequencing and Innovation Lab at the Edison Center for Genome Sciences and 

Systems Biology, Washington University in St Louis, USA). In total, three sequence runs 

were performed at 10 pM concentration per lane.

Assembly and annotation of functionally-selected fragments

Illumina paired-end sequence reads were binned by barcode (exact match required), such 

that independent selections were assembled and annotated in parallel. Assembly of the 

resistance-conferring DNA fragments from each selection was achieved using PARFuMS7 

(Parallel Annotation and Reassembly of Functional Metagenomic Selections), a tool 

developed specifically for the high-throughput assembly and annotation of functional 

metagenomic selections.

Open reading frames (ORFs) were predicted in assembled contigs using MetaGeneMark8 

and annotated by searching amino acid sequences against Pfam, TIGRfam, and an ARG 

specific profile hidden Markov model (pHMM) database, Resfams9 (http://

www.dantaslab.org/resfams), with HMMER310. MetaGeneMark was run using default gene-

finding parameters while hmmscan (HMMER3) was run with the option --cut_ga as 

implemented in the script annotate_functional_selections.py. Selections were excluded from 

analysis if (a) more than 200 contigs were assembled or (b) the number of contigs assembled 

exceeded the number of colonies on the selection plate by a factor of ten. Further, assembled 

contigs less than 500 bp were discarded. Since many assembled contigs include multiple 

annotated ORFs, the subset of proteins considered causative resistance determinants for 

downstream analysis were classified using the following hierarchical scheme. First, if a 

contig encoded a protein with a 100% amino acid identity hit to the CARD database11, it 

was considered the causative resistance determinant on that contig. Next, if a contig encoded 

a protein with a significant hit to a Resfams pHMM using profile specific gathering 

thresholds, it was considered the causative resistance determinant on that contig. In absence 

of a high scoring hit to the CARD or Resfams databases, contigs were manually curated to 

identify plausible resistance determinants on an antibiotic specific basis. The rationale for 

this hierarchical classification scheme was to first identify perfect matches to known 

resistance determinants via BLAST to CARD (with a threshold of 100% amino acid 

identity), and subsequently identify variants of known resistance determinants using 

Resfams pHMMs. Using these criteria, 1184 of the 5658 unique predicted proteins (20.9%) 

were classified as resistance determinants.
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The percent identity of all resistance determinants were determined using BlastP12 query 

against both the NCBI non-redundant protein database (retrieved May 21, 2018) and the 

CARD11 database (version 1.2.1, retrieved January 24, 2018). Once the top local alignment 

was identified with BlastP, it was used for a global alignment using the Needleman-Wunsch 

algorithm as implemented in the needle program of EMBOSS13 version 6.6.0 as previously 

described14.

Putative mobile genetic elements were identified on functionally-selected contigs based on 

string matches to one of the following keywords in Pfam and TIGRfam annotations: 

‘transposase’, ‘transposon’, ‘conjugative’, ‘integrase’, ‘integron’, ‘recombinase’, ‘conjugal’, 

‘mobilization’, ‘recombination’, or ‘plasmid’.

Quantification of antibiotic resistance genes in metagenomes

Relative abundance of antibiotic resistance genes was calculated using ShortBRED31. 

Causative resistance determinants, as identified using the hierarchical annotation scheme 

described above, were used as proteins of interest for identification of marker families using 

shortbred_identify.py. These proteins included all antibiotic resistance genes in CARD 

(version 1.2.1, retrieved January 24, 2018)54 and antibiotic resistance proteins identified 

using functional metagenomic selections performed in the current study. Thus, the custom 

ShortBRED database included markers to canonical antibiotic resistance determinants as 

well as resistance determinants functionally identified in this study which are most relevant 

to the infant gut microbiota. In order to calculate relative abundance of resistance genes in 

metagenomes, shortbred_quantify.py was used.

Bacterial isolation from infant stools

Approximately 50 mg of frozen stool was resuspended in 1 mL Tryptic Soy Broth (TSB) 

and incubated with shaking at 37˚C for four hours. 50 μL of culture was streaked for 

isolation using the four quadrant method on each of the following agars: Bile Esculin Agar, 

ESBL Agar, MacConkey Agar, MacConkey Agar+cefotaxime, MacConkey Agar

+ciprofloxacin, and Blood Agar (Hardy Diagnostics catalog numbers G12, G321, G35, 

G121, G258, A10, respectively). Plates were incubated for 18–24 hours at 37˚C. Four 

colonies of each distinct morphology on each plate were substreaked onto blood agar and 

incubated for 18–24 hours at 37˚C. Following confirmation of morphology, a 1 mL TSB was 

inoculated with a single colony and grown overnight at 37˚C with shaking. Overnight 

cultures were frozen in 15% glycerol in TSB.

Genomic DNA isolation

1.5 mL TSB was inoculated from isolate glycerol stocks and grown overnight at 37˚C with 

shaking. DNA was extracted using the BiOstic Bacteremia DNA Isolation Kit (MoBio 

Laboratories) following manufacturer’s protocols. Genomic DNA was quantified using a 

Qubit fluorometer dsDNA BR Assay (Invitrogen) and stored at −20˚C.

Isolate sequencing library preparation

Isolate sequencing libraries were prepared in the same manner as described for metagenomic 

sequencing libraries, following the protocol described in Baym et al., 2015. For each 
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sequencing lane, 10 nM of approximately 300 samples were pooled three independent times. 

These pools were quantified using the Qubit dsDNA BR Assay and combined in an 

equimolar fashion. Samples were submitted for 2×150 bp paired-end sequencing on an 

Illumina NextSeq High-Output platform at the Center for Genome Sciences and Systems 

Biology at Washington University in St. Louis with a target sequencing depth of 1 million 

paired end reads per sample.

Assembly of isolate genomes

Prior to all downstream analysis, Illumina paired end reads were binned by index sequence. 

Adapter and index sequences were trimmed using Trimmomatic v0.365 using the following 

parameters: java -Xms2048m -Xmx2048m -jar trimmomatic-0.33.jar PE -phred33 
ILLUMINACLIP: NexteraPE-PE.fa:2:30:10:1:true. Contaminating human reads were 

removed using DeconSeq15 and unpaired reads were discarded. Reads were assembled using 

SPAdes16 with the following parameters: spades.py -k 21,33,55,77 –careful. Contigs less 

than 500 bp were excluded from further analysis. Assembly quality was assessed using 

QUAST17. Average coverage across the assembly was calculated by mapping raw reads to 

contigs using bbmap (https://jgi.doe.gov/data-and-tools/bbtools/).

Isolate genomic analysis

A total of 406 assemblies had an N50 greater than 50,000 and fewer than 500 total contigs 

longer than 1000 bp and were included in further analysis. Genomes were annotated using 

Prokka18 with default parameters. Multilocus sequence types were determined using in 
silico MLST (https://github.com/tseemann/mlst). Species assignments were determined by 

querying assemblies against a RefSeq sketch using Mash identifying RefSeq hit with the 

minimum Mash distance19. Assemblies were binned by species according to Mash 

designation. For each of the seven most commonly occurring species, pangenome analysis 

was performed using Roary, with core genome alignments created with PRANK20. An 

outgroup assembly of the same genus but different species was downloaded from NCBI and 

included in each pangenome analysis (Supplementary Table 2). Maximum likelihood core 

genome phylogenies were constructed using RAXML under the GTRGAMMA model with 

1000 bootstraps and maximum likelihood optimization initialized from a random starting 

tree. Average nucleotide identities were computed using pyani (https://github.com/

widdowquinn/pyani). Pairwise single nucleotide polymorphism distances were calculated 

from core genome alignments generated by Roary using snp-dists (https://github.com/

tseemann/snp-dists). Resistance genes were annotated via nucleotide blast to the resfinder 

database (https://bitbucket.org/genomicepidemiology/resfinder/src/master/README.md).

Enterococcus biofilm formation assay

Mid-log phase cultures in freshly-prepared tryptic soy broth containing 0.5% glucose 

(TSBG) were diluted to OD 0.1. 200ul of the diluted culture was added in quadruplicate to 

96 well polystyrene plates and incubated at room temperature or 37˚C without shaking. 

After 24 hours of growth, wells were decanted, washed three times with sterile PBS, and 

fixed for 30 minutes with 200 μl Bouin’s solution. Fixative was removed by washing three 

times with sterile PBS, then wells were stained with 0.1% crystal violet for 30 minutes. 

Excess stain was removed by washing three times with sterile PBS, the stain was solubilized 
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in 200ul ethanol, and absorbance read at 590nm. E. faecalis strains TX5682 (biofilm 

negative) and TX82 (biofilm positive) were used as controls21.

Enterococcus vancomycin susceptibility testing

Isolates identified as Enterococcus were phenotyped for vancomycin resistance using 

microbroth dilution according to the CLSI guidelines. ATCC29212 (vancomycin 

susceptible) and ATCC51299 (vancomycin-resistant) were included in all assays as controls. 

Isolates were grown to mid-log phase, diluted in culture media to 1×106 CFU/ml, and used 

to inoculate plates containing vancomycin ranging from 128–2ug/ml. After 24 hours of 

static growth at 37˚C, optical density was read at 600 nm and MIC was determined by 

scoring by eye for turbidity.

Vancomycin resistance of biofilms was assayed after establishing biofilms as above. After 

24 hours of static growth at 37˚C, planktonic cells were removed by washing three times 

with sterile water, and then 200 μl of TSBG containing 5 mg/ml, 5 μg/ml, or no vancomycin, 

and the plates incubated at 37˚C for an additional 24 hours. After washing planktonic cells 

three times with sterile water, 200 μl sterile water was added to each well and the viability of 

the cells in the biofilm was assessed using an XTT Cell Viability Kit (Cell Signaling 

Technology, #9095) according to manufacturer’s protocols, reading absorbance at 450nm 60 

minutes after addition of reagents.

Generalized linear mixed model of microbiota diversity

To model the effect of clinical variables on microbiota diversity, a generalized linear mixed 

model was fit by maximum likelihood using the lme4 package in R. All variables in 

Supplementary Table 1 were included in initial modeling, and a final model was fit via 

backwards elimination of variables. Pseudo-R2 was determined using r.squaredGLMM 

function in the MuMin package. P values were corrected for multiple hypotheses using the 

glht function in the multcomp (lincfit = mcp(tension = ‘Tukey’)).

Microbiota age regression using Random Forests

Random Forests was used to regress the relative abundances of all species predicted by 

MetaPhlAn2 in infant stool samples against their chronological age using the R package 

“randomForest” as previously described22. The default parameters were used with the 

following exceptions: ntree=10,000, importance=TRUE. Fivefold cross-validation was 

performed using the rfcv function over 100 iterations to estimate the minimum number of 

features needed to accurately predict microbiota age. The features most important for 

prediction were identified over 100 iterations of the importance function, and a sparse model 

consisting of the 50 most important features was constructed and trained on a set of nine 

antibiotic-naïve near-term infants randomly selected from the larger near-term infant set. 

This model was validated in the remaining eight antibiotic-naïve near-term infants, and then 

applied preterm infants to predict microbiota age. Microbiota for age Z-score was computed 

as previously described22. This allowed for comparisons of microbiota maturity between age 

bins as the metric accounts for differing variance in predicted microbiota age throughout 

infant development.
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Classification of post-discharge samples

A single sample from each individual was selected (the final post-discharge sample collected 

from each preterm infant and a roughly age matched sample from each near-term infant). All 

metagenomic data (species and ARG abundances, centered and scaled) were initially used as 

input for logistic regression, k-nearest neighbor, support vector machine, naïve bayes, and 

random forests classifiers. Ultimately, a support vector machine as implemented in the R 

package e1071 was selected as it was both the highest performing and most parsimonious 

classifier. Feature importance was determined by computing the elementwise absolute value 

of the matrix of weights by the matrix of support vectors. A sparse model was subsequently 

constructed consisting of only the fifteen most important features.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Clinical variables predict microbiota diversity and composition.
a, Shannon diversity of all near-term (n=17) and preterm (n=41) infants in this study, by 

month of life. Box plots represent the first quartile, median, and third quartile of the data 

with whiskers extending to the last data point within 1.5× the interquartile range. b, 

Microbiota species and functional compositions inferred by MetaPhlAn2 of all near-term 

(n=17) and preterm (n=41) infants in this study. c, Microbiota species and functional 

compositions inferred by HUMAnN2 of all near-term (n=17) and preterm (n=41) infants in 

this study. d, Day of life is significantly associated with an increase in microbiota Shannon 
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diversity, while vancomycin, ampicillin, meropenem, or cefepime treatment within the 

month prior to sampling is associated with significantly decreased species richness (***, 

p<0.001, ** p<0.01, * p<0.05; generalized linear mixed model with subject as random effect 

using 437 infant gut metagenomes.) Oxacillin was included in the model but was not 

significant after correction for multiple comparisons. Error bars indicate s.e. e, Shannon 

diversity is significantly lower in infants who have received >1 course of antibiotic treatment 

in the past month compared to infants who had not received antibiotic treatment during that 

time span (**** p<0.0001, ***, p<0.001, ** p<0.01, * p<0.05; two-sided Wilcoxon with 

Benjamini-Hochberg correction, n=212 samples). Box plots represent the first quartile, 

median, and third quartile of the data with whiskers extending to the last data point within 

1.5× the interquartile range.
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Figure 2 |. Partial architectural recovery of preterm infant gut microbiota following discharge 
from NICU.
a, Microbiota composition is distinct between near-term infants, preterm infants with early 

only antibiotic treatment, and preterm infants with early and subsequent antibiotic treatment 

(Bray-Curtis, p<0.001, Adonis, n=437 samples), but chronological day of life (DOL) is a 

major driver of microbiota composition. b, Fivefold cross-validation indicates that 50 

variables are sufficient for random forests prediction of chronological age of near-term 

infants based on microbiota composition. Inset details vertex. Points indicate mean and error 

bars indicate s.e. computed over 100 iterations. c, The 50 most informative predictors to the 

random forests model. These species were included in a sparse model. Points indicate mean 

and error bars indicate s.e. computed over 100 iterations. d, The sparse random forests 

model accurately predicts near-term infant chronological age, but preterm infant 

chronological age is predicted to be less than actual age across numerous stages of 

development. Curves are loess regression fit to each group and shading depicts 95% 

confidence interval, n=437 samples. e, Preterm infant microbiota for age Z-score (MAZ) is 
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significantly lower than that of near-term infants in the first month of life, indicating early 

microbiota immaturity (** p<0.01, **** p<0.0001, two-sided Wilcoxon, n=140 samples). f, 
Preterm infant MAZ is statistically indistinguishable from near-term infant by 12–15 months 

of life, indicating resolution of microbiota immaturity by this time point (p>0.05, two-sided 

Wilcoxon, n=65 samples). Box plots represent the first quartile, median, and third quartile of 

the data with whiskers extending to the last data point within 1.5× the interquartile range.
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Figure 3 |. Preterm infants harbor an enriched gut resistome.
a, Amino acid identity between all functionally-selected ARGs and their top hit in CARD vs 

their top hit in the NCBI nr protein database, colored by class of antibiotic used for 

selection. Notably, ARGs recovered by fluoroquinolone and polymyxin selection have very 

low median identity to CARD. Box plots represent the first quartile, median, and third 

quartile of the data with whiskers extending to the last data point within 1.5× the 

interquartile range, n=879 ARGs. b, The most commonly predicted hosts of functionally-

selected ARGs based on highest identity BLAST hit in the NCBI nr protein database. c, Gut 

resistome composition is distinct between near-term infants, preterm infants with early only 

antibiotic treatment, and preterm infants with early and subsequent antibiotic treatment 

(Bray-Curtis, p<0.001, Adonis, n=437 samples). d, Preterm infants had fewer unique ARGs 

encoded in their gut metagenomes than near-term infants. (* p<0.05, ** p<0.01 two-sided 

Wilcoxon, n=437 samples). Box plots represent the first quartile, median, and third quartile 

of the data with whiskers extending to the last data point within 1.5× the interquartile range. 

e, The cumulative resistome relative abundance was significantly higher in the gut 

microbiota of preterm infants with early and subsequent antibiotic treatment compared to 

both preterm infants with only early antibiotic treatment and near-term infants (* p<0.05, 

two-sided Wilcoxon, n=437 samples). Box plots represent the first quartile, median, and 
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third quartile of the data with whiskers extending to the last data point within 1.5× the 

interquartile range. f, A random forests model trained on preterm infant gut resistome poorly 

predicts chronological age of near-term infants. Black line is linear regression line of day of 

life as predicted by the random forests model against the actual day of life (R2=0.62, n=437 

samples) g, Relative abundance of 50 most informative resistance genes over the first 

months of life in near-term (left heatmap) and preterm (right heatmap) infants. Resistance 

genes are hierarchically clustered and listed to the right of the heatmaps. Colored bars above 

heatmaps correspond to colors in panels c-e. For canonical resistance genes, the CARD 

accession is displayed and for resistance genes functionally-selected in this study, the 

relevant selection information is listed.
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Figure 4 |. Multidrug resistant Enterobacteriaceae lineages persist in infant gut microbiota.
Maximum likelihood core genome phylogenies of E. coli (a), Klebsiella spp. (c), and E. 
cloacae (e) isolated from infant stool. Annotations to the right of metadata indicate 

timepoints of isolation and sequence type (determined by in silico MLST) for E. coli and E. 
cloacae or species for Klebsiella. Persistent isolates are highlighted in red. Average 

nucleotide identity heat maps for E. coli (b), Klebsiella spp. (d), and E. cloacae (f) indicate 

that persistent isolates are isogenic, i.e., they share >99.997% nucleotide identity. Persistent 

isolate pairs are highlighted in red. g, Timeline of isolation of persistent Enterobacteriaceae 
from infant stool. Vertical bar indicates the day at which infants were discharged from the 
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hospital. The first two infants displayed are preterm infants, while the third is a near-term 

infant.
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Figure 5 |. Enduring damage to the preterm infant gut microbiota.
a, Support vector machine confusion matrix for classification of gestational age based on the 

species and ARGs present in the microbiota following discharge from the NICU or at 

matched timepoints in unhospitalized near-term infants. b, Twenty predictors most important 

to classification. A sparse model trained using only these twenty predictors was highly 

accurate (96.4% classification accuracy), a persistent metagenomic signature of preterm 

birth and associated hospitalization and antibiotic treatment.
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Table 1 |

Clinical characteristics of infant cohorts analyzed in this study

Preterm Early Antibiotic 
Exposure Only (N=9)

Preterm Early + 
Subsequent Antibiotic 

Exposure (N=32)

Term Antibiotic-Naïve 
Infants (N=17)

Birth weight, g, median (IQR) 1080 (880, 1270) 830 (698.75, 897.5) 2529 (2359.5, 2966.5)

Gestational age at birth, weeks, median (IQR) 27 (26, 27) 25 (24, 26) 36 (36,37)

Gender, M/F 4/5 15/17 4/13

Route of delivery, C-section/vaginal 6/3 25/7 15/2

Antibiotic exposure, n courses

 Gentamicin 9 74 none

 Ampicillin 9 37 none

 Vancomycin none 67 none

 Clindamycin none 16 none

 Meropenem none 14 none

 Cefepime none 11 none

 Cefotaxime none 10 none

 Mupirocin none 7 none

 Trimethoprim-sulfamethoxazole none 4 none

 Ticarcillin-clavulanate none 3 none

 Oxacillin none 3 none

 Cefoxitin none 3 none

 Cefazolin none 2 none

 Amoxicillin none 2 none

 Metronidazole none 1 none

 Penicillin G none 1 none

Bacterial culture positive, n

 Blood 0 22 0

 Tracheal 0 30 0

 Urine 0 17 0
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