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Abstract
Cardiomyocytes are large (�40,000 mm3), rod-shaped muscle cells that provide the working

force behind each heartbeat. These highly structured cells are packed with dense cytoskel-

etal networks that can be divided into two groups—the contractile (i.e. sarcomeric) cyto-

skeleton that consists of filamentous actin-myosin arrays organized into myofibrils, and the

non-sarcomeric cytoskeleton, which is composed of b- and c-actin, microtubules, and

intermediate filaments. Together, microtubules and intermediate filaments form a cross-

linked scaffold, and these networks are responsible for the delivery of intracellular cargo, the

transmission of mechanical signals, the shaping of membrane systems, and the organiza-

tion of myofibrils and organelles. Microtubules are extensively altered as part of both adap-

tive and pathological cardiac remodeling, which has diverse ramifications for the structure

and function of the cardiomyocyte. In heart failure, the proliferation and post-translational

modification of the microtubule network is linked to a number of maladaptive processes,

including the mechanical impediment of cardiomyocyte contraction and relaxation. This

raises the possibility that reversing microtubule alterations could improve cardiac perfor-

mance, yet therapeutic efforts will strongly benefit from a deeper understanding of basic

microtubule biology in the heart. The aim of this review is to summarize the known physi-

ological roles of the cardiomyocyte microtubule network, the consequences of its patho-

logical remodeling, and to highlight the open and intriguing questions regarding cardiac

microtubules.
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Overview—The cardiomyocyte cytoskeleton

Cardiomyocytes are the cellular working units of the heart
and utilize coordinated force generation to contract the
ventricles and power blood-flow through the circulatory
system. Within the myocyte, densely packed myofibrils
consisting of actin and myosin (and regulatory and struc-
tural proteins like troponin and titin) comprise the sarco-
meric cytoskeleton, which converts chemical energy into
mechanical work by adenosine triphosphate (ATP) hydro-
lysis. Since sarcomeres drive contraction, the structural

“health” of the sarcomere is integral for cardiac function;

and as cardiacmyocytes are extremely long-lived (decades1,2),

maintaining sarcomere homeostasis presents a tall order to

the cell. This order is carried out by a number of special-

ized support systems that are largely coordinated by the

non-sarcomeric cytoskeleton.
Sarcomeric proteins must be readily recycled and

replaced, which requires the effective delivery of mRNA
and protein, as well as the clearance and degradation of
aged constituents. Mitochondria, which provide the ATP
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to fuel contraction, must be properly positioned and main-
tained. The transverse tubule (T-tubule) and sarcoplasmic
reticulum (SR) membranes must be organized in close
apposition to one another to support excitation–contraction
(E-C) coupling. Inter-myocyte connections that mediate
synchronous contraction must be closely coordinated via
cell–cell junctions at the intercalated disc. The proper posi-
tioning, regulation, and turnover of each of these compo-
nents is facilitated by the meshwork of microtubules and
intermediate filaments making up the non-sarcomeric cyto-
skeleton. Microtubules deliver ion channels, translational
machinery and facilitate the clearance of misfolded pro-
teins by orchestrating their sorting and delivery to distinct
subcellular locales. Scaffolding for the myofilaments and
positioning of organelles within the myocyte is also medi-
ated by the non-sarcomeric cytoskeleton. As it forms an
interconnected lattice throughout the cell, the non-
sarcomeric cytoskeleton is well positioned to sense and
transmit mechanical signals3–5 that enable the heart to reg-
ulate gene transcription and adapt to changing demands.
Furthermore, microtubules are deformed during contrac-
tion and can directly regulate contractility by mechanically
impeding myocyte shortening. Despite the many known
functions of the microtubule cytoskeleton, there are even
more unanswered questions regarding its role in myocyte
biology. In this review we will focus on the microtubules as
a major component of the non-sarcomeric cytoskeleton; for
a recent review of other elements, please see Grimes et al.6

Microtubules—What they are, what they do

Microtubules are hollow, 25 nm diameter tubes formed by
the polymerization of a/b-tubulin dimers. They can run
tens of microns in length within the cell, and are the stiffest
of the cytoskeletal filaments—microtubules have a persis-
tence length �2–3 orders of magnitude greater than actin
filaments,7 which are in turn an order of magnitude stiffer
than intermediate filaments.8 Microtubules can be
“dynamic,” undergoing rounds of growth (polymerization)
and shrinkage (catastrophe), or “stable,” meaning they pre-
sent as fixed structures over a time scale of minutes to
hours.9 The canonical functions of microtubules are to pro-
vide cellular structural support, enable chromosome move-
ment during cell division, and serve as the tracks by which
cargo is transported throughout the cell.10 Cargo transport
is achieved via the microtubule motor proteins kinesin and
dynein, with kinesin trafficking cargo towards the growing,
plus end of a microtubule, and dynein moving in the oppo-
site, retrograde direction.

Microtubule populations in the heart

The cardiomyocyte microtubule network can be spatially
separated into three distinct (yet overlapping) populations.
Early characterization of microtubules in cardiac muscle by
electron microscopy identified interfibrillar microtubules
running parallel to and in close association with myofibrils
and mitochondria, as well as an additional population
encircling the nucleus (Figure 1).11 Later, cortical microtu-
bules, which wrap around the cardiomyocyte

perpendicular to myofibrils, were implicated in the mecha-
notransduction of external cues and in the regulation
of transmembrane proteins and ion channels.12,13

Interfibrillar microtubules are involved in organelle posi-
tioning, T-tubule and SR membrane regulation,5,14,15 main-
tenance of the intercalated disc,16 and regulation of
myofilament mechanics.17–19 Perinuclear microtubules
encircle the nucleus (or nuclei) of the cardiomyocyte, orga-
nize perinuclear organelles, and directly interact with the
LINC (Linker of Nucleoskeleton and Cytoskeleton) com-
plex to mechanically couple the microtubule cytoskeleton
with the nucleoskeleton.20–22 A dense highway of micro-
tubules is typically observed spanning between nuclei in
cardiomyocytes (Figure 1) but little is known about
any unique functionality of this structure. Cortical micro-
tubules, interfibrillar microtubules, and perinuclear
microtubules are spatially distinct, vary in stability,
post-translational profile and function, but utilize much
of the same microtubule-associated machinery to conduct
their tasks.

Microtubules in the failing heart

Consistent with the diverse roles played by the non-
sarcomeric cytoskeleton in the myocyte, numerous and
impactful modifications to the non-sarcomeric cytoskeleton
are observed in heart failure. The density of the microtu-
bule and intermediate filament network increases signifi-
cantly in end-stage heart failure of diverse etiology23,24 with
an accompanying decrease in sarcomeric protein densi-
ty.23,25,26 There is an accumulation of microtubule post-
translational modifications (PTMs) in heart failure that
alter the microtubule interactome to likely favor microtu-
bule stabilization by facilitating interactions with microtu-
bule associated proteins (MAPs) and intermediate
filaments.17,23,27,28 These cumulative alterations in network
density, dynamics, and binding partners interfere with the
physiological roles of the microtubule (through incom-
pletely understood mechanisms), affecting E-C coupling,
intercalated disc maintenance, myofilament contractility,
and proteostasis. As such, treatments to restore the density
or dynamics of cardiac microtubules could provide benefit
to a number of the maladaptive processes observed in car-
diac pathology, but the role of microtubules must be better
defined in order to inform specific interventions. Below we
will break down the role of microtubules within the cardi-
omyocyte, and highlight how they are altered in and may
contribute to heart disease.

Microtubules and tubulin turnover

In the healthy myocyte, roughly 50% of tubulin is in its free,
soluble form, while the remaining half is incorporated into
polymerized microtubules.29–31 The half-life of a microtu-
bule can vary greatly based on its interactions with stabi-
lizing factors, but is on the order of minutes to hours,32

while the lifetime of free tubulin is on the order of
1–2days.33,34 Compared to other cell types, microtubules
in mature cardiomyocytes appear particularly stable,35

which can be assessed using nocodazole, a drug that
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binds free tubulin and prevents it from incorporating into
the microtubule lattice.36 Thus, the rate at which the micro-
tubule lattice disintegrates upon nocodazole treatment is
an indirect assessment of microtubule stability.37,38

Nanomolar concentrations of nocodazole reduce microtu-
bule dynamicity in most cell types,39 including immature
cardiac cells, while higher concentrations are required to
depolymerize microtubules in adult cardiomyocytes.37,38

In adult ventricular myocytes the most stable microtubules
are largely concentrated around the myocyte nuclei, and
remain after nocodazole or colchicine treatment sufficient
to eliminate most other microtubules (Belmadani et al.38

and our unpublished observations).
Further stabilization of the microtubule network has

been demonstrated in patient tissue and various animal
models of cardiac hypertrophy and heart failure (cat pul-
monary artery banding19,37; dog left ventricular pressure
overload40,41; mouse transverse aortic constriction30,42,43;
human patients23,24; see review31). Pressure-overload
induced hypertrophy stabilizes cardiac microtubules, as
inferred from increased resistance to nocodazole treat-
ment37 and increased tubulin content in insoluble frac-
tions.30,42,43 In patients with end-stage heart failure of
ischemic, dilated, or hypertrophic origin, markers of
stable microtubules are increased, including PTMs, stabi-
lizing MAPs, and a greater increase in polymerized micro-
tubule density than total tubulin content (Figure 2(b) to
(f)).23,24 Microtubule stabilization likely occurs early on in
disease progression, as indicated by a rapid rise of tubulin
levels and stabilizing MAPs in pressure over-
load.27,28,37,44,45 Elevated tubulin levels also persists into
disease progression, remaining sixmonths following pul-
monary artery banding.44 Significant work is still needed to
clarify the temporal progression of microtubule stabiliza-
tion during the onset, progression, and reversion of discrete
myopathic etiologies—particularly of those independent of
significant pressure-overload—as well as to establish cau-
sality between microtubule stabilization and hypertrophy
or decompensation.

Microtubule post-translational modifications

Microtubule turnover is highly affected by the stability,
rigidity and dynamics of the network, which is regulated
by a combination of the “tubulin code” and MAPs. The
“tubulin code” encompasses the diversity of tubulin iso-
forms and PTMs that can combine in numerous ways to
confer unique functionality to subsets of microtubules
within the cell.46–49

Typically, the longer lived a microtubule, the more post-
translationally modified it becomes. However, the
increased PTM of microtubules observed in disease could
both arise from, as well as confer increased stability. For
example, stable, long-lasting microtubules provide a sub-
strate for luminal acetylation, but acetylation itself also can
prolong the lifetime of a microtubule.50 Acetylation occurs
within the microtubule lumen by aTAT1, while the tubulin
deacetylase HDAC6 predominantly acts on free tubulin
(Figure 2(a)).51,52 Highly acetylated microtubules exhibit
increased flexural compliance and decreased damage
under repetitive bending cycles,53 which can increase
their lifetime in the face of mechanical stress. This may be
important for maintaining network integrity in the heart,
where microtubules are observed to buckle during each
contraction.17 If we assume a 60min lifetime for a stable
microtubule, this would equate to about 3600 bending
cycles per cardiac microtubule in a resting human, and
36,000 bending cycles/microtubule in a mouse. It remains
to be shown whether cyclic buckling fatigues or “breaks”
microtubules in a myocyte the way repetitive bending does
in vitro,54 and whether damaged microtubules repair them-
selves to maintain network integrity.

The most well studied PTM of the microtubule network
in the heart is the C-terminal detyrosination of a-tubulin.
The buckling, load-bearing behavior of microtubules is pro-
moted by detyrosination,17 and detyrosination directly
increases myocyte viscoelastic stiffness (as expanded
upon below) and contributes to contractile dysfunction in
cardiomyocytes from patients with heart failure.17,23

Regulation of the “tyrosination cycle” occurs on free and

Figure 1. Microtubules in the cardiomyocyte. (a) Intercalated disc region. (b) Nuclear region. (c) Mitochondrial associated microtubules. (d) Microtubules at the dyad/

Z-disc. Microtubules (blue), sarcomeric cytoskeleton (red/orange), mitochondria (green), nuclei (light purple). (A color version of this figure is available in the

online journal.)
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polymerized tubulin, with polymerized tubulin as the pri-
mary substrate for detyrosination by vasohibin enzymes or
other carboxypeptidases,55,56 and free tubulin as the prima-
ry target for tyrosination by tubulin tyrosine ligase (TTL)
(Figure 2(a)).57 TUBA4A is the only tubulin isotype trans-
lated in its detyrosinated form,58 and interestingly is one of
the most highly expressed isotypes in the heart.23 Thus,
total levels of detyrosination may reflect a combination of
TUBA4A synthesis and PTM of other tubulin isoforms.
Microtubule detyrosination is also associated with
enhanced microtubule stability,32,38 which may be con-
ferred by promoting interactions with intermediate fila-
ments59,60 such as desmin.17 Increased microtubule
detyrosination is observed in end stage human heart failure
and is sufficient to increase myocyte viscoelasticity, while
reducing detyrosinated tubulin in cardiomyocytes from
failing hearts is sufficient to reduce myocyte stiffness and
improve contractility.17,30

Other common tubulin PTMs, such as glutamylation
and glycylation, are receiving emerging attention for their
important regulatory roles in neuronal biology. For exam-
ple, glutamylation can promote microtubule severing by
enzymes such as katanin and spastin to regulate network
density,61,62 and aberrant glutamylation perturbs neuronal
transport and can cause neurodegeneration.63,64 The role of

these PTMs has not been examined in the heart to our
knowledge, but as regulators of network stability, organi-
zation, and MAP association, they warrant further investi-
gation, which will benefit from the generation of mouse
models with cardiac-specific manipulation of tubulin mod-
ifying enzymes.

Microtubule associated proteins

There are two primary classes of MAPs: molecular motors
and structural MAPs.46,65–67 Two families of microtubule-
based motors, kinesin and dynein, drive anterograde and
retrograde cargo transport respectively. Structural MAPs
(e.g. tau, MAP4, dynactin, end-binding protein 1 (EB1))
can influence the stability of microtubules either by block-
ing or recruiting severing proteins or by affecting the asso-
ciation of microtubules with other cytoskeletal elements
including the sarcomeres.27 MAPs interact with each
other, either cooperatively or competitively, and the affinity
of MAPs for microtubules is strongly impacted by PTMs.

The balance of intracellular transport can be shifted by
PTM of the microtubule and the binding of structural
MAPs. While the interactions between different kinesins
and detyrosinated microtubules have not been exhaustive-
ly explored, detyrosination tends to enhance kinesin

Figure 2. Microtubule network stabilization in heart failure. (a) Schematic of C-terminal detyrosination and luminal acetylation. (b to d) Microtubule detyrosination,

desmin, and MAP4 are consistently increased in human heart failure (modified from Chen et al.23) (e and f) Immunofluorescence. Microtubules intersect with desmin

intermediate filaments at the Z-disc of healthy and failing human cardiomyocytes. (A color version of this figure is available in the online journal.)
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recruitment to the microtubule or its processivity68–70 while
highly processive dynein complexes are recruited to tyrosi-
nated microtubules.71 Thus, the tyrosination state of the
microtubule lattice influences the balance between retro-
grade (dynein-driven) and anterograde (kinesin-driven)
transport, which can have important ramifications for the
cell. For example, dynein-mediated retrograde transport is
required for autophagy-mediated protein recycling,72 while
delivery of cytosolic cargo70 and export of endocytic
machinery to the cell surface73 is primarily kinesin
driven. Proper patterning of microtubule tyrosination is
also necessary for long-range transport, as has been dem-
onstrated in neurons where an intact tyrosination cycle is
required for neuronal differentiation and organization.56,74

Furthermore, structural MAPs along the microtubule can
also influence the balance of motor-based transport. For
example, MAP7 promotes kinesin-based transport while
tau inhibits it, but neither impact dynein motility.65 In
sum, these examples demonstrate the multiplexed ability
to tune microtubule transport via various combinations of
PTMs, MAPs, and tubulin isotypes.

While the aforementioned phenomena have largely been
characterized in neurons, many of the same MAPs are
expressed in the heart. One of the most highly expressed
structural MAPs in the heart, MAP4,23,37 is involved in both
pathological densification of the microtubule net-
work27,28,43 and inhibition of microtubule-based trans-
port.75 An increase in MAP4 expression is observed in
heart disease,37 and cardiac-specific overexpression of
MAP4 is sufficient to increase tubulin expression and
microtubule stability.76 This increase in network density
and stability may also come at the cost of jamming motor-
based transport with excessive MAP4 decoration of the
microtubules, leading to defective cargo delivery through-
out the myocyte.75,77

Phosphorylation of MAPs is a common regulator of
MAP-microtubule affinity, which can have a pronounced
effect onmicrotubule dynamics and network architecture.78

MAP phosphorylation is tuned by protein kinases and
phosphatases78 that respond to neurohormonal signals eli-
cited by cardiac stress, and that are well-established medi-
ators of cardiac hypertrophy.79–81 For example,
dephosphorylation of MAP4, which is demonstrated in
pressure-overload hypertrophy, increases its association
with and stabilization of cardiac microtubules.28,43 By con-
trast, phosphorylation of MAP4 reduces its microtubule
affinity and can destabilize the network, which may also
lead to pathological remodeling, as phosphomimetic-
MAP4 knock-in mice develop hypertrophy, fibrosis and
systolic dysfunction.82 Consequently, it appears a proper
balance of de- and phosphorylated MAP4 (and by exten-
sion hyper- and hypo-stabilized microtubules) is optimal
for the heart, and shifting of the equilibrium in either direc-
tion can lead to pathological remodeling.

Phosphorylation also regulates the microtubule associ-
ated protein tau. Famous for its role in neurodegenerative
disease, tau is also expressed in the heart23,83,84 (and see
proteomic data set PXD008934). Tau can protect microtu-
bules from severing,85 and may provide additional stabili-
zation of cardiac microtubules. A direct interaction

between tau and bridging integrator-1 (BIN1) has been
characterized in vitro, and phosphorylation of tau destabil-
izes its interaction with both BIN186 and microtubules,87

but the specific role played by tau in the heart remains to
be determined.

A family of structural MAPs and motors known as tip-
tracking proteins are responsible for stabilization and steer-
ing of the microtubule growing-end (þTIP).88 In the heart
þTIP interactions are largely coordinated by EB1, which
promotes microtubule stability and recruits a family of
CAP-Gly domain-containing tip-tracking proteins includ-
ing cytoplasmic linker proteins 170, and 115 (CLIP170 and
CLIP115) and p150glued.89–91 Tip-tracking proteins are pref-
erentially recruited to tyrosinated microtubules and phos-
phorylation of EB1 enhances its localization to the þTIP.
Also favoring tyrosinated tubulin, tip-tracking kinesins
can facilitate microtubule disassembly (kinesin-13 family
members, MCAK and KIF2A),92 which may contribute to
the decreased stability of tyrosinated microtubules.93 Thus,
PTMs to either MAPs or the microtubules on which they
bind regulate intrinsic microtubule properties and their
interactions within the myocyte, highlighting the complex,
multi-layered regulation of the microtubule cytoskeleton.

While not classically considered MAPs, cytoskeletal
linker proteins also influence microtubule organization
and stability in the cardiomyocyte. Plectins can directly
cross-link microtubules and intermediate filaments,94

while microtubule actin cross-linking factor 1 (MACF1) sta-
bilizes and guides microtubule growth along actin fila-
ments. Cardiac specific deletion of MACF1 leads to
aberrant microtubule redistribution that is strongly corre-
lated with ventricular hypertrophy and contractile dys-
function upon pressure overload,29 while plectin deletion
leads to the disruption of desmin intermediate filaments95

that typically help maintain microtubule network organi-
zation.17 These data highlight the interdependence of
the cytoskeletal networks in the cardiomyocyte, which
must be considered when attempting to perturb spe-
cific components.

Microtubules at the membrane
and costamere

Beneath the myocyte membrane lies a cortical network of
microtubules that wraps around the myocyte and is pre-
dominantly aligned with the short axis of the cell. While the
functionality of this pool of microtubules is far from fully
elucidated, cortical microtubules regulate sarcolemmal ion
channel localization, turnover, and activity,96 caveolae for-
mation and signaling via G-protein coupled receptors
(GPCRs),97 and mechanosensation and signaling, at least
partly via connections to transmembrane complexes such
as the dystrophin/dystroglycan complex.3

Vesicular trafficking is dependent on the microtubule
network and is essential for the delivery and recycling of
proteins between the SR, Golgi, and plasma membrane.
Cycling of b-adrenergic receptors98,99 and insulin recep-
tors100 depends on microtubules, while microtubules and
actin microfilaments restrict cyclic adenosine monophos-
phate (cAMP) formation by localizing adenylyl cyclase
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signaling components in caveolae in adult myocytes.97 Ion
channel localization and recycling at the cortex requires
intact microtubules. Microtubule depolymerization
reduces both kinesin-mediated anterograde101,102 and
dynein-mediated retrograde103,104 transport of potassium
channels in cardiomyocytes, leading to either decreased
or increased surface expression of these channels.
Inhibiting dynamic microtubules with nocodazole
increases the expression of the chloride channel ClC2,105

while stabilization of the microtubule network with taxol
reduces sarcolemmal sodium channel density.106

Microtubules are also implicated in the regulation of chan-
nel function independent of surface expression, as is dem-
onstrated for KCNQ1.96 Thus, perturbations to either
microtubule density or dynamics can disrupt ion flux in
the cardiomyocyte.

Costameres are cortical hubs of mechanotransduction in
striated muscle that connect the cell membrane to the sarco-
meres at the Z-disc. At the costamere, the dystrophin/dys-
troglycan complex (DGC) bridges the extracellular matrix
and the cytoskeleton.107,108 Dystrophin, the protein compro-
mised in Duchenne muscular dystrophy, facilitates costa-
meric organization,109,110 recruits glycoprotein complexes
and associates with intermediate filaments,111 actin112 and
microtubules.3,113,114 For a cartoon schematic of the DGC
and its interactions with the cytoskeleton please see
review.114 Proper localization of dystrophin, dystroglycan,
and microtubules at the costamere protects muscle from
exercise-induced injury. A functional hierarchy was pro-
posed,115,116 where b2 spectrin localizes ankyrin-B to costa-
meres, and ankyrin-B in turn localizes dynactin-4 and
dystrophin, the latter of which likely facilitates dynactin-4
mediated stabilization of the costamere-associated microtu-
bule network. In a commonly usedmodel of Duchennemus-
cular dystrophy (the mdx mouse), subsarcolemmal
microtubule network derangement increases reactive
oxygen species (ROS) production and leads to aberrant cal-
cium signaling.4,5,117 Transgenic overexpression of dystro-
phin or mini-dystrophin, but not utrophin, prevents
cortical microtubule disorganization in mdx mice, protects
skeletal muscle from eccentric contraction-induced force
loss, and improves physical activity of the mice.3 However,
further fine-mapping studies of dystrophin domains
showed that the microtubule binding domain of dystrophin
is dispensable for its microtubule-organizing function in
vivo, and that full-length dystrophin is not sufficient tomain-
tain normal microtubule network organization in the
absence of other proteins in the dystrophin-glycoprotein
complex.3 This suggests dystrophin plays an indirect role
inmicrotubule organization. Loss of dystrophin is coincident
with the transition from compensated hypertrophy to heart
failure,118 but it remains to be demonstrated if a loss of dys-
trophin localization at the costamere is related to microtu-
bule disarray andmicrotubule-dependent dysfunction in the
progression of heart disease.

Microtubules at the dyad

Similar to costameric association at the cortex, microtubules
also associate with interfibrillar structures at the Z-disc

regulating the transport and positioning of a number of
key components involved in E-C coupling. The SR and
T-tubule membranes are well distributed throughout
the myocyte and make regular contact at the Z-line in struc-
tures known as dyads (see review119). Dyads are hubs of
E-C coupling (see review120), where action potential prop-
agation leads to calcium entry through L-type calcium
channels on the T-tubule membrane, which is then ampli-
fied by ryanodine receptors (RyRs) via calcium-induced
calcium release from SR stores (Figure 3, inset). Efficient
E-C coupling requires an extensive and well-ordered
network of T-tubules and tight proximal interaction
between T-tubules and the SR, as well as normal distribu-
tion of L-type calcium channels.

Microtubules maintain the structural and functional
integrity of dyads through multiple mechanisms, including
targeted delivery of L-type calcium channels and T-tubule
scaffolding proteins.121,122 The T-tubule scaffolding protein
BIN1 is important for both L-type calcium channel locali-
zation121 and T-tubule structural regulation123–125 (see
review by Fu and Hong126), while junctophilin-2 (JPH2)
directly couples the T-tubule and SR membranes.122 The
growing tip of microtubules links to the T-tubule network
through an interaction between the tip tracking protein
CLIP-170 and BIN1.14 L-type calcium channels and SR
membranes (containing RyRs) are moved on microtubules
by kinesin motors.127,128 Triadin, named for its role in main-
taining the triad (the analogous structures to dyads in skel-
etal muscle), is involved in shaping and remodeling SR
membranes, likely in part through its interaction with
microtubules via 63 kDa cytoskeleton-linking membrane
protein (CLIMP63).129 In both right and left ventricular
pressure overload, microtubule proliferation is associated
with reduced expression and localization of JPH2, patho-
logical T-tubule remodeling and RyR disorganization.15,130

T-tubule disruption and calcium mishandling are second-
ary to microtubule-mediated misregulation of JPH2,131 and
reducing microtubule density can restore dyad structure
and improve ventricular function, suggesting a causative
role of microtubules in the misregulation of E-C coupling
in disease.

Microtubules also regulate myocyte sensitivity to
mechanical stretch through the E-C coupling machinery.
During diastolic stretch, microtubules serve as mechano-
transducers to activate the production of ROS by NADPH
oxidase 2 (NOX2) in the T-tubule membranes, a process
termed X-ROS signaling (Figure 3, inset).5,117 Under
normal conditions, ROS can rapidly sensitize nearby
RyRs, which primes the E-C coupling machinery at an
appropriate phase of the cardiac cycle (late diastole).
However, overproduction of ROS can lead to excessive
RyR calcium release and subsequent arrhythmia. In disease
states such as myopathy arising from Duchenne muscular
dystrophy, increased NOX2 activity, microtubule disorga-
nization and detyrosination, and altered mechanical loads
may all lead to excessive X-ROS signaling that disrupts
calcium homeostasis and causes oxidative stress in both
cardiac and skeletal muscle.4,132 Upregulation of the
b-tubulin isoform tubb6 has been shown to at least partly
underlie microtubule disorganization in dystrophic
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muscle.133 While the complex interplay between microtu-
bules, NOX2, and dystrophin requires further elucidation,
efforts to target this axis—by restoration of microtubule
network organization, tyrosination,4,134,135 or NOX2 activi-
ty4,136—have each been shown to confer protection in dys-
trophic muscle.

Microtubules at the intercalated disc

Inter-myocyte coupling is achieved at the intercalated disc,
specialized regions at myocyte ends that are enriched in
desmosomes, adherens and gap junction complexes137

(Figure 4). Myocytes are electrically coupled through gap

junctions, which are large, non-specific transmembrane
channels consisting of connexin hexamers that span adja-
cent myocyte membranes to provide electrical, metabolic,
and immunological connectivity. Connexin protein is con-
tinuously made, transported, and degraded, having a half-
life of only 1–5 h,138,139 and its turnover is regulated by both
intracellular and extracellular stresses. In heart disease,
for example following myocardial infarction, connexin is
readily downregulated and protein localization to the inter-
calated disc is compromised140. Connexin is also readily
post-translationally modified, and its altered phosphoryla-
tion is linked to gap junction redistribution and arrhyth-
mias.141,142 Microtubules deliver connexons (oligomers of

Figure 4. Microtubule interactions at the intercalated disc. Microtubule þTIPs anchoring to the adherens junctions (blue) via BIN1 and p150glued directs the delivery of

connexin 43 (light green) and other intercalated disc machineries. Desmosomes connect to desmin intermediate filaments via desmoplakin. Gap junctions (light green)

provide cytoplasmic connectivity between cells. (A color version of this figure is available in the online journal.)

Figure 3. Role of microtubules at the dyad and Z-disc. Desmin (purple) wraps myofilaments at the Z-disc where it interacts with a-actinin (green) through plectin (red),

and microtubules possibly through kinesin (pink) or plectin. Detyrosinated (yellow) microtubules link to the Z-disc and buckle during contraction while tyrosinated

microtubules are not mechanically coupled and slide past myofilaments. Inset: A structural schematic of the dyad: L-type calcium channels and NOX2 on the T-tubule

(white, cut open) are held in proximity to RyRs (pale yellow) at the SR (blue) by JPH2 (orange). Reactive oxygen species (ROS) emitted by NOX2 sensitizes RyRs.

Microtubules link to the T-tubule via an interaction between CLIP-170 and BIN1. (A color version of this figure is available in the online journal.)
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connexin) to the intercalated disc bymotor-based transport,
with the help of EB1 and p150glued anchoring of the grow-
ing end of microtubules to adherens junctions through N-
cadherin.16,139,143 Analogous to the loss of the dyadic struc-
ture in heart failure, alterations to the microtubule cytoskel-
eton are also associated with the disorganization of
intercalated discs.144 Perhaps consistently, administration
of agents that disrupt microtubule dynamics are associated
with ventricular arrhythmias.145–147 Yet the mechanism by
which this occurs is far from settled, motivating future
studies to evaluate whether reversing microtubule altera-
tions in disease may exert beneficial effects via restoration
of cell-cell coupling.

Microtubules and the myofilaments

In contrast to the circumferential cortical network, a longi-
tudinal network of interfibrillar microtubules interacts with
the sarcomeres through transverse desmin intermediate fil-
aments at the Z-disc to form a lattice-like scaffolding asso-
ciated with myofilaments (Figure 3). Coupled to the
sarcomeres, microtubules transmit force as they are
pulled taut during diastole and compressed during
systole.17 Lateral reinforcement of microtubules by cross-
links to cytoskeletal proteins enables microtubules to bear
compressive loads and mechanically impede sarcomere
shortening.148 Microtubules buckling between sarcomeres
during contraction of adult cardiomyocytes provides visual
evidence for such mechanical coupling between sarco-
meres and microtubules, and importantly this sarcomeric
mode of buckling is promoted by detyrosination.17

The interaction between microtubules and desmin interme-
diate filaments and the Z-disc59 could be mediated through
Kif5b149 or plectin,94 or may be non-specific and dictated
largely by proximity within the cell. Regardless, the lateral
reinforcement and thus mechanical behavior of microtu-
bules within the myocyte is dependent on cross-linking
between detyrosinated microtubules and other cytoskeletal
elements.

Microtubule depolymerization or tyrosination increases
myocyte contractility and accelerates relaxation without
altering calcium signaling,18,19,23,31 consistent with a
mechanical uncoupling of microtubules from myofila-
ments. Measurements of myocyte and myocardial stiffness
support a direct mechanical explanation for this altered
contractility,17,18,23,150–153 as myocyte viscoelasticity is
reduced by microtubule tyrosination or depolymerization.
A viscoelastic contribution of the network implies that the
buckling of detyrosinated microtubules dissipates energy
(resisting both contraction and relaxation). Due to its visco-
elastic nature, this resistance will increase with increasing
shortening or lengthening speeds, which has been demon-
strated in both human and rat myocytes.18,23

As the microtubule contribution to myocyte mechanics
strongly depends on the network density and interactome,
it differs significantly in various cellular contexts and path-
ological states. This manifests as a considerably larger
improvement in myocyte mechanical behavior when
microtubules are targeted in myocytes from diseased vs.
healthy hearts,19,23 and may underlie the inverse

correlation between detyrosinated microtubules and ejec-
tion fraction observed in human and murine heart
disease.17,24,42

It should also be noted that common methodologies
used to assess cardiac mechanics—including permeabiliz-
ing cells or tissues, isolating myofilaments, or maintaining
a preparation in cold relaxing solution—compromises the
integrity of the microtubule network, and thus confounds
the mechanical assessment. In rat cardiomyocytes, the
transverse and shear modulus were found to be decreased
by colchicine and increased by taxol, while the tensile elas-
tic modulus was not changed.94 In a separate study, colchi-
cine was found to have variable effects on the tensile
stiffness of cardiomyocytes, but on average accounted for
roughly 10% of the passive tension of the cell.154 These
findings are consistent with more recent work demonstrat-
ing that differences in cardiomyocyte tensile properties
only arise at physiological strain rates18 and are almost
undetectable in healthy cells upon a slow application of
stretch. Thus, the effective mechanical response depends
on the pathological context, technical conditions of the
preparation, and the orientation and speed of the mechan-
ical test. These complexities have likely contributed to past
confusion regarding the mechanical role of cardiac
microtubules.

In tissue and organ level studies, a similar pathology-
dependent mechanical contribution has been observed in
some,41,152,155 but not all156,157 investigations. Colchicine
treatment significantly improved myocardial performance
after severe pressure overload in the right ventricle of
cats152,155 and the left ventricle of dogs,41 with little
impact on normal myocardium. Colchicine-dependent
preservation of myocardial function in vivo has also been
observed in a rat model of pulmonary hypertension130 and
upon left ventricular pressure overload in rats158

and mice.15

Taken together, a picture emerges where the microtubule
contribution to cardiac mechanics is highly context depen-
dent; there are subtle, yet measurable phenotypes in
healthy cardiomyocytes, and an increasing relative contri-
bution in disease that appears most prominent upon severe
pressure overload or advanced heart failure. While in our
opinion the contribution to isolated myocyte mechanics has
been reasonably well defined, more work is needed to
delineate how this contribution scales to the tissue and
organ level.

Microtubules and mitochondria

In non-muscle cells, variable energy demand is met by
rapid remodeling and redistribution of the mitochondrial
network,159–161 in what is largely a microtubule driven pro-
cess.162,163 Perturbing microtubules is sufficient to remodel
the mitochondrial network, likely by changing the balance
of mitochondrial fission and fusion,164,165 or by disrupting
microtubule motor-dependent forces that shape mitochon-
drial morphology. Fusion is supported by mitochondrial
motility,160 which is driven by the microtubule motors kine-
sin for anterograde166 and dynein for retrograde distribu-
tion of mitochondria and is regulated by the motor adaptor
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complex Miro/Milton in a calcium depending manner167–
169 (Figure 5, inset, middle).

In comparison to non-muscle cells, mitochondria in car-
diomyocytes are less mobile. A constant high energy
demand is met by a dense population of mitochondria that
are packed betweenmyofibrils, occupying 35–40% of the cell
volume.170,171 Dense packing of mitochondria restricts their
mobility, fission and fusion,172,173 and leads to spatially dis-
tinct populations of subsarcolemmal, inter-myofibrillar, and
perinuclear mitochondria.174–176 The subsarcolemmal mito-
chondria lie beneath membrane crests spanning between
costameres, and loss of cortical microtubules may displace
subsarcolemmal mitochondria.177 Distinct from fusion, car-
diac mitochondria do form direct connections via nanotun-
nel extensions that permit exchange of matrix content
(Figure 5).171,173,178 The association of nanotunnels with
microtubules in electron micrographs suggests nanotunnels
may be generated or stabilized by an interaction between the
mitochondrial membrane and microtubules.178 Further,
recent evidence suggests mitochondria also undergo fusion
and fission at higher rates than previously thought, and
these dynamics are likely regulated by several relevant stim-
uli.173 Thus, the interplay between mitochondrial andmicro-
tubule dynamics in various pathophysiological contexts
warrants future investigation.

Beyond regulating mitochondrial positioning and
exchange of matrix content, microtubule-based transport
is important for the functional regulation of mitochondria.
Microtubules mediate the delivery of purinosomes to the
mitochondria,179,180 multienzyme complexes that regulate
metabolic flux and provide precursors for DNA synthesis.
Additionally, free tubulin can directly regulate mitochon-
drial respiration through reversible blockage of the mito-
chondrial voltage-dependent anion channel (VDAC) by
b-tubulin c-terminal tails (Figure 5, inset, left).181–184 Thus,
the interplay between microtubule dynamics and mito-
chondrial dynamics may elicit complex effects on metabo-
lism and ATP production. Myocytes from failing hearts
exhibit shifts in mitochondrial fusion and fission balance

that affect myocyte bioenergetics,185–187 which we speculate
may at least partly arise due to altered microtubule dynam-
ics, but this is not well understood.

Microtubules and the nucleus

Cardiomyocytes are often multi-nucleated, with nuclei
aligned in the interior of the myofibrils and connected by
a dense highway of microtubules (Figure 1). This differs
from skeletal muscle, where nuclei are extruded to the
cell periphery. The perinuclear microtubules in a cardio-
myocyte are amongst the most stable in the cell resisting
treatments with colchicine or nocodazole,38 which may
indicate that they are protected by heavy decoration with
interacting partners.

In most eukaryotic cells, microtubules emanate from a
microtubule organizing center (MTOC) at juxta-nuclear cen-
trosomes, where the minus (�) ends of microtubules origi-
nate near the nucleus and plus (þ) ends radiate toward the
periphery.188 Yet in cardiomyocytes, centrosomes disinte-
grate shortly after birth,189 and non-centrosomal MTOCs
decorate the nuclear envelope, associated Golgi and Golgi
outposts in muscle cells.190 While microtubules are still con-
centrated around the nucleus, the lack of a centrosomal
MTOC creates a more widely distributed and less uniformly
polarized microtubule network (Figure 1).

Regardless, centrosomal proteins such as PCM-1,
AKAP450, pericentrin, and c-tubulin localize to the nuclear
periphery and can nucleate microtubule growth,191–193

recruit motor proteins194 and facilitate interactions between
the “cage” of perinuclear microtubules and the nuclear
mechanotransduction machinery known as the LINC com-
plex. The LINC complex consists of the outer nuclear mem-
brane nesprin proteins and inner nuclear membrane SUN
proteins that connect the cytoskeleton to the nuclear
lamina (Figure 6). These nuclear intermediate filaments
(lamins) couple with regions of chromatin to form lamin-
associated domains (LADs),195 which are associated with
silenced genes.196 The LINC complex is thus capable

Figure 5. Microtubules are in close proximity to the mitochondria in the cardiomyocyte. Nanotunnels (top right) span adjacent mitochondria. Inset (middle):

Mitochondria interact with both kinesin and dynein motors. Inset (left): VDAC is inhibited by free tubulin through binding of the b-tubulin tail. (A color version of this figure

is available in the online journal.)

Caporizzo et al. Cardiac microtubules 1263
...............................................................................................................................................................



of transmitting mechanical signals from the cytoskeleton to
LADs to regulate gene expression, an attractive mechanism
for the myocyte to sense changes in environmental stress
and respond accordingly. Microtubules interact with the
LINC complex via nesprin 1a, nesprin 2a,197 and nesprin
4198 by binding the microtubule motors kinesin and
dynein,194,199 and considerable evidence supports a nesprin
1a interaction in the cardiomyocyte.200,201 The importance of
these LINC complex interactions is highlighted bymutations
in LINC components causing diverse cardiomyopathies (see
review22,196), yet much remains unknown about the mecha-
nistic underpinnings of these connections and their role in
nuclear homeostasis and cardiac mechanotransduction.

Microtubules and hypertrophy

Mechanotransduction in the myocyte facilitates a remark-
able plasticity of the heart to adapt to chronic changes in
load, as occurs with frequent exercise or elevated blood
pressure. Thickening of the ventricular walls (hypertrophy)
helps minimize wall stress under increased load, while
atrophy of the heart occurs in response to unloading.
Each requires individual myocytes to quickly and efficient-
ly change their size, as myocyte proliferation is not suffi-
cient to drive hypertrophy.2,202,203

Microtubule proliferation is closely associated with car-
diac hypertrophy induced by pressure overload on the left
and right ventricle in various small and large animal stud-
ies,15,42,44,45,158 and seems to scale with the severity of wall
stress.40,204 Microtubules appear required for hypertrophy
in response to increased external stress, as treatment with
colchicine significantly blunts the hypertrophic response to
pressure overload.42,45,130,158 In a more subtle, clinically rel-
evant setting of chronic hypertension, colchicine treatment
has been demonstrated to arrest the progression of hyper-
trophy in spontaneously hypertensive rats.205 Microtubules
have also been shown to be required for phenylephrine-
induced hypertrophy in vitro, and the anti-hypertrophic
effects of adenosine have been attributed to a reduction in

stable, detyrosinated microtubules.30 In a clever approach
exploiting transgenic mice harboring hyper- or hypo-stable
forms of tubulin, Cheng et al.206 showed that stabilization of
tubulin is sufficient to induce modest cardiac hypertrophy,
which is then further exacerbated upon pressure overload.
These findings appear consistent with that of Fassett
et al.,30,42 where increasedmicrotubule stability upon genet-
ic manipulation of adenosine metabolism is associated with
compensated hypertrophy at baseline and worsening car-
diac function upon modest aortic constriction of murine
hearts. Thus, there is evidence in the literature that micro-
tubules are both necessary and sufficient for the cardiac
hypertrophic response, although we consider the evidence
stronger for the former.

Given their promiscuity in the cell, it is likely that micro-
tubules could mediate the hypertrophic response via mul-
tiple independent pathways. For example, microtubules
help transport sarcomeric mRNAs for local translation
and incorporation into myofibrils, which may be important
for building new sarcomeres during hypertrophic
growth.75,207 They can also serve as mechanotransducers,
transmitting signals such as cell stretch to downstream
effectors79–81,208 that may regulate hypertrophic gene
expression. Dissecting the molecular mechanisms by
which microtubules mediate cardiomyocyte hypertrophy
will require more nuanced investigation into the numerous
components involved in prosecuting a hypertrophic stim-
ulus, and the specific subsets of microtubules that may
enable this response. While there is considerable evidence
that destabilizing microtubules can blunt the hypertrophic
response, it remains an open question as to whether desta-
bilization could reverse established cardiac remodeling,
and whether such a treatment may be tolerated.

Microtubules and protein turnover

Continuous elimination of misfolded or damaged proteins
and organelles is of particular importance in the cardio-
myocyte, given its long lifetime (see review209). If the

Figure 6. The LINC complex links the nucleoskeleton with the cytoskeleton. Cytoskeletal filaments (actin, desmin, and microtubules) are anchored to nesprins at the

outer nuclear membrane, which couple to the SUN family of proteins spanning the inner nuclear membrane to connect with the nucleoskeleton (lamins). (A color

version of this figure is available in the online journal.)
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recycling machinery becomes overwhelmed, the accumula-
tion of misfolded protein is associated with and can cause
heart failure.210 The degradation of proteins in cardiac
muscle is predominately carried out by two proteolytic
systems: the ubiquitin-proteasome system (UPS) and
autophagy (see review211), both of which depend on
microtubule-based transport for the collection and clear-
ance of waste material.

Proteins are marked for elimination by the UPS system by
post-translational ubiquitination, but if ubiquitinated pro-
teins are not degraded by proteasomes they can accumulate
and are transported into perinuclear structures known as
aggresomes.212 Aggresome formation is a microtubule-
dependent process requiring dynein-mediated transport,
and typically occurs in close proximity to MTOCs.213–216

Mutations in UPS components are associated with heredi-
tary hypertrophic and dilated cardiomyopathy, and can
result in proteotoxicity, endoplasmic reticulum (ER) stress
and autophagic activation (see review217).

The other primary method of waste clearance is autoph-
agy, which is driven by the fusion of lysosomes with auto-
phagosomes to form an autolysosome that degrades proteins
and organelles. Microtubules regulate multiple stages in
both basal and stress-induced autophagy (see review218),
including the formation of autophagosomes,219,220 dynein-
mediated retrograde transport of the autophagosome,221

and autophagosome-lysosome fusion.222–224 Thus, an intact
microtubule network is necessary at multiple levels to main-
tain autophagic flux.

As a regulator of microtubule-based transport, there is
increasing evidence that microtubule PTMs can potently
influence autophagic flux. Tubulin hyperacetylation was
found to be protective against cardiac proteotoxicity by
promoting autophagy in a mouse model of desminop-
athy.210 Microtubule acetylation may activate autophagy
by increasing the polymerized microtubule pool, enhanc-
ing the recruitment and movement of kinesin 1 and
dynein,225 and triggering phosphorylation of JNK which
promotes the association of factors necessary for initiating
autophagosome formation.220,226 Microtubule detyrosina-
tion has also been implicated in autophagy during starva-
tion.224,227 A small subset of detyrosinated microtubules
was found to be optimal to recruit and concentrate lyso-
somes via kinesin-1, which encouraged fusion with auto-
phagosomes and protein degradation. In this model, an
appropriate level of detyrosination allows for optimal auto-
phagic flux, as too much or too little compromises the pro-
cess by either dispersing and stalling lysosomes across the
microtubule network, or by preventing their recruitment to
microtubules, respectively.

While considered as largely independent systems target-
ing proteins for degradation in the proteasome and lyso-
some, the UPS and autophagy execute coordinated protein
degradation with shared molecular machinery.228 Methods
to increase the efficiency of proteasomal and/or autophagic
activity have demonstrated cardioprotective poten-
tial,229–233 which should be considered when designing
any microtubule-based approach to combat cardiac disease
states, particularly given the regulation of autophagy by
tubulin PTMs.

Microtubule-based therapies

Extrapolating from the literature reviewed above, tailored
tuning of the microtubule network could provide a means
to increase power output, blunt hypertrophy, enhance pro-
tein recycling, reduce oxidative stress, and prevent arrhyth-
mia. Yet accomplishing all this in a single therapy seems a
tall order (or perhaps pure fantasy), and at minimum will
require a highly nuanced understanding of microtubules in
the heart.

To date, therapeutic interventions targeting microtu-
bules for the treatment of cardiovascular disease have
been restricted to colchicine treatment. While this is a
blunt tool, beneficial effects on the heart have been demon-
strated in numerous animal studies, such as alleviating
hypertrophy44,126,153,199 and improving systolic func-
tion.41,42,130 More granular manipulations, such as pharma-
ceutical inhibition of detyrosination with parthenolide, can
acutely lower stiffness and improve contractile function of
failing human cardiomyocytes, but still produces off-target
alterations to E-C coupling,23 and is associated with com-
plex immunological231 and oxidative responses234 that may
or may not be due to its inhibition of detyrosination.
Taxanes (microtubule stabilizers) commonly used in che-
motherapy are associated with cardiomyopathy, conduc-
tion abnormalities, and impaired contractility, particularly
when combined with anthracyclines.235,236 Longitudinal, in
vivo imaging of non-failing patient hearts before and after
this chemotherapeutic regiment indicate compromised dia-
stolic function,237 suggesting that stabilizing cardiac micro-
tubules can be detrimental in humans.

In patients, meta-analysis suggests long-term, low-dose
colchicine is associated with reduced risk of overall cardio-
vascular events, although establishing efficacy for modify-
ing the course of coronary artery disease or heart failure
requires further investigation.238 Moreover, these benefits
in patients likely arise largely due to colchicine’s anti-
inflammatory effects mediated through non-muscle cells.
To achieve an appreciable depolymerization of cardiac
microtubules (measured as an increase in the ratio of free:
polymerized tubulin), a dosage of more than 0.4mg/kg/
day was required with either chronic or acute administra-
tion in animal models.41,42,45,130,158,205 This is more than�20
times the maximal recommended dosage of colchicine
(1.2mg/day) approved for humans for the treatment of
gout,239 which must be kept low to minimize gastrointesti-
nal side-effects. With a half-life of less than 20min, plasma
colchicine peaks at �2 mM within minutes and rapidly
drops to 0.25 mM within an hour of treatment at maximal
dosage.240 Thus, plasma levels suggest it unlikely that the
dosage of colchicine tolerated in humans will significantly
depolymerize cardiac microtubules and explain the benefi-
cial effects observed in patients. We should note, however,
that intracellular concentrations may easily differ from
plasma levels, and subtle destabilization of myocyte micro-
tubules could still have significant consequences.

Regardless, grossly targeting the microtubule network
could lead to numerous undesirable effects, and more spe-
cific pharmacologic and genetic therapies should be pur-
sued. Cardiac decompensation is associated with the
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stabilization of microtubules, a shift in their post-
translational profile, and altered associations with MAPs,
which has diverse implications for microtubule regulation
of the dyad, myofilaments, mitochondria, and intercalated
disc (to name a few). A clearer picture of howmicrotubules,
their PTMs and MAPs impact these processes in the myo-
cyte will likely inform more effective and specific therapies
to treat patients with heart disease.

Closing thoughts

Not surprisingly, as cytoskeletal directors of cargo trans-
port through the myocyte, microtubules are implicated in
diverse cellular processes, and several areas appear partic-
ularly ripe for further investigation in cardiac microtubule
biology. The role of microtubules in mechanotransduction
and proteostasis appears critical for the acute and chronic
adaptation of the heart to changing loads, and may be cen-
tral to delineating between physiological and pathological
remodeling. A more detailed understanding of how micro-
tubules shape and maintain the unique membrane systems
of the cardiomyocyte—and the effect this has on E-C cou-
pling and arrhythmia—is required. Single cell studies and
the cell-free reductionist assays that are the bulwark of the
cytoskeletal field are instrumental in revealing molecular
mechanisms and should be applied to the problems above.
Yet it is also essential to test how targeting microtubules,
MAPs and their modifying enzymes impact cardiac func-
tion at the organ level and in vivo, and to evaluate the long-
term efficacy of more refined microtubule-based therapies.

A careful reader may note that much of our knowledge
on cardiac microtubules has been inferred from studies
using blunt pharmacological reagents to depolymerize or
artificially stabilize the network. While these tools are prac-
tical and useful in identifying a contribution of the micro-
tubule network to the process at hand, it is often difficult to
glean mechanistic clarity, due largely to the fact that micro-
tubules contribute to multiple, intermingling processes in
the cell. Greater mechanistic insight requires that these
approaches be combined (or replaced) with more refined
techniques, such as live-cell monitoring of specific popula-
tions of dynamic and stable microtubules, genetically mod-
ulating the enzymes, MAPs and tubulin isotypes that
confer unique functionality to subsets of microtubules, or
perturbing specific microtubule motors and their ability to
traffic particular cargo throughout the cell. An excellent
toolkit for interrogating microtubule biology has been
developed over the past 20 years, but its application to car-
diomyocyte biology has somewhat lagged. We hope that
beyond serving as a useful reference point, this review
will help stimulate investigation into such a rich area of
myocyte biology, with broad implications for cardiac
health and disease.
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