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Abstract

Laboratory data with a lower quantification limit (censored data) are sometimes analyzed by 

replacing non-quantifiable values with a single value equal to or less than the quantification limit, 

yielding possibly biased point estimates and variance estimates that are too small. Motivated by a 

three-period, three-treatment crossover study of a candidate vaginal microbicide in HIV-infected 

women, we consider four analysis methods for censored Gaussian data with a single follow-up 

measurement: nonparametric methods, mixed models, mixture models, and dichotomous measures 

of a treatment effect. We apply these methods to the crossover study data and use simulation to 

evaluate the statistical properties of these methods in analyzing the treatment effect in a two-

treatment parallel-arm or crossover study with censored Gaussian data. Our simulated data and our 

mixed and mixture models consider treated follow-up data with both the same variance as the 

baseline data and an inflated variance. Mixed models have correct type I error, the best power, the 

least biased Gaussian parameter treatment effect estimates, and appropriate confidence interval 

coverage for these estimates. A crossover study analysis with a period effect can greatly increase 

the required study sample size. For both designs and both variance assumptions, published sample 

size estimation methods do not yield a good estimate of the sample size to obtain stated power.
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1. INTRODUCTION

Sexual transmission is the principal mode of HIV transmission in much of the world. 

Transmission risk increases with increasing HIV viral load in reproductive tract fluid 

(cervico-vaginal or seminal fluid) (Baeten et al., 2011). A few studies (Dunne et al., 2008; 

McLean et al., 2010) have evaluated therapeutic interventions to reduce cervico-vaginal and 

seminal fluid viral loads.
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HIV assays have become more sensitive, but a major problem in data analysis remains the 

substantial proportion of genital tract samples with HIV viral loads below the quantification 

limit (i.e., data are truncated, commonly called left-censored in the literature). For example, 

in a study of African serodiscordant couples, HIV-1 RNA was below the detection limit for 

40% of endocervical swab samples and 43% of semen samples (detection limits, 240 copies 

per swab and per mL, respectively: Baeten et al., 2011). In a three-period, three-treatment 

crossover trial, balanced on period and treatment (“treatments” were no product, placebo 

gel, and Carraguard gel), of a vaginal microbicide (Carraguard) in 60 HIV-infected women, 

34% – 51% had unquantifiable cervico-vaginal lavage (CVL) HIV-1 RNA (< 80 copies/mL) 

at the start of the three treatment periods (McLean et al., 2010).

The primary interest in these studies and future studies is the reduction of reproductive tract 

HIV RNA associated with treatment. Laboratory data including values below the 

quantification limit were initially analyzed by simply replacing the censored values by Q 

(the quantification limit) or Q/2 and using an analysis appropriate for continuous data. This 

practice has continued (Baeten et al., 2011) despite the development of more appropriate 

analysis methods and the publication of simulations demonstrating bias in the point estimate 

and underestimation of variability. For example, Hughes (1999) generated longitudinal data 

from a random effects model and found negative biases in the estimate of a linear trend and 

in the estimates of the variances when non-quantifiable values are replaced by Q or Q/2. 

Lubin et al. (2004) generated univariate data from a Gaussian distribution and found a 

negative bias in the estimated mean and a confidence interval with less than the nominal 

coverage when the non-quantifiable values are replaced by Q/2 unless only 10% of the data 

were censored.

The literature contains many statistical methods for analyzing censored laboratory data. We 

consider nonparametric methods, mixed models, mixture models, and models for a change 

from baseline to follow-up. There are reviews comparing analysis procedures (Journot et al., 

2001; Senn et al., 2012; Lachenbruch, 2001) and point estimate and variability bias (Nie et 

al., 2009), but there is no comprehensive comparison of the power of these methods 

including the models summarized above.

After describing the statistical methods we evaluated, we analyze data from the Carraguard 

trial to demonstrate potential differences among the conclusions obtained from these 

statistical methods. We use simulation to evaluate the size and power of tests using these 

methods for a two-treatment placebo-controlled study using parallel and two-period 

crossover designs. We evaluate both the validity of published sample size estimation 

procedures to achieve desired power and the bias and confidence interval coverage of the 

Gaussian parameter estimate for the treatment effect in mixed and mixture models. In the 

Discussion, we comment on the choice between parallel arm and crossover study designs. 

Additional details are in a supplementary report.

2. STATISTICAL METHODS

We assume that, in each treatment period (crossover studies have multiple treatment 

periods), Gaussian laboratory data are obtained at baseline and at a single follow-up time. 
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Let yit be the assay value for the ith person at the tth time during a parallel design study with 

a single follow-up time (t = 0 is baseline; t = 1 is follow-up). We use the same notation in 

each period for a cross-over study with a single follow-up time in each period. Let Q be the 

lower limit of the quantifiable values after any transformation needed to obtain Gaussian 

data. Assay results less than Q are censored; a difference between or among groups is a 

treatment effect. We may distinguish between censored assay results that are non-detectable 

(ND) and results that are detectable but non-quantifiable (NQ). For HIV viral loads, an assay 

result that is NQ means that the assay provided a positive numerical result that is less than 

the quantification limit Q and hence is too imprecise for the value to be used in analyses 

(virus is present at a low level, but the actual level is uncertain). An assay result that is ND 

means that no virus could be detected.

2.1 NONPARAMETRIC PROCEDURES

Nonparametric procedures can be used when analyzing only the follow-up values. For the 

parallel design, we consider the Wilcoxon two-sample test and, with ND and NQ values 

combined, Gehan’s modification of this test for data that are right censored at a single fixed 

value (Gehan, 1965). Let the observed values be denoted by yi. To compute p-values for the 

Gehan test, we set all values below the quantification limit (both ND and NQ values) to a 

value less than this limit, defined a new value zi as 2 – yi/max(yi) (so that the values below 

the quantification limit are equal and are the largest values), and used the SAS LIFETEST 

procedure to analyze the zi (defining the NQ and ND values as censored). For the crossover 

design, we consider the Friedman test (analysis of variance based on ranks: Randles and 

Wolfe, 1979), with persons representing blocks. Note that none of these analyses estimate 

the magnitude of a treatment effect.

2.2 MIXED MODELS AND MIXTURE MODELS: MAXIMUM LIKELIHOOD

Procedures have been proposed that yield likelihoods, so that maximum likelihood 

estimators can be obtained. Hughes (1999) developed an algorithm for imputing single 

values from an EM algorithm. Lyles et al. (2000) modified the numerical procedure in 

Hughes’ random effects model by integrating out the random effects to obtain a likelihood 

function that can be maximized numerically. Thiébaut and Jacmin-Gadda (2004, 2007) 

provide code using the SAS® NLMIXED procedure to maximize such a likelihood.

To define a mixed model, assume that we have n values, indexed so that the first m values 

are censored at Q (NQ or ND). Let yi be the value of the ith observation, and let xi be the 

covariates for this observation; xi includes an intercept term. For a design evaluating a single 

treatment, xi contains an indicator for a value obtained at follow-up, an indicator for active 

treatment, and, for the crossover design, and indicator for period 2. Let φ and Φ be the 

standard Gaussian density and cumulative distribution functions, respectively. Let the 

estimated mean for the ith observation be μi = x’
iβ, where the vector β contains the 

coefficients to be estimated, and let σ be the standard deviation of the distribution of the yi. 

The likelihood to be maximized is
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Lmixed = ∏
i = 1

m
Φ(

Q − μi
σ ) ∏

i = m + 1

n 1
σ ϕ(

yi − μi
σ ) (1)

Lynn (2001) proposed maximizing this likelihood. We define the covariates xi and 

parameters β in Section 2.4.

Moulton et al. (2002) define a mixture likelihood with a logistic model for the probability pi 

that the assay result is quantifiable. Let f and F be the probability distribution and cumulative 

distribution functions, respectively, of the laboratory values, and let m and n be defined as 

above. For observations with covariates xi, let yi = x’
i β + σεi where the εi have a standard 

normal distribution. Let wi = (yi – x’
i β)/σ and let wi* be the value of wi when yi = Q. The 

likelihood is

L1 =
i = 1

m
(1 − pi + piF(wi*))

i = m + 1

n
[pi f (wi)/σ] (2)

The first product represents observations that are censored. The term piF(wi*) represents the 

probability that a person whose true laboratory value is quantifiable has an assay value that 

is censored; this likelihood corresponds to a model for survival data, with long-term 

survivors who are censored at the end of a study (Farewell, 1983). The second product 

represents observations that are quantifiable. We chose f and F to be the density and 

cumulative distribution function, respectively, for the Gaussian distribution. Because our 

simulations showed that this likelihood gives a type I error that is much too large 

(Supplementary Report, Tables 6 and 9), as did the same likelihood deleting the long-term 

survivors term piF(wi*), we do not consider these likelihoods. We found that the likelihood 

for uncensored data

L2 =
i = 1

m
(1 − pi)

i = m + 1

n
pi f (wi) (3)

gives appropriate Type I error rates in some cases, as reported in the summary of simulations 

results in Section 4. In our analyses and simulations, we do not assume that the 

corresponding parameters in the logistic and Gaussian means of (3) are equal; we define 

these means for the choices of models and data used in Section 2.4. We choose the 

parameters so that negative values for both the Gaussian and logistic treatment coefficients 

indicate a favorable treatment effect. For longitudinal data, we follow Moulton et al. by 

using the robust covariance matrix estimated by

V[ ∑
i = 1

n
Si Si′]V

where V is the inverse Hessian and si is the contribution of the ith observation to the score 

vector from the logarithm of the full likelihood function.
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2.3 LOGISTIC REGRESSION: MODELING A CHANGE DEFINED BY A MAGNITUDE OF 
INTEREST

A binary definition of a treatment effect would simplify the data analysis and might directly 

address whether a desired treatment effect was achieved. In the Carraguard study, clinicians 

believed that a clinically significant change in viral load was a decrease from baseline to 

follow-up of 0.5 on the log10 scale if both results are quantifiable, a decrease from 

quantifiable to NQ or ND, or (if we consider NQ as different from ND) a decrease from NQ 

to ND. A meaningful increase can be defined analogously.

We evaluated whether such a definition would have comparable power to other analyses. We 

use logistic regression to analyze this binary definition of a meaningful treatment effect. We 

model the logit of no decrease, so that a negative estimate corresponds to a desired treatment 

effect, as in the mixed models and mixture models. For longitudinal data, we use generalized 

estimating equation (GEE) logistic regression models. For the AB:BA crossover design with 

a dichotomous treatment effect definition, Schouten and Kester (2010) propose an analysis 

similar to a McNemar matched pairs test. We implemented their proposal with a similar 

definition of a treatment effect but assuming that any decrease in viral load from baseline to 

follow-up represented a treatment effect.

2.4 METHODS CONSIDERED

We consider all of the nonparametric methods described above. We implemented two mixed 

models using the likelihood Lmixed as proposed by Thiébaut and Jacqmin-Gadda (2004, 

2007), one assuming that the variance of assay values is unaffected by treatment, and a 

second model allowing this variance to be affected by treatment (as suggested by the 

Carraguard data). The mixed models fit to Carraguard data and simulated crossover data 

consider using follow-up values only and both baseline and follow-up data; those fit to 

simulated parallel design data use both the baseline and follow-up values. For the crossover 

design, we also consider mixed models with period effects. We evaluated mixture models 

with both variance assumptions; we consider models using follow-up data only as well as 

both baseline and follow-up data. For the crossover design simulation analyses, we 

implemented the logistic regression models for a change defined by a magnitude of interest 

as GEE models and also used the Schouten-Kester procedure.

In our models, we coded treatments and periods as indicator variables. In simulations, the 

placebo is the reference treatment; in analyzing the Carraguard data, no-treatment is the 

reference. We assume that the mean value at baseline in a parallel design study is the same 

in all treatment groups, with the corresponding assumption at the start of each period in a 

cross-over study. We also assumed that the time elapsed from baseline to follow-up has the 

same effect on the mean in each treatment group (any treatment effect is in addition to this 

time effect). For both the Carraguard data and the simulations of a crossover design, we 

assumed that there were no carryover effects. For cross-over trial analyses with period 

effects, period 1 is the reference.

These assumptions yield the following models for the means μ in our simulations of a 

treatment versus placebo study; analyses of the three-period, three treatment Carraguard 
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study use the corresponding extensions. In the mixture models, the Gaussian and the logistic 

means have the same form; the corresponding coefficients are not assumed to be equal. In 

the following models, x is an indicator variable for treatment, δ1 is an indicator variable 

which is 1 for a value obtained at follow-up (t = 1), βx estimates the treatment effect, and β1 

estimates the change from baseline to follow-up in the reference group.

For the parallel design, the mixed models use both the baseline and the follow-up results. 

The model for the mean for the ith observation in the likelihood (1) is

μi = α + δ1i βxxi + β1δ1i + ai (4)

For this design analyzed with a mixture model using only the follow-up results

μi = α + βxxi (5)

For the crossover design, we assumed that the elapsed time from baseline to follow-up has 

the same effect on the mean in all periods. Let the indicator variable T be 1 in the period in 

which treatment was used. The mixed models for the crossover design using both baseline 

and follow-up values without period effects use

μi = α + Tδ1i βxxi + β1δ1i + ai (6)

The mixed models using only the follow-up data use

μi = α + T βxxi + ai (7)

In (4), (6), and (7), ai is a random effect with a Gaussian distribution. For both designs and 

both data choices, the mixture models use the same mean without the random effect. The 

GEE logistic model for a significant decrease uses the model (5). For the analysis of a 

crossover study with a period effect, we added an indictor variable for period 2 to the means 

in (6) and (7).

To clarify the definitions of these means, for a follow-up design and a cross-over design 

(without period effects) using both baseline and follow-up values, the mean value at baseline 

(and at the start of period 2 for the cross-over study) is α; the mean value at follow-up 

unaffected by treatment is α + β1; the mean at follow-up affected by treatment is α + β1 + 

βx. For the cross-over study analyzed using a mixture model and only the follow-up data, the 

mean values unaffected and affected by treatment are α and α + βx, respectively.

In our simulations, we evaluated the significance of the treatment effect βx from the Wald 

chi square for the mixed models and the logistic regression models. We used the likelihood 

ratio test (compared to a model without treatment) for the mixture models; these tests have 2 

and 3 degrees of freedom for models assuming variances unaffected and affected by 

treatment, respectively (because the treatment effect coefficients for the Gaussian and 

logistic portions of the model need not be equal). For the mixed and mixture models, we 

required that the Hessian matrix have full rank (for the mixture models, the Hessian for both 

the full and reduced models). For the mixture models, we also required that the likelihood 
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ratio statistic be positive and that the magnitude of the standard error for the logistic 

coefficient be at most 5 (to discard results with unstable estimates of the logistic portion of 

the model, resulting when a data set had few non-quantifiable observations). A significant 

model favored treatment or placebo use only when the coefficient(s) had the appropriate 

sign(s) (for the mixture models, both the Gaussian and logistic coefficients); for 

nonparametric models, the direction of the effect was based on the medians in the treatment 

and placebo groups.

In the Carraguard study, we assessed the variation among treatments using mixed models 

and mixture models with the likelihood ratio chi-square statistic with 4 and 5 degrees of 

freedom for models assuming variances unaffected and affected by treatment, respectively. 

We used the Wald chi-square statistic with 2 degrees of freedom (computed using SAS 

PROC IML) to assess the significance of variation among treatments for the GEE models.

We used SAS version 9.1 for our analyses of the Carraguard data and versions 9.2 and 9.3 

for the simulations. We used the following procedures: NPAR1WAY for the Wilcoxon test, 

FREQ for the Friedman test, LIFETEST for Gehan’s test, NLMIXED for mixed models, 

NLMIXED to maximize the likelihood for mixture models, and LOGISTIC and GENMOD 

for logistic regression for parallel design and crossover design data (GEE models), 

respectively.

3. ANALYSIS OF THE CARRAGUARD PHASE I STUDY

The Centers for Disease Control and Prevention (CDC) and the Population Council 

conducted a phase I study of a potential vaginal microbicide, Carraguard, in HIV-infected 

women in Chiang Rai, Thailand, during March 2003 to June 2004 as a three-treatment, 

three-period crossover trial (McLean et al., 2010). The “treatments” were no product, a 

placebo methylcellulose gel, and a Carrageenan-based Carraguard gel (both administered 

double-blinded). Each assessment period lasted 28 days. Sixty women were enrolled, with 

10 randomly assigned to each of the six possible treatment sequences.

For all three treatment arms, a cervico-vaginal lavage (CVL) sample was obtained on days 

zero (before product use), seven (after the final daily use of a product), and 14 of each 

menstrual cycle. Thus there was a washout period of approximately 21 days between 

treatment periods. CVL samples were analyzed for HIV-1 RNA using standard procedures 

(McLean et al., 2010). Data were reported as copies per mL of CVL fluid; all numerical 

values in this section use these units. The lower limit for quantification was 80 copies/mL; 

samples with no evidence of HIV-1 RNA were classified as non-detectable.

A first step in the analysis is a test for variation of the HIV-1 RNA values at day seven, or 

the change from day zero to day seven, among treatments. We show the results of analyses 

using the relevant statistical methods defined in the previous section. The mixed models and 

mixture models combine the NQ and ND values; the nonparametric tests and the logistic 

regression models consider combining these values as well as separating the ND values. For 

each woman, we restricted data to the 163 woman-cycles with an HIV-1 RNA result at both 

days zero and seven without antiretroviral treatment in that cycle. Six woman contributed 
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data at only one cycle (5 started antiretroviral treatment in cycle 2); 5 contributed data at two 

cycles (one started treatment in cycle 3). Only one woman was lost to follow-up (McLean et 

al., 2010).

Table 1 shows the distributions of the log10 HIV-1 RNA values in copies per mL on days 

zero, seven, and 14 of each cycle (the published data are total copies, hence different from 

Table 1). The HIV-1 values were quantifiable for 42% to 66% of the samples on individual 

days. The descriptive statistics for day zero suggest that the HIV-1 RNA values were lower 

at the start of cycles two and three than at the start of the study. The Carraguard and placebo 

gel treatment effects on day seven are similar. Carageenan is not absorbed in the vagina and 

the half-life of its activity has not been estimated, but comparing the day 14 and day zero 

results suggests that even a 7-day washout period was adequate. Q-Q plots and formal 

statistical tests show that the quantifiable log10 CVL values have a normal distribution 

(Supplementary Report).

Results from analyzing these data (excluding period effects) are summarized in Table 2. The 

models use the means in (4)–(7), as appropriate, but with two parameters for treatment 

(placebo gel and Carraguard). The Friedman tests and the mixed models using only the data 

from day seven provide strong evidence for variation among the treatments in their effects 

on HIV-1 CVL RNA. The mixed models using data from both days zero and seven provide 

weak evidence for such variation. The mixture models and the GEE logistic regression 

models for a meaningful decrease do not suggest such variation. Because only 17 of 163 

changes from day zero to day seven were classified as a meaningful increase in HIV-1 CVL 

RNA (including changes from ND to NQ), we analyzed only indicators for a meaningful 

decrease in the GEE models. The coefficient estimates for the placebo gel and Carraguard 

treatment effects obtained from the mixed models using data only from day seven suggest 

that both the placebo gel and Carraguard reduce HIV-1 CVL RNA by approximately 0.5 on 

the log10 scale. For comparison, for the 45 woman-cycles using placebo gel or Carraguard 

during which both the day zero and day seven values were quantifiable, the median decrease 

in log10 RNA HIV-1 during this interval was 0.42 copies/mL. The corresponding coefficient 

estimates from the mixture models are smaller in magnitude. We show why the GEE models 

have poor power to detect a treatment effect at the end of the presentation of simulation 

results for the parallel arm design.

We used heuristic methods to evaluate whether the mixed models with equal variances fit the 

data. We obtained the predicted value for each woman at each time from the PREDICT 

statement in the SAS NLMIXED procedure. For the models using day seven only and both 

days, 15 of 163 and 41 of 326 observations, respectively, had predicted values that disagreed 

with the observed values with respect to quantification. For the model using day seven only, 

agreement between observed and predicted numbers was good except for the periods using 

no product, which had seven of the 15 misclassifications (all misclassified as NQ: 

Supplementary Report, Table 3). In both models, the Gaussian q-q plot of the prediction 

errors for the observed quantifiable values supported Gaussian errors (Supplementary 

Report, Figure 1), as did the p-values from three tests (the Kolmogorov-Smirnov, Cramer-

von Mises, and Anderson-Darling tests) (Supplementary Report, Table 2). Based on these 
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results, we prefer to fit a mixed model to day seven data only and may accept the 

conclusions from that model.

Mixed models containing period effects had likelihood ratio chi-square statistics, treatment 

coefficient estimates, and standard errors for these estimates that were very similar to the 

corresponding values in Table 2 (Supplementary Report, Table 4).

4. SIMULATION EVALUATIONS OF POWER FROM ALTERNATIVE 

ANALYSES

We used 4000 simulations of two-treatment designs with a Type I error of 0.05 for each 

analysis method to evaluate whether test size, the power of the tests with appropriate size to 

detect a treatment effect, and (for the mixed models and mixture models) the bias of the 

Gaussian parameter estimate of the treatment effect and the coverage of a 95% confidence 

interval for this estimate. Half-lengths of the confidence intervals for percent power are 1.4 

and 1.6 for 80% and 50% power, respectively.

Our simulations used values suggested by the three-period, three-treatment Carraguard study 

(see the Supplementary Report). For each person, we used the SAS macro MVN in PROC 

IML to generate multivariate Gaussian data (bivariate for the parallel design, quadrivariate 

for the crossover design) with standard deviation 1 in the absence of treatment and an 

exchangeable covariance matrix with correlation 0.6. We assumed that the mean treatment 

effect was a reduction of 0.5 and that the quantification limit was 1.9 (log10 80). Based on 

the Carraguard data, the probabilities that an NQ value was ND were 0.70 and 0.55 for 

treated and untreated values, respectively. We considered untreated mean values of 2.0, 2.5, 

3.0, and 4.0; for a mean of 2.5, we evaluated the size of each test in the absence of treatment. 

We evaluated the performance of the analysis methods for standard deviations (σTrt) of 1.0 

and 1.4 for the treated values at follow-up. For the models, power calculations were 

restricted to the models that converged. For a baseline mean of 2.5, the probability of an NQ 

result at baseline is 0.28; at follow-up in a treated group, the corresponding probabilities are 

0.46 and 0.47 for σTrt equal to 1 and 1.4, respectively. See Supplementary Report, Table 5, 

for these probabilities for other baseline means.

4.1. PARALLEL DESIGN

The nonparametric analyses (the Wilcoxon test) used only the follow-up data. The mixed 

models and the logistic models for a meaningful change used both baseline and follow-up 

data. For both assumptions on the variance of the treated values, we used the likelihood L2 

to fit mixture models using follow-up data only as well as using both baseline and follow-up 

data. We used the mean (4) for the mixed models and (4) and (5) withut the random effects 

term for the mixture models.

We estimated sample sizes using Lachenbruch’s method for a “two-part” estimator in which 

the censored and quantifiable observations are analyzed separately (Lachenbruch, 2001). 

This procedure estimates the non-centrality parameter for the two degree-of-freedom chi-

square test statistic when there is a common variance in the two treatment arms; it can be 

generalized to different variances in the two arms. For a treatment effect of 0.5, a baseline 

Karon et al. Page 9

J Biopharm Stat. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mean of 2.5, and a quantification limit of log10 80, the estimated sample sizes to obtain 80% 

power are 64 and 73 persons per arm with σTrt equal to 1.0 and 1.4, respectively. A two-

sample t-test gives the same estimate for the equal variance case.

With no treatment effect, all tests and models except the mixture models had Type I error 

rates of approximately 5% for both values of σTrt with 64 persons per arm and a baseline 

mean of 2.5. Except for the model using baseline data with σTrt = 1, the mixture models had 

Type I error rates of 15% to 57% (Supplementary Report, Table 6).

Table 3 shows power results for a treatment effect of 0.5. In general, power decreased as the 

baseline mean decreased. With NQ and ND values combined, the Wilcoxon and Gehan tests 

had nearly identical power. When σTrt =1, the mixed models achieved greater than 80% 

power with 64 persons per arm, even for a baseline mean of 2.0. When σTrt =1.4, we found 

that 90 persons per arm are required to achieve approximately 80% power for a mixed model 

allowing unequal variances when the baseline mean is 2.5; the mixture models allowing 

unequal variances had poor power with this baseline mean, possibly explained by the fact 

that on 34% to 60% of the simulations, the likelihood ratio test is significant but the 

treatment coefficients had opposite signs. The GEE logistic regression models had lower 

power than the mixed models, as explained below. We did not investigate why some mixture 

models did not converge, but we expect it was a result of few non-quantifiable values or 

quantifiable values (when the baseline mean is large or small, respectively). We will see that 

the same phenomenon occured (but more frequently) with crossover study data.

With σTrt = 1 and 64 per arm, the median values of the treatment coefficient estimates and 

their standard errors from the mixed models were approximately −0.50 and 0.17, 

respectively, for all baseline means (the latter, slightly larger for a baseline mean of 2.0). 

With σTrt = 1.4 and 90 per arm, the median treatment effect coefficients from the mixed 

models with unequal variance parameters were −0.40 to −0.50, decreasing in magnitude as 

the baseline mean decreased. In both cases, the medians of the mixture model Gaussian 

coefficients had positive bias (substantial bias for baseline means of at most 3: 

Supplementary Report, Table 7). The treatment effect estimates from most of the mixed 

models with unequal variances had appropriate coverage for the treatment effect (the 

exception is a baseline mean of 2.0, with coverage of approximately 92%). Most of the 

mixture model estimates had poor coverage (Supplementary Report, Table 8).

For Gaussian data, we can compute the probability of a meaningful decrease (as defined 

above, with NQ and ND values combined), given the true treatment effect and decrease 

required if both pre-and post-treatment values are quantifiable (Supplementary Report). The 

results are summarized in Table 4 using the parameter values from the simulation study. This 

table also shows the power to detect a difference between decreases in the study groups with 

n=64 in each group as well as the estimated number in each group required to obtain a test 

with 80% power. For baseline means of 2.5 and 2.0, plausible values for log10 CVL HIV-1 

RNA, treatment effects of approximately 0.75 and >1.0, respectively, are needed to have 80 

percent power to detect a difference when the treatment effect is 0.5, a difference of 0.5 

between quantifiable values is meaningful, and there are 64 in each group. We also did these 

computations for correlations ρ = 0.5 and 0.7; the results were very similar.
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4.2. CROSSOVER DESIGN

We evaluated use of follow-up data only using two Friedman tests (ND combined with and 

separate from NQ), mixed models, and mixture models. We evaluated the use of both 

baseline and follow-up values using the Schouten-Kester test, mixed models, a mixture 

model, and two GEE logistic regression models for a meaningful decrease (ND combined 

with and separate from NQ). We evaluated both the mixed models and the mixture models 

with σTrt equal to 1.0 and 1.4. We used the means (4), (5), (6), and (7) (without random 

effects terms) as appropriate, for these models.

A potential problem with the crossover design is the presence of period and carryover 

effects. We also generated data with a period effect and evaluated power when there is a 

period term in the model; we did not consider carryover effects. Senn (2002) advocates 

ensuring that the washout period is long enough that carryover effects are not necessary and 

gives reasons for never including a carryover effect in the model.

Senn (2002, Section 9.5.2) provides SAS® code for estimating the sample size required in an 

AB:BA crossover study with Gaussian data that are quantifiable. For our simulated data, the 

required total sample size estimates for 80% power are 28 (14 per treatment sequence) and 

44 (22 per sequence) for σTrt equal to 1.0 and 1.4, respectively. Since the data are assumed 

to be quantifiable, the sample size estimates depend on the relation between the treatment 

effect and the standard deviation but not on the mean of the baseline distribution. Chu et al. 

(2006) derived the power for testing the hypothesis that the means of the underlying 

distributions are equal in a two-treatment mixture model for log-normal data. Their 

expressions (assuming equal or unequal variances) use the expected proportions of censored 

values in the two study arms to compute the total sample size from the sample size derived 

from the means in the truncated distributions of the quantifiable values and the desired 

power. With a baseline mean of 2.5, a treatment effect of 0.5, and a standard deviation of 1 

(unaffected by treatment), their procedure estimates a sample size of 58 per arm. Since this 

is based only on comparing quantifiable values, this estimate is likely to be too large.

With no treatment effect, the nonparametric tests, mixed models (except for the model using 

follow-up data only and assuming equal variances when σTrt=1.4), and logistic regression 

models had Type I error rates of approximately 5% for σTrt equal to both 1.0 and 1.4 with 16 

persons per arm and a baseline mean of 2.5. Among the mixture models, the Type I error 

rate was approximately 5% only for the model using only follow-up data and assuming 

equal variances with σTrt=1 (Supplementary Report, Table 9).

Table 5 shows power results for a treatment effect of 0.5 for simulations with σTrt equal to 

1.0 and 1.4 (we chose sample sizes to obtain 80% power with an appropriate mixed model 

when the baseline mean is 2.5). In general, power decreased as the baseline mean decreased. 

The Friedman tests had poorer power than the appropriate mixed model. The mixed models 

had the best power (using equal and unequal variance parameters, when the simulated 

variances are equal and unequal, respectively); the models using follow-up data only had 

much better power than the models using both baseline and follow-up data. The mixture 

model and analyses based on a dichotomous definition of improvement (the GEE logistic 

regression models and the Schouten-Kester analyses) had poor power.
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The median treatment coefficient estimates from the mixed models were approximately 

−0.50 for all baseline means for σTrt = 1, whether or not the variances of treated values were 

assumed to be equal. The losses of power referred to above result from increases in the 

standard errors of the estimates of the treatment effect as the baseline mean decreases. For 

σTrt = 1.4 the mixed models allowing for unequal variances gave nearly unbiased estimates 

of the treatment effect from using the follow-up data only but positive biased estimates 

(magnitudes that are too small) and standard errors which increased as the baseline mean 

decreased if the baseline data were used. Most of the median mixture model Gaussian 

treatment coefficient estimates had large positive bias. See Table 10 in the Supplementary 

Report. As with the parallel design simulations, the mixed models with unequal variances 

had appropriate coverage (93.9% to 97.0%) for the treatment effect except for one model 

(Supplementary Report, Table 11).

We also simulated data with a baseline mean of 2.5, a treatment effect of 0.5, and period 

effects of 0, −0.3, and −0.3 (with standard deviations of the period effects of 0, 0.3, and 0.1, 

respectively). The power estimates from analyzing 4000 simulations of these data using the 

nonparametric procedures and the mixed models are summarized in Table 6; all mixed 

models include period effects (including those for data with a period effect of 0). We also 

evaluated the Schouten/Kester test, mixture models, and GEE logistic models; as in Table 5, 

these had poor power. When there are period effects and σTrt equals 1.0, it required 35 

persons per arm to obtain approximately 80% power from mixed models using equal 

variances (compared to 16 per arm when there are no period effects in the data, as shown in 

Table 5); models using baseline data have slightly better power than those using only follow-

up data. When there are period effects and σTrt equals 1.4, the mixed models using unequal 

variances had only 57% to 66% power with 50 persons per arm (compared to power of 

approximately 80% with 30 per arm using follow-up data only when there are no period 

effects in the data, as shown in Table 5); again, models using baseline data had slightly better 

power than those using only follow-up data. This loss of power in the presence of a period 

effect that reduced the baseline mean in the second period was the result of treatment effect 

estimates with positive bias (smaller magnitude), except for models using the baseline value 

when σtrt=1.0, and some increase in the standard error of these estimates (Supplementary 

Report, Table 12).

5. DISCUSSION

We evaluated selected statistical methods for analyzing study designs with two “treatments” 

in which the endpoint is the reduction in the quantity of interest, assessed by an assay 

yielding Gaussian data with a lower quantification limit, at a single follow-up time. Our 

results are relevant for the analysis of HIV viral load data (we know of no other clinical 

assays with quantification limits). Most current HIV treatment clinical trials, e.g. Molina et 

al. (2008), define the endpoint to be a non-detectable viral load; our results do not apply to 

such trials.

Our simulations and analyses of the Carraguard data found that mixture models and analyses 

based on dichotomous classification have much poorer power than mixed models and 

nonparametric tests. A more thorough comparison of analyzing cross-sectional data reached 
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the same conclusion about mixed models versus mixture models (Wiegand et al., submitted). 

Our results concerning analyses based on a dichotomous outcome concur with prior research 

giving substantive reasons for not using such a measure of efficacy (Federov et al., 2009; 

Senn, 2003). The mixture models have other disadvantages, including excessive Type I error 

for some models and the need to write code to compute the sandwich estimator of variance 

to obtain standard errors of estimates of the treatment effect when analyzing longitudinal 

data. When the mixture model likelihood ratio test for a treatment effect is significant, it is 

relatively common for the Gaussian and logistic parameter estimates to disagree with respect 

to the direction of the treatment effect. As might be expected, our simulations also show that 

power may decrease as the proportion of non-quantifiable observations increases. The 

current lower quantification limit for HIV viral load in the CDC-Atlanta laboratory is 50 

copies (Clyde Hart, personal communication, September 2013); the quantification limit is 

laboratory dependent. Specific power results will depend on the quantification limit.

In our simulations, mixed models (allowing for unequal variances when the data have this 

property and using follow-up data only for the crossover design) had better power than the 

nonparametric tests as well as the advantage of yielding an estimate of the treatment effect 

that was approximately unbiased. Mixed models also have the advantage that we can do an 

heuristic goodness-of-fit test, as we implemented for the Carraguard data. A nonparametric 

test may be useful as an initial analysis in deciding whether it is worth fitting a parametric 

model.

If a parametric model is to be used to analyze a study of the effect of treatment on HIV 

RNA-1 data with one follow-up value, we recommend that it be a mixed model. We suspect 

that this conclusion applies more generally to data of this type, based on the simulations for 

cross-sectional data in Wiegand et al. (submitted for publication). Our simulation results for 

the crossover design suggest that using the baseline values will decrease power. Senn (2002, 

Section 3.16.1) comments that this is likely to occur unless the baseline values contain 

useful information about patients’ treatment responses. Our simulation results agree with his 

comments, as we assumed the treatment effect to be independent of the baseline value in 

each period. However, it may be necessary to use baseline data in order to convince readers 

of the validity of analyses.

It is reasonable to believe that effective treatment will increase the variance of observed 

values as a result of heterogeneity of the treatment effect, as shown by the Carraguard data. 

As would be expected, simulation results showed that such increased variance results in 

substantial reduction in power for mixed models assuming equal variances and that a 

substantial increase in sample size is required to obtain the desired power with a model 

assuming unequal variances.

Our simulations to evaluate analysis methods for the crossover design when the data include 

a period effect found that the mixed models had substantially better power than other 

analysis methods. Our results also suggest that the sample size required to obtain stated 

power may increase when there is a period effect that reduces the baseline mean. Additional 

simulations with other assumptions on the period effect would be needed to make a 

definitive statement concerning the affect of a period effect on power.
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We found that the published methods for estimating the sample size required to obtain stated 

power may give incorrect estimates for data with a lower quantification limit. In our 

simulations, Lachenbruch’s method (Lachenbruch, 2001) for a parallel arm design gives an 

estimate that is too large when the variance of the follow-up measurements is unaffected by 

treatment but too small when this variance is affected by treatment. The sample size 

estimates for a crossover design from Senn’s method (Senn, 2002) could be too large, too 

small, or approximately correct, depending on the proportion of non-quantifiable results. 

Neither method accounts for any dependence of power on the proportion of NQ values. It 

may be necessary to do simulations to obtain guidance on the sample size required for a 

treatment trial with data containing a lower quantification limit. Furthermore, our 

simulations assumed no loss to follow-up. Missing values could be imputed, but estimates 

would have larger standard errors than those from complete data.

Crossover trials are often recommended instead of parallel arm trials in order to reduce the 

number of persons required to obtain estimates with the same precision (Senn, 2002). For 

data with a lower quantification limit, our simulations confirm this recommendation if there 

are no period effects (fewer persons per arm or treatment sequence are needed to obtain 

stated power with mixed models). If there is a period effect, this advantage may be 

substantially reduced. Our simulations assume no loss to follow-up. While loss to follow-up 

would be more likely with a crossover design, experience has shown that it is much easier to 

retain participants in a trial than to recruit eligible participants. If a period effect would be 

included in a crossover study analysis model for data with a lower quantification limit, the 

sample size comparisons depend on the magnitude and likely the sign of the mean period 

effect and the standard deviation of the effect. In this case, our simulation results do not 

yield a clear recommendation for choosing between designs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1.

Distributions of log10 HIV-1 RNA (copies per mL of cervico-vaginal lavage fluid), phase I Carraguard trial, 

Chiang Rai, Thailand.

Group N % ND % NQ % Q Median (Q1, Q3)

At the start of each cycle (day zero)

Cycle 1 58 19 16 66 2.37 ( NQ, 3.07)

Cycle 2 53 19 21 60 2.04 ( NQ, 2.96)

Cycle 3 52 27 17 56 2.12 ( ND, 2.87)

On day seven, by treatment

Carraguard® 54 39 19 43 NQ ( ND, 2.38)

Placebo gel 55 44 15 42 NQ ( ND, 2.59)

No product 54 24 20 56 2.03 ( NQ, 2.9)

On day 14, by treatment

Carraguard® 51 22 24 55 2.11 ( NQ, 2.73)

Placebo gel 54 37 13 50 NQ ( ND, 2.95)

No product 53 25 21 55 2.13 ( NQ, 3.07)

ND: none detected; NQ: detected but not quantifiable; Q: quantifiable (lower limit is 1.90 on the log10 scale). Q1: first quartile; Q3: third quartile.
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Table 2.

Summary of the analyses of the variation of HIV-1 CVL RNA among treatments: test statistics and p-values, 

and treatment effect coefficients (standard error estimates in parentheses: copies/mL). Phase I Carraguard trial, 

Chiang Rai, Thailand.

Model

Test statistic
(P-value)

Gaussian coefficients Logistic coefficients

Placebo gel Carraguard Placebo gel Carraguard

 

Nonparametric analyses: Friedman test

NQ and ND combined 10.7 ( .005) NA NA NA NA

NQ and ND separate 15.2 (<.001) NA NA NA NA

Mixed models using day seven only

Equal variances 14.1 (0.001) −0.439 (0.148) −0.543 (0.150) NA NA

Unequal variances 14.2 (0.003) −0.455 (0.153) −0.561 (0.157) NA NA

Mixed models using both days zero and seven

Equal variances 7.6 (0.02) −0.526 (0.191) −0.303 (0.193) NA NA

Unequal variances 7.6 (0.06) −0.532 (0.194) −0.309 (0.196) NA NA

Mixture models using the likelihood L2 and data from day seven only

Equal variances 4.6 (0.34) 0.036 (0.167) −0.195 (0.171) −0.553 (0.387) −0.522 (0.388)

Unequal variances 5.8 (0.32) 0.036 (0.167) −0.195 (0.171) −0.653 (0.387) −0.522 (0.388)

Mixture models using the likelihood L2 and data both days zero and seven

Equal variances 4.30 (0.37) 0.036 (0.171) −0.195 (0.177) −0.553 (0.362) −0.522 (0.356)

Unequal variances 6.86 (0.23) 0.036 (0.148) −0.195 (0.152) −0.554 (0.363) −0.521 (0.358)

Generalized estimating equation logistic regression models for a meaningful decrease

NQ and ND combined 2.2 (0.34) NA NA −0.345 (0.417) − 0.550 (0.410)

NQ and ND separate 1.0 (0.62) NA NA −0.152 (0.389) − 0.338 (0.387)

NQ: sample detectable but not quantifiable; ND: sample not detectable;

NA: not applicable.

Test statistics:

Friedman test: chi-square with 2 degrees of freedom (df).

Mixed models and mixture models: likelihood ratio chi-square with 2 and 3 df for equal and unequal variances, respectively.

Generalized estimating equation logistic regression models: Wald chi-square with 2 df.
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Table 3.

Power (percent) for detecting a treatment effect based on 4000 simulations in a two-arm (placebo/treatment) 

parallel design study, by μ and the standard deviation of the values after treatment (σTrt) Results are for at least 

99% of the simulations, except as indicated.

μ (64 per arm, σTrt = 1) μ (90 per arm, σTrt = 1.4)

2.0 2.5 3.0 4.0 2.0 2.5 3.0 4.0

Model

Nonparametric analyses

Wilcoxon test (NQ only) 60.3 74.0 75.8 76.8 38.9 60.5 70.1 77.0

Wilcoxon test (both NQ and ND) 67.9 79.0 76.9 76.8 53.2 68.2 72.7 77.1

Gehan test (NQ only) 61.0 74.9 76.8 78.0 36.7 60.3 71.5 77.1

Mixed models using both baseline and follow-up data

Equal variances 82.3 90.5 92.1 93.2 37.7 63.2 81.6 93.8

Unequal variances 77.0 89.9 92.4 93.1 64.2 81.4 90.8 94.5

Mixture models using likelihood L2 and follow-up data only

Equal variances 51.6 63.5 67.1
56.1

d NS NS NS NS

Unequal variances 51.4 61.5 63.6
51.7

d NS NS NS NS

Mixture models using likelihood L2 and both baseline and follow-up data

Equal variances
19.8

c
25.1

b
26.6

a
30.6

a NS NS NS NS

Unequal variances
28.2

c
33.2

b
30.7

a
25.1

a NS NS NS NS

Generalized estimating equation logistic regression models for a significant decrease

NQ and ND combined 36.2 52.7 67.1 68.3 17.7 41.0 65.2 83.3

ND separate from NQ 52.5 64.5 71.4 68.8 33.5 55.2 72.0 84.0

Assumptions: treatment reduces the underlying mean μ by 0.5, the standard deviation of the untreated mean is 1, and Type I error is 0.05. 
Quantification limit is log10(80) = 1.90. NQ: non-quantifiable; ND: not detectable.

NQ only: NQ and ND were combined.

a
Results for 90% to 98.9% of all simulations.

b
Results for 80% to 89.9% of all simulations.

c
Results for 70% to 79.9% of all simulations.

d
Results for 60% to 69.9% of all simulations.

NS: not shown, excessive Type I error.
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Table 4.

Probability of a meaningful decrease, power to detect a treatment effect based on this dichotomization with 

n=64 in each treatment group in a two-arm parallel study, and the sample size in each group to have 80% 

power to detect a such treatment effect, when the correlation between baseline and follow-up measurements is 

0.6, by mean baseline CVL HIV-1 and mean treatment effect.

Mean 
treatment 

effect

Baseline mean

2.0 2.5 3.0

Pr(decrease)
Power 

(%)
N per 
arm Pr(decrease)

Power 
(%)

N per 
arm Pr(decrease)

Power 
(%)

N per 
arm

 

0.50 0.367 28 217 0.446 44 135 0.486 56 104

0.75 0.421 51 115 0.525 77 67 0.583 90 50

1.00 0.464 70 79 0.585 94 44 0.668 99 31

A meaningful decrease is a decrease of at least 0.5 if both measurements are quantifiable, or a decrease from quantifiable to non-quantifiable.

Quantification limit is 1.9; standard deviation of both baseline and follow-up values is 1.

The sample sizes (N per arm) were obtained from the web site http://www.swogstat.org/stat/public/binomial_twoarm.htm
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Table 5.

Power (percent) for detecting a treatment effect based on 4000 simulations in a two-arm, two-treatment 

crossover study, by μ and the standard deviation of the values after treatment (σTrt). Results are for at least 

99% of the simulations, except as indicated.

Model

μ (16 per arm, σTrt = 1) μ (30 per arm, σTrt = 1.4)

2.0 2.5 3.0 4.0 2.0 2.5 3.0 4.0

Nonparametric analyses

Friedman test (NQ only) 56.8 64.9 68.4 69.3 28.4 50.6 64.2 75.0

Friedman test (both NQ and ND) 61.5 66.6 70.0 68.9 41.0 57.0 66.3 75.6

Schouten/Kester test 19.5 28.6 37.4 40.7 14.4 29.4 47.3 64.7

Mixed models using follow-up data only

Equal variances 68.9 78.4 84.6 87.1 30.5 58.4 76.8 89.9

Unequal variances
42.4

a
70.5

a 83.3 86.7
56.1

a
77.2

a 86.0
89.6

a

Mixed models using both baseline and follow-up data

Equal variances 44.3 51.6 56.9 58.6 18.5 36.1 53.5 71.4

Unequal variances 36.8 49.4 56.3 58.6 31.5 49.8 63.5 73.2

Mixture models: likelihood L2, follow-up data only

Equal variances 14.1 17.0
17.0

a NA NS NS NS NS

Generalized estimating equation logistic regression models for a significant decrease

NQ and ND combined 21.0 31.1 38.9 42.5 14.3 29.4 47.3 64.7

ND separate from NQ 30.4 36.4 42.0 43.0 24.3 40.0 53.6 65.8

Assumptions : treatment reduces the underlying mean μ by 0.5, the standard deviation of the untreated mean is 1, Type I error is 0.05, the 
quantification limit is log10(80) = 1.90. NQ: non-quantifiable; ND: not detectable.

NQ only : NQ and ND results were combined.

a
Results for 90% to 98.9% of all simulations

NA: Results for less than 20% of all simulations.

NS: not shown, excessive Type I error.
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Table 6.

Power (percent) for detecting a treatment effect with a potential period effect based on 4000 simulations in a 

two-arm, two-treatment crossover study, by the standard deviation of the values after treatment (σTrt), and the 

period effect (mean μP, standard deviation σP). Results are for at least 99% of the simulations, except as 

indicated.

35/arm, σTrt = 1 50/arm, σTrt = 1.4

Period effect: μP (σ P) 0.0 (0.0) −0.3 (0.3) −0.3 (0.1) 0.0 (0.0) −0.3 (0.3) −0.3 (0.1)

Nonparametric analyses

Friedman test (NQ only) 93.1 60.7 63.2 72.7 21.6 21.8

Friedman test (NQ and ND) 94.5 68.1 70.3 79.1 33.2 34.2

Mixed models using follow-up data only

Equal variances 98.4 76.2 78.5 81.2 23.1 22.7

Unequal variances 96.6 62.1 65.1
94.4

a
54.7

a
58.0

b

Mixed models using both baseline and follow-up data

Equal variances 84.8 77.5 80.9 56.2 42.4 45.0

Unequal variances 83.5 74.7 78.0 74.1 62.0 65.3

Assumptions: treatment reduces the underlying mean by 0.5 from a baseline mean of 2.5, the standard deviation of the untreated mean is 1, Type I 
error is 0.05, quantification limit is log10(80) = 1.90.

NQ: non-quantifiable; ND: not detectable.

NQ only : NQ and ND results were combined.

a
Results for 91.5% to 98.5% of all simulations

b
Results for 89.3% of all simulations.

J Biopharm Stat. Author manuscript; available in PMC 2019 November 27.


	Abstract
	INTRODUCTION
	STATISTICAL METHODS
	NONPARAMETRIC PROCEDURES
	MIXED MODELS AND MIXTURE MODELS: MAXIMUM LIKELIHOOD
	LOGISTIC REGRESSION: MODELING A CHANGE DEFINED BY A MAGNITUDE OF INTEREST
	METHODS CONSIDERED

	ANALYSIS OF THE CARRAGUARD PHASE I STUDY
	SIMULATION EVALUATIONS OF POWER FROM ALTERNATIVE ANALYSES
	PARALLEL DESIGN
	CROSSOVER DESIGN

	DISCUSSION
	References
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.

