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Abstract

A potential difficulty in the analysis of biomarker data occurs when data are subject to a detection 

limit. This detection limit is often defined as the point at which the true values cannot be measured 

reliably. Multiple, regression-type models designed to analyze such data exist. Studies have 

compared the bias among such models, but few have compared their statistical power. This 

simulation study provides a comparison of approaches for analyzing two-group, cross-sectional 

data with a Gaussian-distributed outcome by exploring statistical power and effect size confidence 

interval coverage of four models able to be implemented in standard software. We found using a 

Tobit model fit by maximum likelihood provides the best power and coverage. An example using 

HIV-1 RNA data is used to illustrate the inferential differences in these models.
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1 Introduction

Biomarkers play an important role in the identification, surveillance and treatment of various 

disorders.1 Such measurements can be a challenge to analyze because often biomarker 

outcomes have non-normal distributions and possess truncated distributions.2 The 

“censored” data contained in the truncated part of the distribution occur because of 

limitations of technology to measure the amount of biomarker present in a sample and can 

result in a sizable amount of data below the detection limit. For instance, Human 

Immunodeficiency Virus Type 1 (HIV-1) Ribonucleic Acid (RNA) data are subject to a 

lower assay detection limit. HIV-1 RNA levels are associated with transmission, where 

lower values greatly reduce the probability.3 Estimates of the percentage of Human 

Immunodeficiency Virus (HIV) patients in care who have a nondetectable viral load vary; a 

recent estimate is 29%,4 but some samples may have much larger censoring rates (e.g., 
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74%5) possibly due to the use of older, less-sensitive assays or greater rates of effective 

treatment or adherence.

We refer to the minimum detectable concentration of a biomarker as the “detection limit”. 

This is the value at which samples have a detectable value that cannot be reliably quantified 

at the low end of the distribution. Others may split this limit into two components: a limit of 

detection and a limit of quantification.6 A biomarker may also have a maximum 

concentration at which samples cannot be reliably quantified, sometimes described as the 

“limit of linearity”.7 For this study, we considered a single detection limit referred to as d. In 

some cases d may differ across observations, such as when different assays are used in the 

same dataset. For instance, in HIV-1 RNA data, Chen et al.8 describe a situation where some 

observations were collected with the Amplicor Standard assay (d=400 copies/mL) and 

others with the Ultrasensitive assay (d=50 copies/mL). For simplification, we considered d 
to be the same for each observation. In this situation, measurements above d are deemed to 

be measured reliably. Conversely, those measurements below d, the non-detectable values or 

non-detects, are only known to be within the range [0, d). Although we focus on biomarkers, 

other data are commonly subject to a detection limit, such as environmental and 

occupational exposure9, 10 or pharmacokinetics11 data.

Multivariable statistical modeling techniques have been developed or adapted to analyze 

data specifically for outcomes with non-detectable values. One model treats the distribution 

of the biomarker outcome as a mixture of two distributions: a Bernoulli distribution (to 

model whether or not the observation lies above or below the detection limit) and a 

continuous distribution. These models have been adapted for use with biomarkers12–14 and 

environmental exposures.15 Extensions of this approach have been made to a Bayesian 

framework16 and to repeated measures data.17 Another model is to treat the censored 

observations as coming from the conditional density of the non-detectable values given the 

censored observations. This model was proposed by Tobin18 using least-squares and 

Amemiya19 provided the theoretical groundwork for finding maximum likelihood estimators 

(MLEs) using this approach. Recent theoretical research using this framework has focused 

on models for longitudinal data fit either by the EM algorithm20–22 or by directly 

maximizing a likelihood.23, 24 These models treat all observations as coming from the same 

distribution, but the likelihood function consists of the probability density function (pdf) for 

detectable values and the cumulative density function (cdf) evaluated at d for observations 

below d.

Despite the availability of these models to model data with a detection limit and available 

resources to assist in their implementation,10, 25 investigators frequently choose other 

models. A popular approach has been to insert a single value for all observations at or below 

d, such as d or d
2 . These simple imputation models have been shown to give biased point and 

standard error estimates.10, 20, 23, 24, 26, 27 Deleting all observations below d is likely to bias 

estimates and inferences11, 28 when data are not missing completely at random.29 Another 

common approach in HIV/AIDS research is to dichotomize the distribution of HIV-1 RNA 

concentration at d or some higher concentration and use this as an outcome.30–34 

Dichotomizing has also been identified as a trend across all medical research.35 Although 
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creating a binary outcome from a continuous variable results in less power36, 37 and may 

produce wider confidence intervals,38 some authors provide justification for dichotomizing 

continuous variables.39, 40 For example, a logistic regression model may be preferred as the 

question of interest may be to reduce (or raise) an outcome below (or above) some clinically 

relevant level.

Many studies have compared biases or coverage rates between models that deal with data 

subject to a detection limit,6, 9, 10, 13, 16, 20, 23, 26, 41–43 but few have explored the power of 

these models. Those that studied power focused on the ability to find a statistically 

significance association between mean exposure and a regulatory limit10, 15, 44 or between 

treatment groups.6, 10, 45 Of these, only Jin et al.10 systematically varied the rate at which 

data fall below the detection limit. However, Jin et al.10 focused on longitudinal data and did 

not consider the logistic regression or Bernoulli-Gaussian mixture model approaches.

This study addresses this lack of research on the influence of the censoring rate on the 

statistical power and confidence interval coverage of regression-type models designed to 

analyze multiple predictors on an outcome with a detection limit. The motivation behind this 

study is HIV-1 RNA, which appear to have an underlying Gaussian distribution in multiple 

different HIV-1 RNA reservoirs including plasma,46–50 seminal,48 cervicovaginal,51 nasal,51 

rectal,52 breast milk,53 and cerebrospinal,46 though in some instances these are heavily 

truncated by the detection limit. Therefore, our outcome is generated from a Gaussian 

distribution. Our focus is on power to detect a mean difference in two treatment groups, 

which we assessed by performing simulations. Power is defined as the ability to detect a 

significant effect when a true effect exists and confidence interval coverage as the rate at 

which the true parameter is included in the simulation confidence interval. We compare 

linear regression after replacing censored values by the detection limit d or half the detection 

limit d
2 , logistic regression where the outcome is above or below the detection limit, a 

mixture of a Gaussian pdf and cdf,18, 19 a Bernoulli-Gaussian mixture model,12 a Bernoulli-

Gaussian mixture using the long-term survivor likelihood,13 and the Buckley-James 

estimator,54 a nonparametric regression model. Although the hypothesis of interest may 

dictate logistic regression as the appropriate model, we view this question as if the study 

purpose is to find a statistically significant association between an outcome with a limit of 

detection and a binary explanatory variable. To our knowledge, this study is the first to 

compare this group of models while varying the censoring rate across a range as wide as 0.1 

to 0.9. Comparing the confidence interval coverage with the power should allow us to make 

more comprehensive recommendations on which models perform best with cross-sectional 

data for our simulation parameters. The methods section provides greater detail on these 

models and describes the simulation parameters. The simulation results are presented and 

evaluated in the results and discussion sections, respectively.

2 Methods

2.1 Statistical Models

Consider data from i = 1, …, N participants in a cross-sectional study. As in the previous 

section, let d denote the limit of detection. For subject i, yi is the outcome subject to d. The 

Wiegand et al. Page 3

Stat Methods Med Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



variable xi records each participant’s group status; hence either xi = 0 or xi = 1. The 

parameter τ is the true difference between the two groups. Combined with the intercept, is 

each participant i’s 1 × 2 row of the design matrix and τ is a 2 × 1 vector of fixed effects 

consisting of the intercept τ0 and the treatment difference τ.

2.1.1 Single-value imputation—In the single-value imputation model, yi
∗ is defined as

yi
∗ =

d
2 , if yi < d

yi, if yi ≥ d
,

or as

yi
∗ =

d, if yi < d

yi, if yi ≥ d
.

(In this study, the former is referred to as the “half-LOD” models and the latter as the “at-

LOD” model.) Then yi
∗ is used in a linear regression model with the likelihood

L1 τ, σ = ∏
i = 1

N 1
σ 2π

e
− 1

2σ2 yi
∗ − Xiτ

2

.

The residuals from L1(τ,σ) are assumed to follow the Gaussian distribution N(0,σ2) and be 

independent. Estimation is via maximum likelihood. We considered both cases in these 

simulations, i.e., where half the limit of detection is used (the half-LOD) or the limit itself 

(the at-LOD) as the imputed value. Additionally, it should be noted that, if transformations 

are performed, the imputed single-value should also be transformed.

2.1.2 Logistic Regression—The second model uses the outcome ui defined as

ui =
0, if yi < d

1, if yi ≥ d

and then fits a standard logistic regression model with the likelihood function

L2 τ = ∏
i = 1

N
pi

ui 1 − pi
1 − ui ,

where

pi = eXiβ

1 + eXiβ ,
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with β = β0, β . When β > 0 this indicates a greater log odds of possessing a detectable 

value. Logistic regression models are unstable with small numbers of events (or non-events) 

per variable (EPV). There exists some disagreement on when this instability begins.55 

Hence, in an attempt to avoid reporting unstable and potentially biased results but still 

estimate power, we used an exact logistic regression procedure56 when there were 10 EPV 

or less. The rate of exact method use is noted in the results section.

2.1.3 Tobin-Amemiya—For the third model, the likelihood becomes a mixture 

distribution between the Gaussian pdf and cdf (henceforth, we will refer to this as the Tobin-

Amemiya model). Using the same ui as in the previous model, the likelihood function can be 

defined as

L3 τ, σ = ∏
i = 1

N
f yi τ, σ

ui Φ d τ, σ
1 − ui ,

where f is the Gaussian pdf (see L1) and Φ the Gaussian cdf

Φ d τ, σ = −∞
d

f t τ, σ dt .

Observations above the detection limit contribute to the likelihood via the pdf using the 

detectable value. Values below the detection limit use the cdf evaluated at d. Theoretical 

justification and properties are expanded upon elsewhere18, 19 This model was fit via PROC 

NLMIXED in SAS software.25

2.1.4 Bernoulli-Gaussian Mixture—For the Bernoulli-Gaussian mixture model, a 

Bernoulli likelihood is substituted in place of the Gaussian cdf. To estimate the success 

probability parameter in the Bernoulli likelihood, a logistic regression model is used. 

Additionally, the Gaussian pdf is multiplied by the probability the observation is detectable, 

defined by pi from the logistic regression model. Xi is subject i’s row in the design matrix 

for both components, β are the fixed effects for the logistic regression, and τ are the fixed 

effects for the Gaussian component. The likelihood is then

L4 β, τ, σ = ∏
i = 1

N
pi f yi τ, σ

ui 1 − pi
1 − ui .

As with the Tobin-Amemiya models, these models were fit in PROC NLMIXED with code 

similar to Thiébaut and Jacqmin-Gadda.25

2.1.5 Long-Term Survivor Likelihood—Also, we performed simulations with the 

following likelihood function:13
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L5 β, τ, σ = ∏
i = 1

N pi f yi τ, σ

σ

ui
1 − pi + piΦ d τ, σ

1 − ui .

Originally this likelihood was proposed in a survival analysis to consider “long-term” 

survivors.57 In our situation, the “long-term” survivors term is considered to be a proportion 

of non-detectable observations which are in truth detectable. The probability of observation i 
being detectable (pi) is defined in the same way as in the Bernoulli-Gaussian likelihood in 

L4.

2.1.6 Buckley-James Estimator—Finally, we included a non-parametric regression 

model for censored data, the Buckley-James estimator.54 Full details of the Buckley-James 

estimator can be found elsewhere.54, 58 In short, if X is the mean of X , the Buckley-James 

estimator is an iterative procedure which starts by taking the linear regression estimating 

equation for τ0

i = 1

N
xi − X yi − Xi′τ = 0, (1)

and substitutes E yi d, ui − xi′τ for yi − Xi′τ. This does not have a closed-form expression but 

can be approximated by using the Kaplan-Meier estimate of the distribution of the residuals 

based on min yi − τ, d − τ , ui : i ≤ N . This new estimate, yi, is then substituted into 

equation (1) for yi − Xi′τ and the Buckley-James estimator is the solution to this equation.

We fit the Buckley-James estimator by calling the bj function in the rms package59 from 

PROC IML. This uses Buckley and James’54 variance formula that Lai and Ying58 noted has 

potential shortcomings.

2.2 Simulation Methods

Our primary goal with these simulations was to assess the probability a test statistic is below 

a level-of-significance threshold given certain parameters, i.e., to find the statistical power. 

Hence, our main outcome in this study is whether or not the null hypothesis of no 

association can be rejected; in other words, is p < 0.05. This is recorded and the number of 

instances over 10,000 simulations is used to determine the estimate of the power. For all 

models except the Bernoulli-Gaussian and long-term survivor mixture models, this is 

determined by the p value associated with the test of the τ parameter. Since both mixture 

models test the effect of group membership in both the Bernoulli and Gaussian components, 

we used a likelihood ratio test with two degrees of freedom that compared the model with 

both treatment effects to the model with neither. Thus, to measure power, we summed the 

number of simulations where the null hypothesis of τ = 0 was rejected and divided that by 

the total number of simulations which converged and contained stable estimates.

We also wished to measure the 95% confidence interval coverage of these models. In order 

to measure all effects similarly, we based the coverage on effect sizes. For effects derived 
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from a logistic likelihood function, we converted odds ratios to effect sizes by using 

Chinn’s60 conversion, where

effect size = ln odds ratio
π / 3 .

For simulated values, the upper and lower confidence limits of the odds ratio were computed 

and then converted to effect sizes by the formula above. For Gaussian effects, the estimated 

treatment difference was divided by the estimated standard error to compute an effect size 

(or Cohen’s d61). (The expected standard errors of the true effect size were calculated from 

the expression 2/N −1.) The upper and lower confidence 95% limits of the effect size were 

calculated. Then, for both types, if the true effect size fell within the upper and lower 

confidence limits of the simulated effect size, the simulation was said to “cover” the true 

effect size. We then counted the number of simulations where the 95% confidence interval 

contained the true effect size and divided by 10,000 to find the coverage rate.

Finally, we explored the bias in the estimated point estimates, standard errors of the 

difference of means, and effect sizes. Bias was computed by subtracting the median value 

from all simulations from the true effect. These results are included in the supplementary file 

(Figures S1–S3).

We chose to vary the difference between the groups (τ) and the percentage of censored 

observations in these simulations. Values of τ considered were 0.00, −0.25, −0.50, −0.75, 

and −1.00 since an intervention would be expected to reduce the mean HIV-1 RNA. Zero 

treatment difference produces an estimate of the type I error rate. All simulations used σ = 1. 

Thus, the simulations with τ = −0.25, where τ is on the log10 scale, correspond to a 

difference in means a quarter as large as the standard deviation (or, in terms of HIV-1 RNA, 

a decrease from 1000 to 562.3 copies/mL), τ = −0.50 half as large (or from 1000 to 316.2 

copies/mL), and so forth. These parameters were selected for ease of interpretation since the 

effect sizes equal the treatment effects.

For each parameter set, we chose to have a target power rate of 0.80, meaning that the true 

power rate is constant across all τ > 0 and censoring rates. Sample sizes for each value of τ 
> 0 and rate of censoring were determined using Lachenbruch’s62 formula. When τ = 0, the 

expected power is the type I error rate of 0.05 and the sample size was set at 300. We 

calculated the median R2 of each simulated data set prior to censoring to demonstrate the fit 

of the model with fully observed data. Additionally, we performed simulations with a fixed 

sample size of 50 for all τ and censoring rates.

Rates of censoring (c) from 0.1 to 0.9 by increments of 0.2 were simulated. To control the 

rate directly, the limit of detection (d) was determined by finding the appropriate percentile 

of the simulated Gaussian distribution, then the distribution was shifted in order to make d = 

1. This was done to standardize the range of integration for the Gaussian cdf in each 

simulation. All values below d were deemed to be censored. This approach was used 

because studies have observed that quantifiable HIV RNA data have an approximately 

Gaussian or log-Gaussian distribution (e.g.,46, 46, 47, 47–53).
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We excluded models which did not converge or contained unstable estimates, namely those 

models that failed to reach convergence, possessed a non-positive-definite Hessian matrix, or 

had any parameter with a large standard error (defined as five or greater). For the Tobin-

Amemiya and Bernoulli-Gaussian models, results from the linear regression with half the 

limit of detection and the logistic regression were used as start values, respectively.

Simulated data were generated from an equation for each treatment group. The treatment 

group is simulated using the equation yi = τ + ei with ei ∼ N 0, σ  Data for the control group 

is simulated with yi = ei. These two groups are then combined for analysis. τ can also be 

thought of as Cohen’s d.61

Simulations were performed in SAS software, version 9.263 using the MVN macro64 and in 

R version 2.15.2.65 Figures were created using the ggplot2 package.66

3 Results

For brevity, the true difference in means between the outcome of the two groups will be 

reported as the parameter τ. For the simple linear regression models without accounting for 

censoring as τ increases, smaller sample sizes are needed to achieve 80% power and a higher 

proportion of variability (R2) is accounted for in the simple linear model (Table 1).

The highest number of simulations which failed to converge was observed for treatment 

effects further from zero and c = {0.1, 0.9} (Table 2). The Bernoulli-Gaussian model failed 

to converge the most and reached a low of around 40% convergence with τ = −1 and c = 0.1. 

For logistic regression models, exact logistic regression was needed in all simulations with c 
= {0.1, 0.9} and τ ≤ −0.75.

Proportions of null hypothesis rejection for τ = 0 hovered around 0.05 for all values of c for 

all models, except for the long-term survivor model, which was consistently around 0.15, 

and the Buckley-James estimator, which decreased with increasing τ (Figure 1). For τ ≤ 

−0.25, the patterns were similar for each model across all τ since the sample size was 

dependent on c. The half-LOD, Tobin-Amemiya, and long-term survivor models had power 

close to or slightly lower than the nominal level (0.80). Imputing a single value at the LOD 

had lower power as c increased. Logistic regression had substantially lower power when c ≤ 

0.50. When analyzed with a Bernoulli-Gaussian model, the power was between 0.65 and 

0.75 in most cases, except when c = 0.9. Finally, the Buckley-James estimator had 

substantially lower power, especially as c increased.

Confidence interval coverage was close to 95% for the Tobin-Amemiya model, but lower for 

the Gaussian component of the Bernoulli-Gaussian model, and the Gaussian component of 

the long-term survivor likelihood (Figure 2). Both single value imputation models (at LOD 

and half LOD) possessed coverage at or near 95% when c ≤ 0.7, with a precipitous drop at c 
= 0.9. Coverage for the Buckley-James estimator was slightly less than 95% for most values 

of c. Logistic regression and the Bernoulli components of the Bernoulli-Gaussian and the 

long-term survivor likelihood failed to achieve 95% coverage except in rare cases.
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When the sample size is fixed at 50, the differences between models are largely similar to 

those with sample sizes with 80% power, but those differences are not as pronounced. 

Especially at higher rates of censoring, the differences are almost negligible. Lines for 

logistic regression possessed a concave shape, which is consistent with sample size tables 

when the outcome rate is varied (e.g., Hsieh67).

Results from the estimates of bias largely mirror the results shown in the power and 

coverage proportion (Figures S1–S3). Those models which possessed poor power or 

coverage did so because the point estimates are biased towards the null hypothesis. One 

major exception are the single value imputation models. Although the point estimates are 

biased towards the null hypothesis, the standard error estimates for τ < 0 are biased towards 

zero. This bias got progressively worse (closer to zero) as c increased.

4 Example

These data come from a project to assess the effect of raltegravir, a novel HIV medication, 

using data from the HIV Outpatient Study (HOPS) during the years 2007 to 2010.68 The 

HOPS is a prospective, observational cohort of HIV-positive participants enrolled from nine 

medical facilities in the United States. In Buchacz et al.68 the baseline dataset includes data 

on each patient’s medical history and current treatment at his or her initiation of raltegravir 

treatment or first drug regimen change post 1/1/2007. For this example, we utilize the 

baseline data and explore the association between participants’ HIV-1 RNA values at 

baseline and whether or not the patient was being prescribed raltegravir.

Our example is interesting primarily because it contradicts our simulation results. Summary 

statistics for patient’s log10 HIV-1 RNA levels (Table 3) and parameter estimates for testing 

for differences between the raltegravir groups (Table 4) are presented. The null hypothesis of 

no association of HIV-1 RNA level with those who initiated a raltegravir-containing regimen 

is rejected by the imputing a single value at the LOD, Bernoulli-Gaussian, long-term 

survivor, and Buckley-James models and not in the half-LOD and Tobin-Amemiya models. 

Ironically, our simulations showed the Tobin-Amemiya model to have greater power when 

testing for group differences. The difference in inference in the latter two models appears to 

be because the root mean squared error (RMSE) is larger. Also of note, both the Bernoulli-

Gaussian and long-term survivor models possess Gaussian point estimates that were more 

than twice as large as the single value imputation models and the Tobin-Amemiya model. 

Potentially, this can be explained by the fact that the Gaussian treatment effect estimate is 

based on the detectable data in the binomial-Gaussian model. Hence, the significance test 

comparing the raltegravir and non-raltegravir groups assesses whether there is a difference 

between the distributions of the detectable values. In contrast, the Tobin-Amemiya model 

incorporates all the data, not just the detectable values, to test for a difference. This is also 

true for the summary statistics of the log10 HIV-1 RNA distributions by group. The non-

raltegravir group has a higher mean and median when considering only the detectable 

values. With all participants, however, there the differences are much smaller between these 

groups (using both imputation models).
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5 Discussion

As shown in our example the model chosen can have an impact on whether the null 

hypothesis of no treatment effect is rejected. The simulation results of these models indicate, 

for sample sizes with 80% power and across all censoring rates, the Tobin-Amemiya model 

produced an equivalent or better combination of power and effect size confidence interval 

coverage as compared to the other models simulated. When considering the bias in point and 

standard error estimates (Figures S1–S3 in the supplementary file), the Tobin-Amemiya 

model outperformed all other models. This conclusion concurs with the cross-sectional 

simulations in Jin et al.10 and, despite analyzing longitudinal data, the crossover trial 

simulations of Karon et al.6 These results have some similarities to Beal,11 though are more 

supportive of using the Tobin-Amemiya model. Beal felt as though the Gaussian cdf-pdf was 

preferable, but argued models which omit all points below the LOD have value. His 

reasoning was that the Tobin-Amemiya model may be troublesome to implement and the 

shortcomings of simple models may not be large, especially at small censoring rates. We 

agree that, when the rate is small, a model which omits observations below the LOD will 

perform similarly, but the implementation difficulties are minimal with currently available 

software. Computation problems with the Tobin-Amemiya model only arose when a small 

percentage of points were detectable.

The Bernoulli-Gaussian mixture model performed well, but generally had inferior power to 

the Tobin-Amemiya model by roughly 5–10%. At high levels of censoring, the difference 

between the Bernoulli-Gaussian model and the Tobin-Amemiya model decreased, but the 

latter was still superior. We experienced the most convergence problems with the Bernoulli-

Gaussian model at both high and low levels of censoring. Hence, the concave shape of the 

power function may be partially due to only certain simulated datasets converging which 

introduced bias into the results. Even in situations with good convergence, the Bernoulli-

Gaussian model produced poorer confidence interval coverage for the Gaussian effect. Our 

simulations suggest that this model may be fully reliable only in situations when 0.3 ≤ c ≤ 

0.7.

For the long-term survivor model, rates of null hypothesis rejection hovered around 0.15 for 

all censoring rates, which are similar to the rates seen in Karon et al.6 for the same 

likelihood. Hence, this likelihood seems to be oversensitive and we don’t feel it can be 

recommended for analyzing a cross-sectional, Gaussian outcome with a detection limit.

The Buckley-James estimator exhibited good confidence interval coverage, but poor power, 

especially at higher rates of censoring. We are unsure why the power was so much less and 

further study is warranted.

Surprisingly, the power of the at-LOD and half-LOD models are not appreciably greater than 

other models included in these simulations. Multiple studies have shown inserting a single 

value below the detection limit produces biased estimates,10, 20, 23, 24, 26 especially standard 

error estimates that are too low. Hence, a priori, we felt the bias in the standard errors would 

drive power upward beyond 80%. Since the power was approximately 80% and the effect 

size confidence interval was good (except at c = 0.9), we looked at the bias of the point 

Wiegand et al. Page 10

Stat Methods Med Res. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimates and standard errors separately (Figures S1–S3). The bias in standard errors 

concurred with prior research by showing variance estimates are biased downward as the 

rate of censoring increases, but results suggested that the point estimates are biased strongly 

toward the null hypothesis. Hence, the downward bias of the standard errors was offset by 

the bias in the point estimates. These results are similar to those seen in analyses of 

longitudinal data using half-LOD substitution.10 Although these counteracting biases gave 

the half-LOD model similar power to other models, inferences from such a model may be 

unwise to use since point and variance estimates are biased. Hence, it does not appear wise 

to use the single value imputation models except in situations where the censoring level is 

low enough to make minimal difference in the results.

The same overall conclusion is true for logistic regression. Dichotomizing at the detection 

limit resulted in less power than most of the other models included in these simulations 

when c ≤ 0.7. The difference was especially marked when the rate of censoring was low. 

With a small proportion of data below the detection limit, logistic regression power was 

driven by the small sample size in the censored group while other models used much more 

of the available information to test for differences. As the censoring rate increased, these 

differences became smaller since the data become nearly binary.

At c ≥ 0.7 and τ ≤ −0.5, logistic regression provided power at or near the levels produced by 

other models, but at a censoring rate of 0.9, the coverage suddenly jumped. This may have 

been caused by the increasingly smaller absolute number of observations in the non-

censored group and the necessity for all simulations required to use an exact method. 

Nonetheless, logistic regression did not match other models on both power and effect size 

confidence interval coverage.

When the sample size is fixed at 50, the differences between models are not as pronounced. 

The Tobin-Amemiya model again appears to be the best choice, but the differences are 

almost negligible, especially at higher rates of censoring. Lines for logistic regression 

possessed a concave shape, which is consistent with sample size tables when the outcome 

rate is varied (e.g., Hsieh67).

For the fixed sample size simulations, the most striking aspect is the observed loss of power 

at higher rates of censoring. The loss of power can be substantial when dichotomizing a 

continuous outcome.36 This seems reasonable; as the amount of information decreases, there 

is less ability to find a difference. None of these models were able to compensate for this 

loss of information. Data with an outcome possessing a high level of censoring will have 

significantly reduced power to find a difference regardless of the model. This is important to 

recognize for study planning as failure to account for the detection limit may leave a study 

underpowered. Projecting the likely rate of non-detectable values for a study outcome may 

be challenging, but this may be crucial to achieve a desired level of power. Although 

Lachenbruch’s62 formula does not have the same null hypothesis we used in these 

simulations, it performed well at producing sample sizes with the appropriate levels of 

power.
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Any simulation study is limited by a number of conditions. The linear predictors in these 

simulations included an intercept and one predictor. In most settings, multiple covariates will 

be used in models, meaning our models may not adequately represent settings where 

confounding is present. In regards to the simulation construction, one may expect the 

decreased performance of the Bernoulli-Gaussian mixture model compared to the Tobin-

Amemiya model because the data generating mechanism more closely follows the Tobin-

Amemiya model. Our focus was on models to analyze log-transformed measurements of 

HIV-1 RNA, which typically follow a Gaussian distribution. Hence, the Tobin-Amemiya 

model matches these assumptions better than any of the other models used in these 

simulations. Data arising from another distribution, such as a point mass-Gaussian mixture, 

may produce different conclusions; in particular, a Tobin-Amemiya model may be sub-

optimal. We also did not consider the consequences of analyzing an outcome from a non-

Gaussian distribution. Another potential limitation was the choice to include the treatment 

parameter in both the logistic and Gaussian components of the mixture. Determination of 

statistical significance was made with a likelihood-ratio test. Other approaches to defining 

the statistical significance of the treatment parameter estimate may give different results. 

Finally, in many applications, more than one, independent variable will be included in a 

model. Some models may perform better than others with informative covariates and the 

differences among models observed in these simulations might not be the same with 

additional covariates.

Extensions of this research could look at similar models using simulated data with a 

different underlying distribution. For instance, data from a semicontinuous or zero-inflated 

distribution would match the assumptions of the Bernoulli-Gaussian model better which 

may result in increased performance. Hurdle models69 may also be appropriate or models 

using a truncated Gaussian as the continuous distribution. As increasingly sensitive assays 

are developed and used, the likelihood of observing a Bernoulli-Gaussian distribution grows. 

Hence, a Bernoulli-Gaussian distribution may become the standard in HIV research soon. 

Any of these situations could be tested under a longitudinal setting as well. We were able to 

approximate the nominal level of power in the Tobin-Amemiya model with a published 

formula.62 Other models are available which may provide better estimates, but are more 

complicated to implement.70, 71 Covariates informative of the censoring could be added to 

the models to determine if a difference in performance is achieved. Finally, although we 

chose not to include any models which used multiple imputation (MI)72 to impute data 

below the detection limit, these models have been used in similar settings. Comparisons 

between several MI implementations for semicontinous data,73 comparisons to mixed 

models,27 and of a MI approach using bootstrapping41–43 have been performed.

6 Conclusion

Compared to the other models we examined, the Tobin-Amemiya model provided power and 

effect size coverage at or better than other models included in this simulation study and 

appropriate test size. Hence, the Tobin-Amemiya appeared to be the best model for 

analyzing an outcome. At low and high censoring rates, these models provided poor power 

and may fail to converge. Researchers and analysts must be cautious when analyzing data 

with a high proportion of data below a detection limit. The reduction in power is great with 
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any of the model we evaluated and little utility may exist in analyzing such data. Exact 

logistic regression may be advisable with high or low censoring rates and large treatment 

differences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Null hypothesis rejection proportion (power), broken down by method, difference between 

treatment and control means, and sample size providing 80% power (solid lines; sample 

sizes for the row are listed along the bottom of plots in the fourth column) and a fixed 

sample size of 50 (dashed lines), 10,000 simulations, 5% level of significance. Dot−dash 

lines indicate nominal power of 0.80, except when there is no difference in means (row 1) 

where the nominal power is equal to the type I error rate of 0.05. Grey shading denotes 95% 

confidence interval.
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Figure 2. 
Confidence interval coverage of true effect size, broken down by method (and component if 

applicable), difference between treatment and control means, and sample size providing 

80% power (solid lines; sample sizes for the row are listed along the bottom of plots in the 

fifth column) and a fixed sample size of 50 (dashed lines), 10,000 simulations, 5% level of 

significance. Dot−dash lines indicate expected confidence interval coverage of 0.95. Grey 

shading denotes 95% confidence interval. In method titles, B=Bernoulli component and 

G=Gaussian component.
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Table 1:

Summary of simulation parameters; all parameter sets use an error standard deviation of one with 10,000 

simulations.

Mean difference between groups (τ) Percentage censored N per Arm
a

R2: Median (IQR)
b

0.00 10 300 0.0008 (0.0002, 0.0022)

0.00 30 300 0.00 (0.00, 0.00)

0.00 50 300 0.00 (0.00, 0.00)

0.00 70 300 0.00 (0.00, 0.00)

0.00 90 300 0.00 (0.00, 0.00)

−0.25 10 250 0.02 (0.01, 0.02)

−0.25 30 244 0.02 (0.01, 0.02)

−0.25 50 274 0.02 (0.01, 0.02)

−0.25 70 357 0.02 (0.01, 0.02)

−0.25 90 717 0.02 (0.01, 0.02)

−0.50 10 64 0.06 (0.04, 0.09)

−0.50 30 62 0.06 (0.04, 0.09)

−0.50 50 70 0.06 (0.04, 0.09)

−0.50 70 93 0.06 (0.04, 0.08)

−0.50 90 195 0.06 (0.04, 0.08)

−0.75 10 30 0.13 (0.08, 0.18)

−0.75 30 29 0.13 (0.08, 0.19)

−0.75 50 33 0.13 (0.08, 0.18)

−0.75 70 44 0.13 (0.09, 0.17)

−0.75 90 100 0.13 (0.10, 0.15)

−1.00 10 17 0.21 (0.14, 0.30)

−1.00 30 17 0.21 (0.14, 0.30)

−1.00 50 20 0.21 (0.14, 0.29)

−1.00 70 27 0.21 (0.15, 0.27)

−1.00 90 68 0.20 (0.17, 0.24)

a
Sample sizes for each value of τ > 0 and rate of censoring were determined using Lachenbruch’s62 formula. When τ = 0, the expected power is 

the type I error rate of 0.05 and the sample size was set at 300.

b
R2 calculated by using simulated data prior to censoring with standard R2 formula of simple linear regression.
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Table 2:

Number of simulations out of 10,000 that failed to satisfy convergence criteria, possessed a non-positive-

definite Hessian matrix, or had a parameter with a large standard error (five or greater) for simulations using 

Lachenbruch’s62 sample size formula.

Mean difference between 
groups (τ) Percentage censored Gaussian 

pdf-cdf
Bernoulli-
Gaussian Long-term survivor Buckley-James

0.00 10

0.00 30

0.00 50 46

0.00 70 84

0.00 90 1 270

−0.25 10 2

−0.25 30

−0.25 50 35

−0.25 70 1 128

−0.25 90 15

−0.50 10 138 152

−0.50 30

−0.50 50 1 546

−0.50 70 2 592

−0.50 90 27 293

−0.75 10 2167 2253

−0.75 30 9 117

−0.75 50 97 918

−0.75 70 261 1555

−0.75 90 99 99 848 929

−1.00 10 5986 6906

−1.00 30 536 1317

−1.00 50 654 1330

−1.00 70 39 39 1389 2086

−1.00 90 1257 1257 3302 2164
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Table 3:

Summary statistics for log base 10 HIV-1 RNA by raltegravir use in the HIV Outpatient Study (HOPS).

Group N Mean (SE) Median (IQR)

Detectable values only

Non-raltegravir
Raltegravir

4221

3322
4.03 (0.05)
3.68 (0.07)

4.34 (1.64)
3.73 (2.25)

All data, half the limit of detection imputed for nondetects

Non-raltegravir
Raltegravir

896
692

2.35 (0.06)
2.21 (0.06)

0.85 (3.43)
0.85 (2.80)

All data, zero imputed for nondetects

Non-raltegravir
Raltegravir

896
692

2.80 (0.05)
2.65 (0.05)

1.70 (2.58)
1.70 (1.95)
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Table 4:

Model estimates for log base 10 HIV-1 RNA, baseline data of raltegravir study, the HIV Outpatient Study 

(HOPS). Root mean squared error (RMSE) is an estimate of the σ parameter in each likelihood function.

Parameter Estimate or odds ratio (95% CI) p value

At-LOD imputation

Gaussian
RMSE

−0.15 (−0.28, −0.01)
1.37

0.03

Half-LOD imputation

Gaussian
RMSE

−0.14 (−0.31, 0.03)
1.72

0.11

Logistic Regression

Logistic 1.04 (0.85, 1.26) 0.73

Tobin-Amemiya

Gaussian
RMSE

−0.16 (−0.44, 0.11)
2.49

0.25

Bernoulli-Gaussian

Logistic
Gaussian
LRT
RMSE

1.04 (0.85, 1.26)
−0.35 (−0.52, −0.18)

1.20

0.73
< 0.0001
0.0004

Long-term survivor

Logistic
Gaussian
LRT
RMSE

1.05 (0.86, 1.29)
−0.37 (−0.49, −0.24)

0.86

0.62
< 0.0001
< 0.0001

Buckley-James

Gaussian
RMSE

−0.28 (−0.45, −0.10)
1.20

0.002
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