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Diabetic retinopathy (DR) is characterized by apoptotic cell loss in the retinal vasculature. Lysyl oxidase
propeptide (LOX-PP), released during LOX processing, has been implicated in promoting apoptosis in
various diseased tissues. However, its role in the development and progression of DR is unknown. We
investigated whether high glucose (HG) or diabetes alters LOX-PP expression and thereby influences AKT
pathway and affects retinal endothelial cell survival. Rat retinal endothelial cells were grown in normal
medium, normal medium and exposed to recombinant LOX-PP (rLOX-PP) or HG medium and examined
for LOX-PP expression, AKT and caspase-3 activation. Similarly, rats intravitreally injected with rLOX-PP
were examined for changes in retinal LOX-PP levels, AKT phosphorylation, and the number of acellular
capillaries and pericyte loss compared with those of control diabetic and nondiabetic rats. Results
indicate that HG up-regulates LOX-PP expression and reduces AKT activation. In addition, cells exposed
to rLOX-PP alone exhibited increased apoptosis concomitant with decreased AKT phosphorylation. In
retinas of diabetic rats, increased LOX-PP level, decreased AKT phosphorylation, and increased number
of acellular capillaries and pericyte loss compared with those of nondiabetic rats were observed. Of
interest, similar changes were noted in the retinas of rats injected with rLOX-PP. Findings from this
study suggest that hyperglycemia-induced LOX-PP overexpression may contribute to retinal vascular cell
loss associated with DR. (Am J Pathol 2019, 189: 1945e1952; https://doi.org/10.1016/
j.ajpath.2019.06.004)
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Diabetic retinopathy, the leading cause of blindness in the
working age population,1,2 is characterized by early vascular
lesions such as the development of acellular capillaries
(ACs) and pericyte loss (PL).3e8 Retinal vascular basement
membrane thickening, a histologic hallmark of diabetic
retinopathy,9e12 has been shown to promote apoptosis and
to contribute to retinal vascular cell loss.13e15 Lysyl oxidase
(LOX), an extracellular enzyme responsible for cross-
linking collagen and elastin molecules to form a stable
extracellular matrix, has been implicated in promoting high
glucose (HG)-induced apoptosis.16 Of interest, studies
suggest that LOX-propeptide (PP), which results from the
extracellular proteolytic biosynthetic processing of proen-
zyme (pro)-LOX, also plays a role in triggering apoptosis in
stigative Pathology. Published by Elsevier Inc
various diseased tissues.17e20 However, it is currently
unknown whether LOX-PP is involved in HG-induced
apoptosis and subsequently contributes to retinal vascular
cell loss.

LOX-PP is derived from a 50-kDa proenzyme (pro-OX),
which undergoes proteolytic cleavage, resulting in a 32-kDa
active enzyme (LOX)21,22 and a 18-kDa LOX-PP.23

Although the role of the mature LOX enzyme in extracel-
lular matrix maturation is well established, the role of LOX-
PP is less well understood. A key function of LOX-PP is
suggested to be the maintenance of LOX in an inactive
. All rights reserved.
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state.24 In addition, it has been postulated that glycosylation
of the LOX-PP is required for ultimate optimal LOX
enzyme activity.25 In addition, LOX-PP has also been
shown to inhibit ras signaling through its ras recision
function.26e28 Furthermore, LOX-PP has been shown to
re-enter cells by micropinocytosis23 after which it binds to
and inhibits several important signaling molecules.18,29,30

Studies indicate that LOX-PP can act as a pro-apoptotic
factor. In pancreatic cells, LOX-PP was shown to compro-
mise AKT activity,19,31 and administration of LOX-PP
reduced growth of tumors in a mouse xenograft model.19

In addition, ectopic overexpression of recombinant (r)
LOX-PP suppressed the growth of breast cancer xeno-
grafts,17 and rLOX-PP administration led to prominent
increases in apoptosis markers and reduced tumor vol-
umes.17 In an in vitro study, LOX-PP was found to promote
apoptosis and inhibit cell proliferation.20 In addition,
exposure to rLOX-PP suppressed tumor growth by inter-
fering with DNA repair pathways.18 These findings provide
evidence that LOX-PP overexpression may trigger
apoptosis. However, it is unknown whether LOX-PP pro-
motes retinal vascular cell loss associated with diabetic
retinopathy.

In the present study, we investigated whether HG alters
LOX-PP expression, disrupts AKT activation, and promotes
apoptosis in retinal endothelial cells. In addition, studies
were conducted in vivo to determine whether LOX-PP
levels were altered in the retinas of diabetic rats and
whether intravitreal injections of rLOX-PP promoted retinal
vascular lesions.

Materials and Methods

Cell Culture

In this study, endothelial cells from rat retinas (RRECs) were
isolated as described32 and cultured in Dulbecco’s modified
Eagle’s medium (Gibco/Invitrogen, Carlsbad, CA) with 10%
fetal bovine serum (Sigma-Aldrich, St. Louis, MO), anti-
mycotics, and antibiotics. RRECs were grown on coverslips
and 35-mm dishes in normal (N; 5 mmol/L glucose) medium,
or N medium þ 30 mmol/L mannitol (NþMan) as osmotic
control, or HG (30 mmol/L glucose) medium for 7 days until
confluence. After cells became approximately 75% confluent,
they were maintained in low-serum medium that contained
2% fetal bovine serum for 24 hours, then treated as described
in each experiment to preclude serum-stimulated effects on
AKT activation. To assess the effect of LOX-PP over-
expression on cell viability, RRECs grown in serum-starved,
N medium were exposed to 8 mg/mL purified rLOX-PP 24
hours before harvest. Of the four rLOX-PP doses tested (2, 4,
8, or 16 mg/mL), the dose of 8 mg/mL rLOX-PP was selected
on the basis of promoting a similar increase in the number of
apoptotic cells as that of cells grown in HG medium. Total
protein from RRECs was isolated and subjected to Western
blot (WB) analysis. Cells from the experimental groups were
1946
assayed for LOX-PP expression and AKT activation. In vitro
experiments were performed independently four times.

Animals

All animal studies were performed according to the Associ-
ation for Research in Vision and Ophthalmology Statement
for the Use of Animals in Ophthalmic and Vision Research.
Twenty-four male Sprague-Dawley rats (Charles River Lab-
oratories, Wilmington, MA) were randomly assigned into
four groups: non-diabetic wild-type (WT), diabetic, WT with
intravitreal injections of rLOX-PP (WTþrLOX-PP IV), and
WT with intravitreal injections of phosphate-buffered saline
(WTþPBS IV). Intraperitoneal injection of streptozotocin (55
mg/kg bodyweight) was performed to induce diabetes. Blood
glucose levels were monitored 3 days after streptozotocin
injection to confirm diabetes status in the animals. The dia-
betic animals were maintained for 16 weeks along with their
controls. For each animal, blood glucose levels were moni-
tored routinely (twice weekly) until the end of the study. Rats
with blood glucose levels of 300 to 400 mg/dL were consid-
ered diabetic. To maintain hyperglycemia without ketoaci-
dosis and severe loss of body weight in diabetic rats, neutral
protamine Hagedorn insulin injections were administered as
needed. All animals were sacrificed at the end of study, and
retinal protein was isolated and examined for LOX-PP, AKT,
and phospho- (p-)AKT protein expression by WB analysis.

rLOX-PP and PBS Intravitreal Injection

rLOX-PP, or PBS used as control, was administered every 3
days, for a total of three intravitreal injections. Animals were
sacrificed 6 weeks after the last intravitreal injection. Intra-
vitreal injections were performed as described previously.33

To determine the optimal dose of rLOX-PP in promoting
retinal vascular cell loss, intravitreal injections of 1.25, 2.5,
5.0, or 10 mg/10 mL of rLOX-PP were performed in rat eyes.
The dose of 5 mg/10 mL rLOX-PP was determined to be most
optimal in exhibiting a similar increase in the number of ACs
and PL as seen in the diabetic retinas. As such, 10 mL of
freshly prepared 5.0 mg rLOX-PP or 1X PBS was adminis-
tered per injection for in vivo experiments. Routine exami-
nations performed during the course of the study showed no
untoward effects from the intravitreal injections. From each
animal, one eye was used for WB analysis, and retinal trypsin
digestion was performed on the contralateral eye.

WB Analysis

In RRECs grown in N, NþMan, HG medium, or
NþrLOX-PP, total protein was isolated. In parallel, retinas
of WT, diabetic, WTþrLOX-PP IV, and WTþPBS IV rats
were subjected to total protein isolation. Briefly, cells were
subjected to PBS washes and lyzed in buffer that contained
10 mmol/L Tris, pH 7.5 (Sigma-Aldrich), 1 mmol/L
EDTA, and 0.1% Triton X-100 (Sigma-Aldrich).
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Figure 1 High glucose (HG) up-regulated lysyl oxidase propeptide (LOX-PP) and proenzyme (pro)-LOX expression in endothelial cells from rat retinas
(RRECs). A: Representative Western blot image shows that LOX-PP and pro-LOX expression was significantly increased in the HG condition. B and C: Graphical
illustration of cumulative data shows HG significantly up-regulated LOX-PP (B) and pro-LOX (C) expression. Cells exposed to mannitol (Man) did not exhibit
changes in LOX-PP or pro-LOX expression. Data are expressed as means � SD. **P < 0.01 versus normal (N).

LOX-PP and Apoptosis in Retinal Cells
Similarly, rat retinal protein was isolated by homogenizing
the retina in the aforementioned lysis buffer. Lysates were
then centrifuged at 13,000 � g for 20 minutes at 4�C.
Protein content in cell lysates and the retinal tissues was
determined by the bicinchoninic acid protein assay method
(Pierce Chemical Co., Rockford, IL). An equal amount of
protein was loaded per lane and ran through electropho-
resis together with molecular weight marker (Bio-Rad
Laboratories, Inc., Hercules, CA) in separate lanes on a
10% SDS-polyacrylamide gel. When electrophoresis was
complete, the protein content was transferred onto poly-
vinylidene fluoride membranes (Millipore Corp., Billerica,
MA) according to Towbin’s procedure34 with the use of a
semidry apparatus. After transfer was complete, the
membrane was blocked with 5% nonfat dry milk for 2
hours in room temperature and incubated overnight at 4�C
with antieLOX-PP antibody, which also recognizes
pro-LOX (dilution 1:500035; provided by P.C.T.), rabbit
monoclonal p-AKT (Ser473) (dilution 1:2000; Cell
Signaling, Danvers, MA), AKT (dilution 1:1000; Cell
Signaling), or cleaved caspase-3 (Asp175) (dilution 1:250;
Cell Signaling) antibodies in a solution of 5% bovine
serum albumin dissolved in Tris-buffered saline that
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Figure 2 Up-regulation of lysyl oxidase propeptide (LOX-PP) compromised A
Western blot image shows protein expression of phospho- (p-)AKT, total AKT, cl
glucose (HG) medium, N medium exposed to recombinant (r)LOX-PP (NþrLOX-PP
cumulative data shows up-regulation of LOX-PP alone compromised AKT activation
C: Graphical illustration of cumulative data shows cleaved caspase-3 expression wa
exposed to rLOX-PP. No significant change in cleaved caspase-3 activity was ob
*P < 0.05 versus N.
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contained 0.1% Tween-20. The next day, the membrane
was washed with 1X Tris-buffered saline that contained
0.1% Tween-20 and subsequently incubated with second-
ary antibody solution that contained anti-rabbit IgG,
alkaline phosphatase-linked antibody (dilution 1:3000;
Cell Signaling) for 1 hour at room temperature. The
membrane was washed as described previously, subjected
to chemiluminescent substrate (Immun-Star; Bio-Rad
Laboratories, Inc.), and exposed to X-ray film (Fujifilm,
Tokyo, Japan).36 Equal loading of protein samples in the
gel lanes was confirmed through Ponceau-S staining after
transfer and by b-actin antibody (dilution 1:1000; Cell
Signaling). Densitometric analysis of the chemilumines-
cent signal was performed at nonsaturating exposures and
evaluated with ImageJ software version 1.52e (NIH,
Bethesda, MD; http://imagej.nih.gov/ij).

Differential Dye Staining

Cells undergoing apoptosis were detected by the differential
dye staining technique,37 which is based on the uptake of two
fluorescent dyes, acridine orange and ethidium bromide.38

Cells were exposed to a solution that contained ethidium
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Figure 3 Lysyl oxidase propeptide (LOX-PP) promoted apoptosis in
endothelial cells from rat retinas (RRECs). AeD: Representative images of
cells undergoing apoptosis (arrows): Normal (N) (A), high glucose (HG)
(B), N exposed to recombinant LOX-PP (NþrLOX-PP) (C), and N exposed to
mannitol (NþMan) (D). Differential staining assay showed a significant
increase in the number of cells undergoing apoptosis in cells grown in HG
condition and cells exposed to rLOX-PP compared with those grown in N
medium. E: Graphical illustration of cumulative data shows up-regulation of
LOX-PP alone promoted HG-induced apoptosis in RRECs. Cells exposed to
mannitol exhibited no significant difference in the number of apoptotic
cells compared with that of cells grown in N medium alone. Data are
expressed as means � SD. **P < 0.01 versus N. Scale bars Z 50 mm.
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Figure 4 Lysyl oxidase propeptide (LOX-PP) expression was up-
regulated in diabetic rat retinas. A: Representative Western blot image
shows LOX-PP expression in the retinas of wild-type (WT) rats or diabetic
(DM) rats. B: Graphical illustration of cumulative data shows LOX-PP
expression was significantly increased in DM rat retinas. Data are
expressed as means � SD. *P < 0.05 versus WT.
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bromide and acridine orange, both at 25mg/mL concentration,
washed with PBS, fixed, mounted, visualized, and assessed
under a fluorescence microscope (Nikon Diaphot; Nikon,
Tokyo, Japan). The number of apoptotic cells per field is
shown as a percentage of the total number of cells in the
field.38 Cells undergoing early and late stages of apoptosis
manifest as bright green and orange, respectively, whereas
normal cells manifest as uniformly dark green.

Retinal Trypsin Digestion

To analyze the effect of LOX-PP on retinal capillaries, retinal
trypsin digestion technique was performed as described39 with
minor modifications. Rat eyes were enucleated, and retinas
were isolated and subsequently placed in glycine buffer over-
night. The vascular network was isolated from the retina by
1948
subjecting the retina to 3% trypsin digestion. The capillary
network was thenmounted on a silane-coated slide and stained
with periodic acid-Schiff and hematoxylin (Sigma-Aldrich).
Periodic acid-Schiff stains the glycoprotein of the basement
membranepink, and hematoxylin stains the cellular nuclei dark
blue. Ten random areas of the retinal vasculature were digitally
captured with a fluorescence microscope (Nikon), and the
images were analyzed for ACs and PL in each of the four
groups. ACs, by definition, are capillaries that have lost both
endothelial cells and pericytes, and they represent a tubular
structure constituted of basement membrane. Typically, ACs
become obliterated, appearing thinner with diminished capil-
lary caliber and ultimately reaching a thread-like structure
before complete obliteration. Pericytes, however, leave behind
an empty shell of their nuclear body, which used to contain
DNA and other nuclear material when they were live. These
empty shells represent a tell-tale signature of diabetic retinop-
athy known as pericyte ghosts. AC and PL counts are based on
these histologic criteria.

Statistical Analysis

Data are shown as means � SD. Control group values were
normalized to 100%, whereas other experimental groups
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Lysyl oxidase propeptide (LOX-PP) compromised AKT activa-
tion in rat retinas. A: Representative Western blot image shows protein
expression of phospho- (p-)AKT, total AKT, and b-actin in retinas of wild-
type (WT) rats, diabetic (DM) rats, WT rats intravitreally injected with re-
combinant LOX-PP (WTþrLOX-PP IV), and WT rats intravitreally injected
with phosphate-buffered saline (WTþPBS IV). B: Graphical illustration of
cumulative data shows LOX-PP could compromise AKT activation in rat
retinas. Data are expressed as means � SD. *P < 0.05 versus WT.

LOX-PP and Apoptosis in Retinal Cells
were indicated as percentages of control. Normalized values
were used to perform statistical analysis. One-way analysis
of variance, followed by Bonferroni’s post hoc test, was
used to evaluate comparisons between the groups. Data
showing P < 0.05 were considered statistically significant.
Results

Effect of HG on LOX-PP and Pro-LOX Expression in
RRECs

To determine the effects of HG on LOX-PP protein
expression in RRECs, WB analyses were performed. Data
indicated that LOX-PP protein levels were significantly
increased in cells grown in HG medium compared with
those of cells grown in N medium alone (Figure 1, A and
B). To assess whether HG-induced LOX-PP up-regulation
resulted from increased pro-LOX synthesis, the expression
levels of pro-LOX were also measured in these cells.
Similar to HG-induced LOX-PP up-regulation, pro-LOX
protein levels were significantly higher in cells grown in HG
medium than those of cells grown in N medium alone
(Figure 1, A and C). Cells exposed to 30 mmol/L mannitol
as osmotic control showed no change in LOX-PP or pro-
LOX expression.
The American Journal of Pathology - ajp.amjpathol.org
Effects of HG and rLOX-PP on AKT Activity in RRECs

To determine the effects of HG or rLOX-PP on RRECs, WB
analyses were performed. Data indicated that the ratio of
p-AKT to AKT was significantly decreased in cells grown
in HG medium compared with that of cells grown in N
medium (Figure 2, A and B). Of interest, cells grown in N
medium and exposed to rLOX-PP for 24 hours exhibited a
significant decrease in the ratio of p-AKT to AKT compared
with that of cells grown in N medium alone (Figure 2, A and
B). Cells exposed to 30 mmol/L mannitol as osmotic control
showed no change in AKT activity.

Effects of HG and rLOX-PP on Cleaved Caspase-3
Activation in RRECs

WB analyses indicated that the protein levels of cleaved
caspase-3 were significantly increased in RRECs grown in
HG medium and in cells grown in N medium and exposed
to rLOX-PP compared with those of cells grown in N me-
dium alone (Figure 2, A and C). Cells exposed to 30 mmol/
L mannitol as osmotic control showed no change in caspase-
3 activation.

rLOX-PP Promotes HG-Induced Apoptosis in RRECs

Differential dye staining analysis indicated that cells grown
in HG medium exhibited a significant increase in the
number of apoptotic cells compared with that of cells grown
in N medium (Figure 3). Of interest, cells grown in N me-
dium and exposed to rLOX-PP for 24 hours resulted in a
significant increase in the number of apoptotic cells
compared with that of cells grown in N medium alone
(Figure 3). No significant difference was found in the
number of apoptotic cells in cells exposed to 30 mmol/L
mannitol as osmotic control compared with that of cells
grown in N medium (Figure 3).

Effect of Diabetes on LOX-PP Expression in Rat Retinas

To assess LOX-PP protein level in diabetic rat retinas
compared with nondiabetic rat retinas, WB analyses were
performed. Data indicated that LOX-PP protein expression
was significantly increased in the retinas of diabetic rats
compared with that of nondiabetic rat retinas (Figure 4).

rLOX-PP Overexpression Compromises AKT Activation
in Rat Retinas

To determine the effects of diabetes or rLOX-PP on AKT
activation in the retinas of diabetic rats and those injected
with rLOX-PP, WB analyses were performed. Data indicated
that the ratio of p-AKT to AKT was significantly decreased
in the retinas of diabetic rats (Figure 5). Of interest, the ratio
of p-AKT to AKT was significantly decreased in retinas of
nondiabetic rats intravitreally injected with rLOX-PP
1949
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Figure 6 Effect of recombinant lysyl oxidase propeptide (rLOX-PP) on the development of acellular capillaries (ACs) and pericyte loss (PL) in rat retinas.
AeD: Representative retinal trypsin digest images showing retinal vascular networks of a control rat (A, left panel), diabetic (DM) rat (B, left panel), rat
intravitreally injected with rLOX-PP (C, left panel), and rat intravitreally injected with phosphate-buffered saline (PBS) (D, left panel). LOX-PP administration
promoted the development of ACs (arrows) and PL (arrowheads) associated with diabetic retinopathy. Boxed areas are shown at higher magnification in the
right column. E and F: Graphical illustration of cumulative data of the number of ACs (E) and PL (F) in four groups of rats: wild-type (WT), diabetic (DM), WT
intravitreally injected with rLOX-PP (WTþrLOX-PP IV), and WT intravitreally injected with PBS (WTþPBS IV). Administration of rLOX-PP alone promoted the
development of ACs and PL in rat retinas. **P < 0.01 versus WT. Scale bar Z 100 mm.
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compared with those of nondiabetic control rats (Figure 5).
Retinas of nondiabetic rats intravitreally injected with PBS
showed no difference in the ratio of p-AKT to AKT
compared with those of nondiabetic control rats (Figure 5).

rLOX-PP Increases the Number of ACs and PL in Rat
Retinas

As expected, the number of ACs and PL was increased in
the retinas of diabetic rats (Figure 6). Of interest, nondia-
betic rats intravitreally injected with rLOX-PP exhibited
increased number of ACs and PL compared with those of
nondiabetic controls (Figure 6). Retinas of nondiabetic rats
intravitreally injected with PBS showed no difference in the
development of ACs and PL compared with controls
(Figure 6).

Discussion

In this study, we show for the first time that HG-induced
LOX-PP overexpression promotes apoptosis in RRECs.
Because HG and diabetic conditions both increase LOX-PP
levels, this finding is significant because it provides insight
1950
into a hitherto unknown mechanism for HG-induced
apoptosis involving pro-LOX processing. Our findings
indicate that RRECs grown in HG up-regulates LOX-PP
expression and that increased LOX-PP level may compro-
mise AKT activity in RRECs, thus contributing to
apoptosis. Moreover, cells exposed directly to rLOX-PP
exhibit significant increase in apoptosis as does retinas
exposed to rLOX-PP by intravitreal injection. Importantly,
in the retinas of diabetic rats, increased LOX-PP levels may
contribute to compromised AKT activation.
In a previous study, direct application of rLOX-PP protein

inhibited Ki-67 immuno-positive cells by approximately
50%, indicating the inhibitory action of rLOX-PP by
decreased proliferation and possibly increased apoptosis.17

Increased apoptosis was confirmed through increased num-
ber of cells staining for active cleaved caspase-3, a marker for
apoptosis, and increased number of cells positive for terminal
deoxynucleotidyl transferase-mediated dUTP nick-end la-
beling.17 In the present study, our findings in both in vitro
studies that used RRECs exposed to rLOX-PP and in vivo
studies that used intravitreal injections of rLOX-PP clearly
indicate that LOX-PP promotes apoptosis by likely compro-
mising AKT activity. Further studies are needed to better
ajp.amjpathol.org - The American Journal of Pathology
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understand whether LOX-PP decreases Ras-mediated acti-
vation of extracellular signal regulated kinase 1 and 2 through
inhibition of fibroblast growth factor-2 signaling.40

Previous studies in our laboratory and by others have
shown that HG- or diabetes-induced increase in LOX con-
tributes to retinal vascular basement membrane thickening
and stiffening.36,41 Because levels of LOX-PP are intrinsi-
cally coupled to levels of LOX from the processing of
pro-LOX, it is plausible that the atrophic effects of over-
expressed LOX-PP are acting simultaneously with, and
possibly influenced by, the detrimental effects of changes in
the retinal vascular basement membrane.

The observation that LOX-PP sensitizes pancreatic and
breast cancer cells to doxorubicin-induced apoptosis is of
considerable interest.19 Currently, it is unknown whether
LOX-PP potentiates the effects of HG in promoting apoptosis
by sensitizing retinal vascular cells to HG stress. It is unclear
whether the mechanisms underlying the ability of LOX-PP to
enhance the cytotoxic effects of doxorubicin in mediating
apoptosis are operative for pro-apoptotic effects of glucose.
One of the mechanisms by which LOX-PP sensitizes cells to
DNA breakdown/fragmentation from ionizing radiation in-
volves direct interference with DNA repair proteins.18

Because studies suggest involvement of DNA breakdown
by HG, further investigation is necessary to examine whether
this phenomenon is potentiated by LOX-PP. Although the
mechanisms of action on how LOX-PP overexpression trig-
gers apoptosis are not well known, a recent study reported that
LOX-PP can hinder cell proliferation, cell migration, cell
attachment and can promote apoptosis in the endothelial cell
by possibly arresting the cell cycle in the S phase and by
reducing the phosphorylation of extracellular signal regulated
kinase 1 and 2.42 However, further studies are needed to better
understand this mechanism. Overall, our findings suggest a
novel mechanism for HG-induced apoptosis that involves
LOX-PP, which may be a potential therapeutic target in pre-
venting retinal vascular cell loss associated with diabetic
retinopathy.
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