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Gut microbiota alterations associated with reduced
bone mineral density in older adults

Mrinmoy Das 1,2, Owen Cronin3,4, David M. Keohane3, Edel M. Cormac1,2,
Helena Nugent3, Michelle Nugent3, Catherine Molloy3, Paul W. O’Toole1,2,
Fergus Shanahan1,3, Michael G. Molloy3 and Ian B. Jeffery1,2

Abstract

Objective. To investigate compositional differences in the gut microbiota associated with bone homeostasis and

fractures in a cohort of older adults.

Methods. Faecal microbiota profiles were determined from 181 individuals with osteopenia (n = 61) or osteoporosis

(n = 60), and an age- and gender-matched group with normal BMD (n = 60). Analysis of the 16S (V3-V4 region) amplicon

dataset classified to the genus level was used to identify significantly differentially abundant taxa. Adjustments were

made for potential confounding variables identified from the literature using several statistical models.

Results. We identified six genera that were significantly altered in abundance in the osteoporosis or osteopenic groups

compared with age- and gender-matched controls. A detailed study of microbiota associations with meta-data variables

that included BMI, health status, diet and medication revealed that these meta-data explained 15�17% of the variance

within the microbiota dataset. BMD measurements were significantly associated with alterations in the microbiota. After

controlling for known biological confounders, five of the six taxa remained significant. Overall microbiota alpha diversity

did not correlate to BMD in this study.

Conclusion. Reduced BMD in osteopenia and osteoporosis is associated with an altered microbiota. These alterations

may be useful as biomarkers or therapeutic targets in individuals at high risk of reductions in BMD. These observations

will lead to a better understanding of the relationship between the microbiota and bone homeostasis.
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Rheumatology key messages

. Reduced BMD is associated with taxon-specific signatures in the gut microbiota.

. Medication, anthropometric measures, nutrition and gender are associated with gut microbiota composition.

. Confounders do not explain the microbiota�bone density interactions observed here.

Introduction

Osteoporosis, characterized by reduced BMD and degrad-

ation of the micro-architectural structure of bone, affects

over 27.5 million people in Europe [1]. Over the age of 50

years, one in three women and one in five men, worldwide,

will experience an osteoporotic fracture in their lifetime,

representing a significant burden for patients and health

care providers [2]. The aetiology of osteoporosis and its

precursor, osteopenia, is multi-factorial. Contributing fac-

tors include oestrogen and vitamin D deficiency, and gen-

etic modification in regulatory genes such as vitamin D

receptors and TGF-b [3]. Osteoporosis occurrence is

accelerated in patients with immune-mediated inflamma-

tory conditions, where excessive production of pro-inflam-

matory cytokines leads to increased osteoclastic bone

resorption (e.g. IBD, RA and AS) [4�6]. The gut microbiome

is known to modulate immune cell activities and alterations

in the microbiome have previously been associated with

these inflammatory conditions [7].

The gut microbiome shares a complex relationship with

the host. Development and maturation of the innate and

adaptive immunity in the host is dependent on appropriate

exposure to the gut microbiota [8]. Alterations in the

microbiota may result in immune system modulation or

activation. Circulating osteoclastogenic cytokines may
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be increased in a T-cell-dependent mechanism by the

microbiota, which can drive bone resorption in inflamma-

tory conditions [9]. Several investigations have identified

microbes that regulate the production of hormones or im-

prove uptake of vitamins that are integral to bone health

[10, 11].

Studies with germ-free and antibiotic-treated animals

have indicated the possibility of gut microbial influence

on both bone mass accumulation and turnover. These

animals have shown a reduction in osteoclastic precursor

cell number [12], an increase in bone mass [13], and im-

provement in bone strength and material properties [14].

We have previously identified significant microbiota al-

terations associated with inflamm-aging and frailty in an

elderly cohort [15]. Other studies have demonstrated that

the absence of gut microbiota leads to a reduction in bone

mechanical strength [16] and inversely, long term colo-

nization of pathogen-free gut microbiota increases bone

formation [17]. In contrast, another recent study sug-

gested that microbiota restoration in germ-free mice

does not affect bone loss [18]. These conflicting findings

may, in part, be due to different animal genotypes, the

anti-microbials administered and the absence or presence

of particular taxa in their baseline microbiota.

Our aim in the present study was to determine whether

gut microbiota features are associated with BMD in a

cohort of individuals at high risk of reduced BMD and

fractures. In addition to this, any genus-level taxa asso-

ciated with altered BMD would be identified by comparing

the gut microbiota composition of osteopenic and osteo-

porotic patients with those of age- and gender-matched

controls with normal BMD. Our hypothesis was that intes-

tinal microbiota composition was different in the osteo-

porotic subjects. Furthermore, we developed and

applied a rigorous statistical regime to remove the effect

of potentially confounding variables.

Methods

Subject recruitments and clinical information

Ethical approval was granted by the Clinical Research

Ethics Committee of the Cork Teaching Hospitals before

recruitment. Adult female and male subjects, aged

55�75 years, were recruited from the bone densitometry

unit at Cork University Hospital, Cork, Ireland. The indica-

tions for referral for BMD assessment by dual-energy

X-ray absorptiometry were varied, with referrals from pri-

mary, secondary and tertiary care. No single specific re-

ferral criterion was used, and request for assessment was

at the discretion of the attending clinician and not the

study investigators. Written informed consent was ob-

tained from the participants. Individuals with a known his-

tory of alcohol abuse, participation in an investigational

drug trial in the 30 days before enrolment, use of antibi-

otics in the 3 months prior to bone density measurement,

and previous partial or total colectomy were excluded. No

measure was taken to exclude participants with co-exist-

ing OA, aortic calcification or fractures. Altogether, stool

samples were collected from 193 participants. Due to lack

of vitamin D information from 12 samples, they were

excluded from the analysis, resulting in the final dataset

comprising of 181 participants.

Patients underwent dual-energy X-ray absorptiometry

assessment of BMD (g/cm2) at the femoral neck and

antero-posterior lumbar spine (L1-L4) with a GE

Healthcare Lunar iDXA machine (GE Healthcare,

Madison, WI) and enCORE software (V.13.4, 2010) using

standardized methodology [19]. T-score threshold was

used to define three groups based on their BMD. These

were normal BMD (n = 60) with a T-score of 5�1, patients

with osteopenia (n = 61) with a T-score between �1 and

�2.5, and patients with osteoporosis (n = 60) were defined

as having a T-score of 4�2.5 [20, 21]. The detailed pro-

cedure of recording anthropometric, clinical, dietary and

medications information is recorded in the supplementary

material, available at Rheumatology online.

Molecular methods and bioinformatics

Genomic DNA was extracted from 0.25 g of each of the

faecal samples based on a modified Yu and Morrison

protocol [22]. The V3-V4 region of the 16S rRNA gene

was amplified and sequenced [23] on the Illumina MiSeq

platform at Moorepark Teagasc Food Research Centre,

Fermoy, Ireland. The reads were merged using FLASH

(v1.2.8) [24]. The forward adapters were removed using

cutadapt (v1.8.3). The quality filtering of reads and re-

moval of reverse primers were carried out using the

QIIME (v1.9.1) [25] pipeline with default settings. The re-

moval of chimeric sequences and generation of oper-

ational taxonomic units at 97% identity threshold was

done using USEARCH (v8.1) [26]. Representative oper-

ational taxonomic units were classified using the

Ribosomal Database Project (RDP) database (v11.4) [27]

implemented in mothur (v1.34.4) [28]. a- and b-diversity

measures were produced from a rarefied dataset (10 613

reads per sample).

Statistical analysis

All statistical analyses were carried out in the R statistical

software (v3.4.0) [29]. Significance was determined by a

cut-off P-value 40.05 and P-adjusted 40.05 (Benjamini-

Hochberg procedure) unless stated otherwise. P-adjusted

for pairwise comparison is based on the P-values ob-

tained from all the pairwise comparisons for each variable.

Analysis of meta-data

Kruskal�Wallis, Dunn’s test (v1.3.4) [30] and/or �2 tests

were carried out to identify anthropometric, clinical, diet-

ary and medications significantly different between the

groups. For �2 testing, at least seven participants were

present across the whole dataset for that factor.

Analysis of microbiota data

Kruskal�Wallis test was used to determine significant

difference in a-diversity measures between the groups.

Co-inertia analysis was used to explore the covariance be-

tween the dietary dataset and microbiota dataset. DESeq2

(v1.16.1) [31] was used to identify differentially abundant
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taxa from the microbiota dataset. The dataset was filtered

to retain only those taxa that were present in at least 20%

of the samples across the whole dataset. A DESeq2 model

adjusted for BMI and gender was used to identify genera

that were significantly differentially abundant.

Identification of meta-data variables associated with
beta-diversity

Meta-data variables significantly associated with vari-

ations in global microbiota profiles were identified using

permutational multivariate analysis of variance. A nominal

P-value of 40.05 was used as the analysis was a con-

firmation of previously established associations. Subjects

with diseases such as coeliac disease, diverticulitis and

inflammatory arthritis conditions were present within the

dataset and were tested separately. Inflammatory and

non-inflammatory diseases can alter the microbiota with

a common dysbiosis signature [32]. To investigate the

common signature of microbiota-associated inflammatory

diseases, we created an inflammatory disease index,

where the presence of any one of the microbiota-asso-

ciated conditions (coeliac, diverticulitis, arthritis, IBD and

multiple sclerosis) was considered. Nominally significant

meta-data variables were added to a single permutational

multivariate analysis of variance model to identify overall

effect sizes. The cumulative effect was calculated based

on these pre-defined groups of variables.

Analysis of confounding variables

Clinical variables that have been reported to interact with

the microbiota were identified from the literature (supple-

mentary Table S1, available at Rheumatology online).

These included diet [Healthy Food Diversity (HFD) index]

[33], Barthel score [34], Godin leisure time activity score

[35], Mini-Mental State Examination scores [36], Mini

Nutritional Assessment [37] and Carlson co-morbidity

index [38]. Secondly, the meta-data identified as signifi-

cantly different between the subject groups were con-

firmed by a literature search (Table 1, supplementary

Table S2, available at Rheumatology online; P-adjusted

40.05) and were added to the analysis as potential

confounders.

Confounding factors were modelled using a general

linear mixed-effect model using the negative binomial dis-

tribution, and the sequencing depth was controlled for by

categorizing the number of reads into four quartiles and

adding this information as a random effect to the model.

Firstly, univariate general linear mixed-effect models were

generated with individual confounding factors as the pre-

dictor and the significant taxa as the response. The con-

founders identified as significant for individual taxa were

controlled for in a bivariate model. To maximize the

number of known confounders identified, a nominal

P-value was regarded as significant. In this model, the

effect of group category was evaluated after adjustment

for the individual significant confounders. Summary re-

ports were generated for both the univariate and bivariate

general linear mixed-effect models to explain the contri-

bution of the predictors.

An expanded methodology is available in the supple-

mentary material, available at Rheumatology online.

Results

Descriptive statistics of the study population

In the present study, samples and clinical information for

181 individuals were analysed. These patients were evenly

divided between those with normal BMD (n = 60), osteo-

penia (n = 61) and osteoporosis (n = 60) groups. Clinical,

physiological, biomedical and dietary measures were

investigated and significant differences between normal

BMD, osteopenia and osteoporosis participants were

detected. Differences in bone density measurements

(T-score and BMD of the anterior-posterior spine and

neck of femur) were confirmed and differences in BMI,

weight, circumference measures, vitamin D levels, and

the use of calcium and bisphosphonate supplements

were noted (Table 1, supplementary Table S2 and Figs

S1 and S2A and B, available at Rheumatology online).

Due to the recruitment by clinical referral of this high risk

cohort, there was a high rate of fractures in all groupings,

with percentages for one or more fractures being 40%

(24/60), 59% (36/61) and 42% (25/60) for normal BMD,

osteopenia and osteoporosis groups, respectively, and

percentages for two or more fractures being 7% (4/60),

23% (14/61) and 15% (9/60), respectively.

Microbiota characterization

The microbiota composition of the samples analysed was

dominated by phylum Firmicutes, with a mean abundance

of 78.9% across the whole dataset, followed in rank abun-

dance order by Bacteroidetes, accounting for 14.9%.

Other phyla accounted for 5.8%, while 0.4% were unclas-

sified (supplementary Fig. S3A, available at Rheumatology

online). The core microbiota consisted of 23 genera

that were found in at least 90% of the samples. The

top five genera with mean relative abundance in

the whole dataset were Faecalibacterium (11.7%),

Bacteroides (9.4%), Roseburia (7.9%), Blautia (7.6%)

and Coprococcus (3.2%) (supplementary Fig. S3B, avail-

able at Rheumatology online). Based on principal coord-

inate analysis on different b-diversity measures, Axes 1

and 2 explained 11�17% and 8�13% of variance, respect-

ively (supplementary Fig. S4A and Table S3, available at

Rheumatology online). The relationship of BMD measures

with global microbiota profile was visualized using dis-

tance-based redundancy analysis, testing anterior-pos-

terior spine BMD measure with Bray�Curtis distance

(supplementary Fig. S4B, available at Rheumatology

online). With regard to a-diversity, an average richness

of 308.7 ± 84.2 was observed and extrapolated richness

(chao1) was estimated at 406.8 ± 122 (Fig. 1D, supple-

mentary Fig. S4C, available at Rheumatology online) No

significant difference was observed in any of the alpha

diversity indices among the three clinical groups (Fig. 1D

and E, supplementary Fig. S4C and D, available at

Rheumatology online).
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Association of gut microbiota with covariates

Both sets of bone density measurements and one of the

T-scores tested explained a significant amount of micro-

biota variance (P-value 40.05), verifying the original hy-

pothesis that BMD is associated with alterations in the

microbiota (Fig. 1, supplementary Table S4, available at

Rheumatology online). We extended this beta-diversity

analysis to known microbiota-associated putative meta-

data variables to measure their effect on the microbiota

(supplementary Table S4, available at Rheumatology

online). This analysis identified 20 meta-data variables to

be associated with the global microbiota profile (Fig. 1A),

with BMI having the largest effect size individually (2.1%).

An inflammatory disease index was created indicating the

presence or absence of a disease, disorder or condition.

This index showed a significant association with the b-di-

versity (Bray-Curtis P-value 0.042, R2 = 0.009).

Among the significant variables, the combined effect-

size of the different medications explained the most vari-

ance (4.8%), followed by anthropometric measures

(3.5%). Chronic diseases explained 3.5% and BMD meas-

urement was the fourth largest contributor to effect size

(2%). Nutritional information (HFD and Mini Nutritional

Assessment), cognitive measures (Mini-Mental State

Examination) and gender explained 1.4, 1 and 0.6% of

variance, respectively (Fig. 1B). Overall, a cumulative

total range of 15�17% of the variance in our dataset

was explained, which indicates that stochastic factors ex-

plain the majority of the variance in global microbiota

composition (Fig. 1C). Analysis of the Food Frequency

Questionnaire data and diet quality as measured by the

HFD index revealed no significant difference in diet

composition or HFD across the three groups. Co-inertia

analysis of the Food Frequency Questionnaire dataset

with the microbiota dataset (Fig. 2A) graphically confirmed

a significant co-variation between the two datasets, which

was independent of the defined bone health groups.

Identification of significantly differentially abundant
taxa in patients with osteopenia and osteoporosis

DESeq2 statistical analysis was used to identify genera

that were differentially abundant across the groups with

adjustment for BMI and gender (Fig. 3A and B, supple-

mentary Table S5, available at Rheumatology online). In

summary, we found that Escherichia/Shigella and

Veillonella were more abundant in subjects with osteope-

nia compared with those with osteoporosis. Actinomyces,

Eggerthella, Clostridium Cluster XlVa and Lactobacillus

were more abundant in subjects with osteoporosis com-

pared with the normal BMD group. We did not identify any

taxa significantly differentially abundant in osteopenia

compared with the normal BMD group. The relative abun-

dance of these taxa is shown in Fig. 3C.

Alterations at taxonomic levels are not associated
with confounding factors

It is well established that many confounding factors may

affect the intestinal microbiota [39]. Therefore, it is import-

ant to account for confounders potentially affecting the

significant taxa identified. We implemented an in-depth

statistical analysis to control for potential cofounders

based on a combination of previously published

approaches [39, 40]. Each significant taxon was tested

against the confounding meta-data factors as outlined in

TABLE 1 Significant characteristics of the participants in the final dataset

Meta-data Healthy (n = 60) Osteopenia (n = 61) Osteoporosis (n = 60) Significance

Gender (male/female) 13/47 7/54 11/49 NS

Age (years) 63.57 ± 5.73 64.84 ± 5.28 65.07 ± 5.58 NS

BMI 29.09 ± 4.57 27.20 ± 4.80 23.96 ± 3.31 ***

Weight (kg) 78.86 ± 13.60 70.96 ± 14.44 61.65 ± 9.44 ***
Waist circumference (cm) 95.71 ± 11.95 (13/46) 89.81 ± 12.40 (6/54) 81.81 ± 9.36 ***

Hip circumference (cm) 106.71 ± 9.83 (13/46) 103.63 ± 10.45 (6/53) 96.66 ± 7.26 ***

Waist�hip ratio 0.90 ± 0.08 (13/46) 0.87 ± 0.06 (6/53) 0.85 ± 0.07 **

Mid arm circumference (cm) 30.98 ± 3.62 (12/47) 28.85 ± 3.97 26.80 ± 2.91 ***
Calf circumference (cm) 37.69 ± 3.73 (11/47) 35.76 ± 4.28 33.93 ± 2.76 ***

AP spine T-score 0.28 ± 1.02 �1.16 ± 0.87 �2.86 ± 0.74 ***

AP spine BMD (g/cm2) 1.22 ± 0.13 1.04 ± 0.11 0.84 ± 0.09 ***
Neck-femur T-score �0.54 ± 0.35 �1.27 ± 0.53 �1.95 ± 0.80 ***

Neck-femur BMD (g/cm2) 0.98 ± 0.09 0.84 ± 0.07 0.84 ± 0.68 ***

Vitamin D3 [25(OH)D3] (nmol/L) 60.49 ± 20.84 69.98 ± 25.27 75.96 ± 26.43 **

Total Vitamin D [25(OH)D)] (nmol/L) 63.68 ± 20.57 72.40 ± 25.36 79.18 ± 26.07 **
Calcium supplements (yes/no) 10/50 31/30 35/25 ***

Bisphosphonate medication (yes/no) 4/56 6/55 17/43 ***

Group-wise comparisons of the clinical variables. Kruskal�Wallis or �2 statistic was used to determine significance. The values
represent mean ± S.D. or number of samples per group. 25(OH)D3: vitamin D3; Total Vitamin D [25(OH)D]: total vitamin D.

Significance: P-adjusted. ***40.0005; **40.005; NS: not significant. Values in brackets for circumference measures and waist-

hip ratio represents different sample size. The complete list of sample characteristics along with pairwise comparisons is

available in supplementary Table S2, available at Rheumatology online. AP: anterior-posterior.
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FIG. 1 Effect size of covariates significantly associated with global microbiota profiles

Significance was defined as a P-value of 0.05. (A) A total of 20 factors were identified to be nominally significantly

associated with b-diversity. The bar plot shows the variation explained by each factor individually on microbiota com-

position (weighted and unweighted UniFrac). The factors are sorted based on their mean cumulative (grouped into

predefined categories) and individual effect size from both distance measures. (B) The combined variance explained by

the predefined categories. (C) The donut plot shows the portion of combined variance explained by the nominally

significant factors on weighted and unweighted UniFrac measures, respectively. (D and E) The lack of significant dif-

ference in observed species diversity measure and Shannon index, respectively. PPIs: proton pump inhibitors; MNA: Mini

Nutritional Assessment; HFD: Healthy Food Diversity; MMSE: Mini-Mental State Examination.
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the Methods section. A total of 29 factors and the inflam-

matory disease index were analysed and based on the

results of the univariate models (supplementary Table

S6, available at Rheumatology online), the bivariate

models explaining the associations with each significant

genus were generated (supplementary Table S7, available

at Rheumatology online).

Significant associations with the different significantly dif-

ferentially abundant genera were explained by a range of

factors including diet, frailty variables, levels of physical ac-

tivity, medications, weight, BMI, gender and bone density

measurements, including the osteopenic and osteoporotic

groups (supplementary Table S6, available at Rheumatology

online) based on the univariate models. Based on the

bivariate models, five of the six previously identified genera

remained significantly differentially abundant after adjust-

ment for known confounding factors (supplementary Table

S7, available at Rheumatology online). The inflammatory dis-

ease index did not show any significant association with

these significant taxa in the bivariate models. Lactobacillus

abundance was not significantly associated with any of the

bone density measurements in the univariate and bivariate

models unless BMI was included in the model and therefore

was no longer considered.

Ouranalysisshows thatBMI is significantlyassociatedwith

anterior-posterior spine BMD measures but not with lowest

neck of femur BMD values (supplementary Tables S8a and

S9a, available at Rheumatology online). The removal of the

effect of BMI, medications and vitamin D levels (supplemen-

tary Tables S8b�e and S9b�e, available at Rheumatology

online) retained all but two of the results, with Clostridium

XlVa and Veillonella losing significance (supplementary

Tables S8f and S9f, available at Rheumatology online).

Discussion

This is the largest study to-date to investigate associ-

ations between the microbiota and reduced bone density

FIG. 2 Food profile is significantly associated with microbiota profile based on the CIA

(A) The CIA of the FFQ PCA and microbiota PCA, where the arrows relate the position of the samples in the FFQ dataset

in relation to the microbiota dataset. (B) The FFQ item category associated with the visualized trends. Green dots

represent fruits and vegetables, orange represents grains, cereals and bread, brown represents meats, cyan represents

fish, yellow represents dairy products, blue represents sweets, cakes and alcohol, and grey represents vitamins, minerals

and tea. The food items on the most extreme ends are labelled. (C) The microbial taxa at family level associated with

visualized trends. The taxa present at the extreme ends are labelled. CIA: co-inertia analysis; FFQ: Food Frequency

Questionnaire; PCA: principal component analysis.
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in a human cohort including individuals suffering from

osteopenia and osteoporosis. We have identified signifi-

cant associations between different gut microbial genera

and reduced bone density in this well-characterized

cohort. Extensive investigation by considering the poten-

tial influence of various confounders clearly established

that the taxonomic differences observed are not explained

by the confounders.

It has been observed that the microbiome field suffers

from a proliferation of small datasets that show associ-

ations of the microbiome with particular diseases or

states, without the ability to adequately control for con-

founding variables. Here we show that global alterations in

the gut microbiota are associated with BMD measures,

and these interactions explain a similar amount of vari-

ance compared with other known microbiota-associated

diseases and disorders. This confirms our hypothesis of

the association of the gut microbiota alterations with a

reduction in BMD in the elderly.

Diseases, disorders and medical conditions are asso-

ciated with smaller effect sizes compared with medica-

tions [39, 41]. In-depth analysis of confounding variables

revealed that bisphosphonate and calcium supplements

show no significant association with the global microbiota

profile. This is consistent with previous reports that

bisphosphonates are not significantly associated with

gut microbiota markers and the evidence for microbiota

alteration in association with calcium intake is weak [42].

We identified six individual gut microbial taxa that may

affect bone metabolism. This modest result contrasts

with a small cohort study that identified a large number

of alterations associated with osteoporosis and osteope-

nia patients in the microbiota at the global and genus level

[43]. The lack of replication of these global alterations in

this cohort shows the importance of adequate sample

sizes and controlling for multiple testing when investigat-

ing possible new associations.

A loss of microbiota diversity is associated with a wide

range of disease states, and microbiota diversity is widely

considered as an important indicator of health. Within this

context, the lack of significant differences in the within-

sample diversity measures is interesting. However, it has

been observed previously that despite loss of commensal

population with the elderly microbiota and noticeable dif-

ferences in microbiome composition and other host-asso-

ciated factors (e.g. inflammation, dietary patterns), there

was no significant observable difference in overall diver-

sity in ageing individuals [44] and between frail and non-

frail elderly individuals [40].

The taxa identified resonate well with the bone dens-

ity�microbiome literature. Actinomyces abundance in the

osteoporosis group here is in concordance with findings

that Actinomyces is involved in the development of

bisphosphonate-related osteonecrosis of the jaw [45],

and it has been proposed that prolonged courses of anti-

microbial therapy targeting this organism may lead to

FIG. 3 Taxa with differential abundance across the BMD groups

Plot of the log2-fold difference from the significantly differentially abundant genera in pairwise analysis between the

groups from the DESeq2 analysis when the model is adjusted for BMI and gender. Based on the log2-fold difference, (A)

shows the genera that are significantly higher in osteoporosis compared with normal BMD, (B) represents the genera that

are significantly more abundant in osteoporosis compared with osteopenia and (C) represents the relative abundance of

the significant genera in the three groups identified in DESeq2.
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better clinical outcomes [46]. The increase in Clostridium

XlVa in the osteoporotic group represents a means by

which the gut microbiota may influence bone state

acting through several differentiating mechanisms [47].

Clostridium XlVa induces accumulation and differentiation

of T-regulator cells, which in turn are responsible for bone

homeostasis [48]. Clostridium XlVa is an important produ-

cer of butyrate, a short chain fatty acid known to stimulate

bone formation [49]. Further functional analysis of this

group of microorganisms may provide insight into how

the gut microbiota affects BMD through modulation of

the host’s immune system and metabolism.

Vitamin D receptor polymorphisms are associated with

increased osteoporotic fracture risk [50]. The increase in

Eggerthella abundance in the osteoporotic group is of

interest, as absence of the vitamin D receptor leads to

increased Eggerthella abundance and other unfavourable

alterations in the intestinal microbiota in murine models

[51]. The current investigation also found that vitamin D

concentration is associated with a decrease in the relative

abundance of Escherichia/Shigella (supplementary Tables

S6 and S7, available at Rheumatology online), mirroring

other findings looking at vitamin D supplementation [52].

The high relative abundance of this genus in osteopenic

but not in osteoporotic patients may be partially due to the

greater use of oral vitamin D supplementation among the

patients with osteoporosis.

A number of microbes belonging to the phylum

Firmicutes are known metabolizers of isoflavone diadzin

to equol, which is an oestrogen analogue [53]. This in-

cludes species from the genus Veillonella, which we

have observed to be decreased in osteoporotic patients.

This suggests that a reduction in Veillonella would lead to

lower production of equol, which in turn leads to a lack of

inhibition of bone resorption.

An analysis of the meta-data revealed that diet and BMI

were large contributors to variance in the dataset, with

BMI being the largest single contributor, in line with nu-

merous reports linking gut microbiota with obesity [41].

Our study investigated and confirmed the effect of these

variables that can alter the microbiota as reported by pre-

vious studies. These included various medications that

have a profound effect on the microbiota profiles such

as proton pump inhibitors and the general term of poly-

pharmacy [42, 54]. Thus, the current study corroborates

previous reports which show that cumulative medication

use has the largest effect size on global microbiota pro-

files [39, 41]. However, neither these alterations nor

chronic diseases [41, 55] or anthropometric measures ex-

plained the observed microbiota alterations.

The relationships between BMI and BMD and the

microbiota is complex. Although lower BMI has been

associated with a higher fracture rate [56], a high

amount of fat mass may provide no beneficial effect on

bone health [57]. Within this study, individuals with a

higher BMI tended to have higher BMD, which is consist-

ent with the literature [58]. BMI is known to be associated

with microbiota alterations. Our analysis has considered

both of these BMI associations. Of the taxa related to

BMD, Lactobacillus and Veillonella were significantly

related (P-value <0.05) to both the obese category and

BMD, while Clostridium XlVa showed trends of associ-

ations with the obese category (P-value <0.1). However,

the Lactobacillus correlation was not significant without

adjustment for BMI and so was considered a false posi-

tive. Further analysis showed that with removal of variance

associated with BMI and medications from the BMD

measures results in Veillonella and Clostridium XlVa

losing significance. Other results were unaffected, show-

ing that the associations are independent of BMI.

Therefore, the association of Clostridium XlVa and

Veillonella with BMD should be interpreted with caution.

This is the first investigation of the intestinal microbiota

in a large well-characterized human adult cohort with re-

spect to BMD, with one previous study having a limited

sample size [43]. Nevertheless, the current study has cer-

tain limitations. Due to the recruitment of individuals

through consultant referral, the normal BMD cohort are

not truly representative of the general population, as high-

lighted by the high fracture rate in this group. However, a

history of fractures was not associated with a detectable

alteration in the microbiota, and controlling for this vari-

able confirmed the BMD results but did not improve the

analysis. Due to the incomplete information of the standa-

lone vitamin supplements, we included serum vitamin D

levels to use directly measured concentrations to account

for vitamin D. The number of variables that can be tested

in the identification of confounding factors through statis-

tical analyses is limited by the sample size. However, this

analysis was not dependent on the statistical identification

of confounding variables, with the majority of the variables

being identified from the literature before the commence-

ment of the analysis, and with all additional variables

being supported by the literature. The reported study is

also observational and the association with BMD does not

imply direct causation. However, the literature supports

the notation that these taxa may have functional links to

bone health and this microbial contribution to bone health

may represent a modifiable environmental factor in the

prevention and treatment of osteoporosis. Despite the

limitations discussed, changes in gut bacterial compos-

ition with respect to bone health suggest that further ex-

ploration and mechanistic studies are warranted.

In conclusion, we identified taxa-specific differences in

the gut microbiota profiles associated with normal BMD,

osteopenic and osteoporotic subjects. These genera

could be potential biomarkers and therapeutic targets in

high risk cohorts. These differences support the concept

that specific genera within the gut exert influence on bone

metabolism in the host, subsequently affecting bone

health in adulthood.
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