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Abstract

Objective: In this paper, we propose a robust, efficient, and automatic reconnection algorithm for 

bridging interrupted curvilinear skeletons in ophthalmologic images.

Methods: This method employs the contour completion process, i.e., mathematical modeling of 

the direction process in the roto-translation group SE 2 ≡ ℝ2 × S1 to achieve line propagation/

completion. The completion process can be used to reconstruct interrupted curves by considering 

their local consistency. An explicit scheme with finite-difference approximation is used to 
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construct the three-dimensional (3-D) completion kernel, where we choose the Gamma 

distribution for time integration. To process structures in SE(2), the orientation score framework is 

exploited to lift the 2-D curvilinear segments into the 3-D space. The propagation and 

reconnection of interrupted segments are achieved by convolving the completion kernel with 

orientation scores via iterative group convolutions. To overcome the problem of incorrect 

skeletonization of 2-D structures at junctions, a 3-D segment-wise thinning technique is proposed 

to process each segment separately in orientation scores.

Results: Validations on 4 datasets with different image modalities show that our method achieves 

an average success rate of 95.24% in reconnecting 40 457 gaps of sizes from 7 × 7 to 39 × 39, 

including challenging junction structures.

Conclusion: The reconnection approach can be a useful and reliable technique for bridging 

complex curvilinear interruptions.

Significance: The presented method is a critical work to obtain more complete curvilinear 

structures in ophthalmologic images. It provides better topological and geometric connectivities 

for further analysis.

Keywords

Vessel segmentation; line completion; orientation score (OS); retinal images; ophthalmologic 
images

I. INTRODUCTION

A. Clinical Importance of Curvilinear Structures in Ophthalmologic Images

OPHTHALMOLOGIC images like retinal and corneal nerve fiber images are widely used in 

clinical assessment for a variety of diseases [1]–[4], as strong links exist between different 

pathologies and geometrical properties of the blood vessels and nerves. For example, retina-

related diseases such as diabetic retinopathy (DR) and retinopathy of prematurity (ROP) 

usually cause variations in the blood vessels like neovascularization and tortuosity changes 

[1], [2]. Consequently, retinal fundus images are increasingly used for measuring clinical 

biomarkers such as vessel calibers, artery/vein ratio and fractal dimension for the early 

diagnosis of systemic diseases, e.g. hypertension and arteriosclerosis [1]. In corneal nerve 

images, significant changes in nerve fiber length, fiber density, branch density and 

connecting points are presented as the clinical signs of type-II diabetes [3]. The tortuosity 

changes of nerve fibers have a close correlation with diabetic neuropathy [4].

The rapid development of retinal fundus cameras and corneal confocal microscopes have 

facilitated the studies between image structures and diseases in a noninvasive way. However, 

the full visual inspection by specialists slows down the clinical assessment speed for 

decision making and treatment planning. In particular, the prevalence of ophthalmologic 

diseases requires early computer-aided diagnosis (CAD) to assist large-screening programs 

efficiently. Due to the clinical importance of analyzing the curvilinear structures in different 

image modalities, automatic segmentation methods are needed.
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B. Curvilinear Network Extraction Methods and Challenges

1) Method Overview: A variety of previous studies for identifying the retinal vascular 

network [5]–[11] and for extracting the corneal nerve fibers [12], [13] have been proposed. 

They can generally be classified into two categories: tracking-based approaches [6], [14]–

[16] and segmentation-based approaches [5], [9], [17]. These methods provide a binary 

segmentation or centerline map of curvilinear/elongated structures. Segmentation-based 

approaches exploit different profile models or filters to highlight curvilinear structures, or 

integrate them with a supervised learning procedure to predict the pixel probabilities of 

being a curvilinear structure. Tracking-based approaches start from predefined seed points 

and iteratively track the optimal path until a stopping criterion is satisfied.

2) Challenging Interruptions: In general, many segmentation tasks emphasize the 

extraction of as many elongated segments as possible, but they ignore to consider the 

importance of structure connectivity. However, challenging cases like non-uniform 

illumination or contrast changes, low intensities or low signal to noise ratios especially in 

tiny structures, strong central arterial reflex, vessel narrowing and complete occlusions often 

cause interruptions along vessels, or missing crossings/bifurcations as shown in Fig. 1. 

Segmentation-based approaches are sensitive to these difficult cases because they mainly 

take into account the local pixel appearances for classification. Many tracking based 

approaches rely on an initial segmentation of the curvilinear network, from which they begin 

to trace the skeleton of the binary segmentation. This dependency will produce incomplete 

graph representations when imperfect segmentation results and skeletons are used to guide 

the tracking. Other challenges are missing junctions between tiny and large structures, 

interruptions at bifurcations/crossings with small angles and complex junctions that are very 

close to each other. More discussions on the topological and geometrical connectivities of 

curvilinear network can be found in [14], [18]–[22].

3) Motivation for the Reconnection of Interruptions: Since the interrupted 

curvilinear segments are not able to fully represent the geometric network, quantitative 

biomarker measurements from the extracted structures become less reliable in practice. For 

example, the statistical analysis of vessel tortuosity, segment length, vessel calibers, 

bifurcation/crossing angles, corneal never fiber tortuosity and density may produce wrong 

indications to the computer-aided diagnosis. To give a better description of geometric 

features, a reconnection method for interrupted segments is strongly needed to repair the 

missing skeleton gaps in many state-of-the-art segmentations.

C. Related-Works for the Reconnection

Currently, the limited studies available mainly focus on connectivity analysis of separated 

curvilinear segments, i.e. finding their connection relations and grouping them together. 

Favali et al. [24] analyze the vessel connectivity relations based on spectral clustering on a 

large local affinity matrix, which is obtained from the stochastic model of the cortical 

connectivity. This method effectively identifies matching vessel segments, however, does not 

provide means for closing the gap between them. Only a few papers address the 

development of fully automatic methods for the reconnection of interrupted structures. Joshi 

et al. [25] presented a method for automatic identification and reconnection of interrupted 
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gaps in retinal vessel segmentations. This method firstly extracts the end points of a vessel 

segment which needs to be reconnected back to the main structure, and then uses a graph 

search method with several constraints for segment reconnection.

A general approach for reconnecting the interrupted curvilinear structures with extensive 

evaluations and applications is still missing in literature. Moreover, the above mentioned 

methods are primarily interested in filling the gaps located within vascular segments, but 

some small structures like crossings/bifurcations as well as small vessels are ignored, as 

shown in Fig. 1 (Row 1. The complex linkages at junctions are challenging cases for these 

methods. The clinical practice requires a method that works both efficiently and accurately.

D. The Proposed Pipeline and its Contributions

In this paper, we propose an automatic method for closing the broken gaps in the binarized 

skeleton of curvilinear segmentations. The proposed method is based on the stochastic 

processes for contour completion, i.e., mathematical modeling of the propagation of lines 

and contours [26]–[30]. The stochastic contour completion process as proposed by Mumford 

[26], also called the direction process, corresponds to the Gestalt law of good continuation 

[31], [32]. As shown in Fig. 2, disconnected segments in an image are perceived as the 

components of a continuous line after perceptual grouping by our visual system. Parent and 

Zucker [33] demonstrated in both theory and practice that it is feasible to reconstruct curves 

by considering the consistency relationships between interrupted structures.

In our previous work [30], extensive comparisons among different numerical approaches and 

the exact solution of the Fokker-Planck equations for contour completion modeling are 

studied. The contour completion (direction) process has been modeled by many numerical 

schemes [34]–[37] on the rotation and translation group SE 2 : = ℝ2 × S1, i.e. the coupled 

space of positions and orientations. We aim to bridge the continuation of interrupted curves 

by using the line propagation property of the numerical completion kernel. The explicit 

scheme with finite difference (FD) approximation [30] is used to model the direction 

process, since it is a time-dependent process which allows adaption of the kernel evolution. 

It turns out that the FD completion kernel on SE(2) can excellently promote line propagation 

for gap fillings in segments, crossings and bifurcations. To specifically process curvilinear 

structures in SE(2), we rely on the formal group-theoretical framework of orientation scores 

[38] to lift the 2D curvilinear structures into the 3D space of positions and orientations 

ℝ2 × S1, where we have the important property that 2D elongated structures are disentangled 

into different orientation planes according to their local orientations, see Fig. 3. Afterwards, 

we apply iterative group convolutions between the completion kernel and orientation scores 

to achieve line propagation and gap fillings.

Our contributions can be summarized as follows:

• This paper presents a novel approach for bridging interruptions in skeletons in 

order to form a complete network. The proposed explicit completion kernel is 

achieved via integration with a new probabilistic Gamma-distribution, which is 

proved to be able to avoid singularities at the origin of the completion kernel.
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• In addition to the theoretical ideas, we show that in practice this newly proposed 

time integration in contour completion provides better propagation for filling 

interrupted curvilinear structures.

• A new orientation score based segment-wise thinning (SWT) technique is 

proposed to avoid imperfect thinning at junction structures by standard 2D 

methods.

• To the best of our knowledge, this is not only the first time of full evaluation of a 

gap filling method on large datasets with different image modalities, but also a 

full benchmarking of curvilinear structure reconnection via left-invariant 

geometric diffusions of the contour completion framework.

The remainder of this paper is organized as follows. We explain the geometrical tools for 

setting up the completion framework in Section II. Afterwards, we present the detailed 

methodologies of the line completion process in Section III. The proposed method is then 

validated on the manual annotations and artificial gaps of four datasets in Section IV. Finally, 

we discuss and conclude this work in Section V.

II. GEOMETRICAL TOOLS

Physiological findings in the visual system show that neurons with aligned receptive field 

sites excite each other for the captured visual input. The receptive fields not only cope with 

local position and orientation information, but also account for context and alignment [39]. 

These physiological facts motivate the developments of different group-theoretical models 

for image processing tasks [19], [28]–[30], [37], [40]. In this work, we use the rotation and 

translation group SE(2) for orientation score processing [6], [29], [38]. In this section, we 

first give explanations to the Lie group domain SE 2 : = ℝ2 × S1 in which we model the 

direction process. Then we briefly show how we can lift a 2D image to the 3D space 

(ℝ2 × S1) of positions and orientations using the orientation score transform.

A. The Roto-Translation Group SE 2 ≡ ℝ2 ⋊ S1

The roto-translation group SE(2) defines the Lie-group domain of positions and orientations 

ℝ2 × S1, where the group element is given by g = (x, θ) with x = x, y ∈ ℝ2 and θ ∈ S1, and 

the group product is defined as

gg′ = x, θ x′, θ′ = x + Rθ ⋅ x′, θ + θ′ , for all g, g′ ∈ SE 2 ,

where a counter-clockwise rotation over angle θ is given by Rθ = cosθ −sinθ
sinθ cosθ

. Note that the 

roto-translation group SE(2) has non-commutative group structure, i.e. rotations and 

translations do not commute, gg′ ≠ g′g . This is because a rotation Rθ pops up in the 

translation part, which is expressed by the semi–direct product “×” between ℝ2 and S1. Fig. 

4 gives an example of lifting a 2D curve to the space of SE(2).
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B. Orientation Scores

An orientation score is obtained by lifting a 2D image f into a 3D Lie-group domain ℝ2 × S1

via correlation with an anisotropic kernel ψ ∈ 𝕃2 ℝ2 . This orientation score is defined as a 

function U f : SE 2 ℂ and obtained by

U f x, θ = 𝒲ψ f x, θ =
ℝ2ψ Rθ

1 y x f y dy, (1)

where 𝒲ψ represents the wavelet-type transform, and we choose cake wavelets [6] for ψ. 

The advantage of using cake wavelets ψ is that they uniformly cover the whole Fourier 

domain such that no data-evidence is lost. The quadrature property of cake wavelets ensures 

that the real part contains information of the locally symmetric structures, e.g., ridges/lines, 

and the imaginary part represents the antisymmetric structures, e.g., edges. Fig. 3 gives an 

example of the orientation score transform. Since in this work we are primarily interested in 

connecting the centerline segments, we only use the real part of the orientation score. 

Crossing curvilinear structures are separated from each other and lifted to different 

orientation score planes. We make use of this property, and propose a new segment-wise 

thinning approach in the orientation score domain, instead of using 2D morphological 

thinning in the image domain, to be used in our reconnection pipeline, which will be 

explained in Section III-C (see Fig. 9(d)–(e)).

C. Left-Invariant Derivative Frames

The planar translation operation on an image f is defined as 𝒯x f y = f y − x  and the 

rotation operation is given by ℛθ f x = f Rθ
−1x . As such, the unitary representation of the 

roto-translation group SE(2) can be written as 𝒰g = 𝒯x ∘ ℛθ, where for all g, h ∈ SE(2), we 

define gh 𝒰gh = 𝒰g𝒰h and 𝒰
g−1 = 𝒰g

−1 = 𝒰g* . The left-regular1 group representation on 

images f ∈ 𝕃2 ℝ2  is given by 𝒰g ∘ f y = f Rθ
−1 y − x . In Fig. 3, Φ is defined as an 

operator acting on orientation scores. Its left-invariant property is satisfied if Φ meets the 

following commutative requirement, i.e.,

Φ ∘ ℒg = ℒg ∘ Φ , for all g ∈ SE 2 , (2)

with the left-regular group representations g ℒg given by ℒgU h = U g−1h  on 

orientation scores U ∈ 𝕃2(SE(2)). Consequently it is straightforward to show (using (1)) that

∀g ∈ SE 2 : 𝒲ψ ∘ 𝒰g = ℒg ∘ 𝒲ψ . (3)

Thus, if Φ is a left-invariant operator, the operator ϒ : = 𝒲ψ
∗ ∘ Φ ∘ 𝒲ψ on the 2D image 

domain is Euclidean-invariant (invariant to translations and rotations of image f), i.e.,

1Here left-regular basically means that the group multiplication takes place on the left side.
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ϒ ∘ 𝒰g = 𝒰g ∘ ϒ , for all g ∈ SE 2 . (4)

The tangent vector Xe ∈ Te(SE(2)) of a curve γ : ℝ →SE(2) at the origin e = (0,0,0) ∈ SE(2) 

is spanned by the basis {ex, ey, eθ}. The push-forward operation (translation and rotation) of 

the left-multiplication of the curve γ by g ∈ SE(2) assigns each Xe a corresponding tangent 

vector Xg = (Lg)*Xe ∈ Tg (SE(2)), which is spanned by left-invariant basis vectors and can 

be conveniently written as:

𝒜1 g , 𝒜2 g , 𝒜3 g = Lg ∗ex, Lg ∗ey, Lg ∗eθ

= cosθex + sinθey, cosθey − sinθex, eθ , (5)

where the push-forward of left-multiplication Lgh = gh is denoted by (Lg)*. The planar 

tangent space T(ℝ2) is spanned by the basis2 {∂x, ∂y}. Thus, we define the notation for the 

left-invariant vector fields on SE(2) (see also Fig. 3) as

𝒜1, 𝒜2, 𝒜3 : = cosθ ∂x + sinθ ∂y, cosθ ∂y − sinθ ∂x, θ ∂θ . (6)

III. METHOD

We aim to bridge gaps through a specific directional diffusion process in the orientation 

score domain. In Section III-A1, we first give the basic representation of the left-invariant 

PDE-evolutions of the convection-diffusion process (7) expressed in the left-invariant basis 

(6) in SE(2). The solution of the left-invariant evolution will provide us with the time-

dependent line completion kernel. To solve (7), we use the explicit numerical scheme to 

approximate the convection-diffusion process as shown in (9) in Section III-A2. To achieve 

the most exact approximation, we construct the time-independent completion kernel by 

integrating the time-dependent convection-diffusion process over the Gamma-distributed 

traveling life time in Section III-A3. Based on the obtained completion kernel, we intend to 

reconnect all the interrupted skeletons via iterative group convolutions. In Section III-B, we 

give the detailed routine of applying iterative group convolutions on orientation scores to 

bridge gaps. Additionally, a segment-wise thinning (SWT) technique in orientation scores is 

proposed in Section III-C to solve the imperfect skeletonization problem at junctions when 

using the classical morphological thinning.

A. Explicit Convection-Diffusion for Contour Completion

1) Convection-Diffusion Process: The left-invariant derivatives defined in the 

previous section can be used to design the diffusion and convection processes on SE(2) [30]. 

The diffusion process takes care of the de-noising of elongated structures and the 

preservation of junctions, while the convection process is responsible for filling the gap of 

2As the vector fields can also be considered as differential operators on smooth and locally defined functions, we use {∂x, ∂y} to 
represent the basis vectors instead of using a traditional notation {ex, ey} with ex = (1, 0) and ey = (0, 1).
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interrupted curvilinear structures. The left-invariant evolution of the Fokker-Planck equation 

is given by

∂tW = QD, a 𝒜1, 𝒜2, 𝒜3 W ,

W ⋅ , t = 0 = U0 ⋅ ,
(7)

where U0 is the initial condition, and is usually given by the orientation score 

U0 = U f = 𝒲ψ f , and W(·,t) provides the solution of the evolution at time t. The quadratic 

form of the convection-diffusion generator QD, a 𝒜1, 𝒜2, 𝒜3  is defined as

QD, a 𝒜1, 𝒜2, 𝒜3 =
i 1

3
ai𝒜i

i 1

3
Di j𝒜i𝒜 j ,

ai, Di j ∈ ℝ, D : = Di j ≥ 0, DΤ = D,
(8)

where the first order part 𝒜i represents the convection, and the second order part 𝒜i𝒜 j

determines the diffusion. Fig. 5(b) shows the stochastic process for contour completion 

approximation and Fig. 5(c) gives the exact contour completion kernel.

2) Explicit Scheme for Convection-Diffusion Process: The explicit approximation 

of the completion process can be achieved by using the convection-diffusion generator in a 

general representation, i.e. QD, a 𝒜1, 𝒜2, 𝒜3 = −𝒜1 + D33𝒜3
2  with a = (1,0,0) for 

convection and D = diag{0,0, D33} with constant D33 > 0 for diffusion. Here, the backward 

finite difference scheme is employed to approximate the convection term 𝒜1 according to 

the upwind principle, and the centered 2nd order finite difference scheme with B-spline 

interpolation is used to approximate the 2nd order diffusion term 𝒜3
2. The reason for using 

the finite difference approximation is not only because the numerical implementation is 

simple, but also the boundary conditions can be specified and modified conveniently. The 

explicit convection-diffusion process is simulated by the following forward Euler scheme for 

time discretization:

W g, t + Δt = W g, t + ΔtQD, a 𝒜1, 𝒜2, 𝒜3 W g, t ,
W g, 0 = U f g ,

(9)

where the time step is given by Δt with sufficiently small bound Δt ≤ 0.16 to ensure the 

stability of the diffusion process [30]. To prevent the additional blurring because of 

interpolation, the step size of the convection process is typically set as the spatial grid size 

(Δt = Δx). The numerical evolution is approximated by splitting the convection and diffusion 

processes alternatively, i.e., 1/2 of the diffusion steps before 1 convection step, and 1/2 

diffusions afterwards. The kernel evolution process starts with a spatially Gaussian blurred 

3D spike Gσs, σo
x, θ = Gσs

x Gσo
θ  for reducing numerical errors. The d–dimensional 
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Gaussian kernel is given by Gσ x = 2πσ2 −d /2
e
−

x
2

2σ2
, and where σs and σ0 give the 2D-

spatial scale 1
2σs

2 and 1D-angular scale 1
2σo

2.

3) Time-Integrated Contour Completion Kernel: The completion process is 

achieved by integrating the convection-diffusion process over the traveling time t [30]. The 

probability of allowing a particle to move with the life time T is given by P(T = t). The time-

integration via Gamma-distributions, instead of using the regular exponential decay, is better 

at reducing the singularities and controlling the infilling property of the left-invariant PDE’s. 

Hence, we propose to use the Gamma-distributions to weight each time evolution step. The 

Gamma distributed time T is written as

P T = t = Γ t; k, α : = αktk − 1

Γ k e−αt, t ≥ 0, (10)

(where α is the rate parameter for controlling the scale of the distribution, k indicates the 

number of linearly independent negatively exponential distributions P(Ti = t) = αe−αt for i = 

1,…, k to construct a Gamma-distribution, i.e., T = T1 + … + Tk. In other words, k could 

also be interpreted as the number of concatenated stochastic processes for contour 

completion (Fig. 5(a)), where one process starts at the position where the previous one ended 

[30]. Here we choose k ≥ 3 to ensure the singularity removal and better propagation of ‘ink’ 

towards the gap areas. See Fig. 6. Note that increasing k will produce more propagation to 

fill the gaps. The expected life time E(T) is set as E(T) = k/α for better approximation. We 

set k = 3 in our experiments. The time-integrated forward completion kernel can be written 

as

Rα, k
D, + g =

0

∞
W g t P T t dt (11)

Since a particle can either go forward or backward with identical probability distribution in 

the direction of the curvilinear structures, here we consider both the forward and backward 

propagation for constructing the contour completion kernel. By setting the convection term 

as a = (−1,0,0), the backward kernel that moves in the opposite direction is generated as

Rα, k
D, − g =

0

∞
W g t P T t dt (12)

The final double-sided completion kernel is obtained by combing the forward and backward 

processes, i.e.,

Rα, k
D, a g = 1

2 Rα, k
D, + g + Rα, k

D, − g . (13)

In Fig. 7, we show the 3D volume of the explicit completion kernel and its projections on 

different planes.
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B. Iterative Connections via Group Convolutions in SE(2)

To efficiently propagate and reconnect the interrupted curvilinear structures, we propose a 

routine of convolving the completion kernel with orientation scores Uf via SE(2) group 

convolutions. This convolution should follow the SE(2) group properties to preserve 

translation and rotation invariance, i.e., left-invariance. The SE(2)-convolution is defined by

Rα, k
D, a ∗SE 2 U f x, θ

=
ℝ2 0

2π
Rα k

D a Rθ
1 x x θ θ U f x θ dθ dx

(14)

where Rα, k
D, a represents the double-sided completion kernel obtained from Section III-A3. 

Fig. 8(b) and (c) show the group convolution between orientation scores and the 3D 

completion kernel. After the SE(2) group convolution, the convolved orientation scores are 

thresholded with respect to a value Th, and thereby we obtain the binarized orientation 

scores Ubf(x, y, θ). The proposed routine for iteratively reconnecting interrupted curvilinear 

structures based on the completion process is given in Algorithm 1. Fig. 8 shows the pipeline 

of reconnecting the interrupted skeletons based on the kernel convolution process in SE(2) 

group. In Fig. 8(c), line propagation is achieved via the group convolution with the 

completion kernel, and thus all the gaps are very well connected based on their context and 

alignments after completion.

Algorithm 1:

Reconnecting interrupted curvilinear structures via group convolutions with the completion 

kernel in SE(2).

Input: the number of iterations NI, the threshold value Th for binarizing the convolved orientation scores.

Output: curvilinear skeleton with reconnected gaps.

1: for i = 1 to NI do

2:  lift the disconnected skeleton map f (x, y) to the 3D orientation scores Uf using (1), where we choose the number 
of orientations N0 = 32 with 2π-periodicity.

3:  obtain the time-integrated completion kernel R(x, y, θ) using (13).

4:  apply SE(2) group convolutions between Uf(x, y, θ) and R(x, y, θ) using (14), and we set Uf(x, y, θ) ← R(x, y, θ) 
*SE(2) Uf(x, y, θ) to obtain the propagated curvilinear network.

5:  Ub f x, y, θ =
1 Ub f x, y, θ ≥ Th,
0 otherwise.

6:  apply segment-wise thinning (Algorithm 2) on the binarized orientation scores Ubf(x, y, θ) and obtain a new 
binarized skeleton map Sf(x, y). Then we set f ← Sf(x, y).

7: end for

C. Segment-Wise Thinning (SWT) in Orientation Scores

We aim to reconnect all the interrupted skeletons via the iterative group convolution 

procedure. The convection-diffusion process provides structure enhancement and 

information propagation for filling gaps, but also has a blurring effect. It is thus useful to 

impose a morphological thinning operation to sharpen the result after each evolution. 
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However, the classical morphological thinning technique in the 2D image domain often 

causes wrongly connected skeletons at junctions, see Fig. 9(e). These incorrect connections 

are passed through the whole evolution and give imperfect curvilinear networks. To solve 

this issue, we propose the SWT approach by taking the advantage of orientation scores, 

where elongated crossing/bifurcation structures are disentangled into different orientation 

planes with respect to their local directions. First, the 3D morphological components Umc(x, 
y, θ) are obtained from the binarized orientation scores Ubf (x, y, θ). Then, we select each 

binarized component by following

Umc
i x, y, θ : =

1 if Umc x, y, θ = i

0 otherwise
, (15)

where i ∈ {1,…, Nmc} represents the label of Nmc components. Afterwards, we apply 

maximum intensity projection on each 3D component Umc
i x, y, θ  to obtain its corresponding 

2D binary map f i x, y  which can be written as

f i x, y = max
θi ∈ 2π

N ∘ 1, …N ∘
Umc

i x, y, θi .
(16)

The 2D map fi(x, y) of each component is separately thinned and added to the thinning map 

S(x, y). A final map Sf(x, y) is obtained by removing the tiny branches from S(x, y) via 

morphological pruning operation. The detailed SWT process is given by Algorithm 2. We 

apply a thinning operation on each separated line structure. As such, curvilinear crossing 

segments belonging to different groups are thinned without interfering each other. An 

intuitive comparison between classical thinning in 2D and segment-wise thinning in 

orientation scores is presented in Fig. 9.

Algorithm 2:

Segment-wise thinning in orientation scores.

Input: the binarized orientation scores Ubf(x, y, θ).

Output: the 2D skeleton map Sf(x, y).

Initialization: for each point (x, y) ∈ f, set S(x, y) = 0.

1: for i = 1 to Nmc do

2:  extract the binarized morphological component Umc
i x, y, θ  with label i using (15).

3:  calculate the 2D map fi(x, y) of each component Umc
i x, y, θ  via (16).

4:  use morphological thinning operation on fi(x, y) and obtain the thinned component Si(x, y).

5:  update the thinning map S(x, y) ← S(x, y) + Si(x, y).

6:  end for

7:  obtain the final thinning map Sf(x, y) by applying morphological pruning on S(x, y) to remove tiny branches.
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IV. VALIDATION AND EXPERIMENTAL RESULTS

A. Material

In order to obtain an extensive validation-set we artificially create gaps in ground truth 

centerline data, and thereby follow a similar procedure in the validation as in the work by 

Jiang etal. [41] and Forkert et al. [42]. Jiang etal. [41] proposed a method for vascular image 

analysis where the reconnection method is applied on 3D microCT images from a mouse 

coronary arterial dataset with 100 artificial gaps with 2–20 voxel widths. Forkert et al. [42] 

developed a method for solving gap filling problems in 3D microvascular segmentations. 

There, evaluations are performed on the manually segmented Time-of-Flight magnetic 

resonance angiography images, in which also 100 gaps are artificially created to validate the 

connectivity reconstruction.

For the evaluation of the proposed pipeline for bridging the interrupted gaps in curvilinear 

structures, we use two types of ophthalmologic images: retinal fundus images and corneal 

nerve fiber images, as shown in Figs. 10,12–14. The experiments are performed on the 

retinal vessel centerline maps and the corneal nerve fiber maps.

For retinal images, here we choose the publicly available DRIVE [43] and IOSTAR [44] 

datasets for the evaluation of broken segments, and use the HRF [45] for the evaluation of 

missing junctions. The DRIVE dataset contains 40 images with a resolution of 565 × 584 

pixels. The vessels in all the DRIVE images are manually annotated by human observers. 

The IOSTAR dataset includes 24 images with a resolution of 512 × 512 pixels. All the 

vessels are annotated by a group of experts working in the field of retinal image analysis. 

The HRF dataset [45] has 45 images and manual annotations with a resolution of 3504 × 

2336 pixels. We selected 50 typical crossing and bifurcation patches (HRF-Patch) with the 

size of 400 × 400 pixels to validate the missing junctions. We also manually annotated all 

the junction points. The annotations of bifurcations and crossings for all the DRIVE and 

IOSTAR images are available in [46]. For corneal nerve fiber images, we use the dataset 

provided by the Maastricht Eye Hospital, the Netherlands. This dataset contains 30 images 

with a resolution of 1536 × 1536 pixels. In each of the 30 images the nerve fibers were 

manually annotated.

For an extensive and quantitative evaluation of the proposed method, interrupted gaps on 

curvilinear segments and junctions were artificially created in the provided annotations. The 

basic routine is as follows: we removed all the junction points based on the junction 

annotations. Then, we add several gaps to each separated segment, where the number of 

gaps is determined by the length of each segment. The total number of gaps for each dataset 

is shown in Table I. The gap size λ = d × d basically means that a gap is created using a 

binary mask of size d × d whose elements are 1 in a disk-shaped region of diameter d, and 

are otherwise 0. Hence, regardless of the direction of a structure, the d × d mask can always 

create a gap of length d along its orientation.

B. Performance Measurements

To quantitatively evaluate the reconnection of the curvilinear structures, we need to define 

performance measurements to compare the results before and after applying our method. To 
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obtain the number of successfully connected gaps, a success rate (SR) metric is defined by 

SR = (NBP – NAP)/NBP, where NBP and NAP represent the number of gaps before and after 

reconnection, respectively. To precisely confirm that gaps are correctly connected, we check 

each gap position based on the following ground truth masking criterion:

i. For each gap, we extract its missing part from the skeleton ground truth. Then we 

create a mask for each gap by dilating the extracted missing skeleton with 2 

pixels.

ii. Then we check the number of morphological components NB under this mask 

before reconnection and the number NA after reconnection.

iii. If NB = 2 (two endpoints of a gap) and NA = 1 (connected endpoints), we label 

this gap as “correctly connected”. Otherwise, we label it as “wrongly connected” 

and update NAP ← NAP + 1.

The false positive cases mainly locate at the wrongly grown segments outside the gap 

regions and the vessel/fiber endings. Hence, they can be more conveniently evaluated in a 

pixel-based manner. To evaluate the improvement to the whole curvilinear network, we also 

compare the binarized skeletons before and after processing with the ground truth separately. 

We calculate the performance metrics; Sensitivity (Se), Specificity (Sp), Dice coefficient 

(DC) and Matthews correlation coefficient (MCC) in the comparison.

C. Settings

For the low resolution DRIVE and IOSTAR dataset, we choose the completion kernel size as 

32 × 51 × 51, the diffusion parameters D = diag{0,0, D33} with small angular diffusion D33 

= 0.01, and the threshold value Th = 0.23. For the high resolution HRF and corneal nerve 

fiber images with relatively larger gaps, we use the kernel size 32 × 101 × 101 and the 

threshold value Th = 0.1 to allow much faster propagation. Hence, in our experiments we use 

2 iterations to reconnect the gap size of 15 × 15 for the DRIVE and IOSTAR datasets, while 

we use only 1 iteration for the HRF dataset (see Table I). For the other settings, the 

convection parameter is set to |a| = (1, 0, 0) with Δt = Δx to ensure the time steps equal to the 

spatial grid size. The step size for the diffusion process is set to 0.05 to keep the stability. 

The kernel evolution is initialized by a spatially Gaussian blurred spike (recall Section III-

A2) with σs = σ0 = 0.7. The parameters for the Gamma-distribution are fixed as α = 0.2 and 

k = 3 for a fast propagation, and tmax = 50 defines the end time for the time-integration.

D. Validations on the Interrupted Retinal Vessel Segments

The proposed gap reconnection approach is evaluated on the DRIVE and IOSTAR datasets 

with interrupted vessel segments. The gap sizes of 7 × 7, 11 × 11 and 15 × 15 are 

respectively created for the DRIVE images, yielding three gap datasets for validation. In 

total, 4393, 4395 and 4161 gaps are respectively created for the three gap datasets. Using the 

proposed method in Algorithm 1, an iterative reconnection process is applied on the three 

test sets. We use 1 iteration for bridging the gaps of 7×7, and 2 iterations for the gaps 11 × 

11 and 15 × 15, as shown in Table I. We can see that high SR values are achieved on all the 

three sets. This means that most of the gaps are successfully filled after our processing steps. 

The proposed method also obtains high values on performance metrics such as sensitivity 
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(Se), specificity (Sp), MCC and DC, among which the DC and MCC both consider true and 

false positives and negatives in a balanced way. In Table I, the Sp values before processing 

are 1 for all the datasets. This is because the original gap datasets are artificially created 

based on the ground truth images which have zero false positive before processing. Table I 

also shows similar performance measures obtained from the IOSTAR dataset, with 

respectively 1932, 2006 and 1845 gaps for three different gap sizes. The proposed method 

obtains high SR values on all the three cases. In Fig. 10, we give examples of the processed 

images with reconstructed connections.

E. Validations on the Interrupted Retinal Vessel Junctions

Interrupted junctions are challenging cases for the reconnection task and obviously 

overlooked in the literature. One major reason is that the missing junctions have more 

candidate ending points with several connection possibilities. Here we validate the proposed 

method on the HRF-Patch dataset with interrupted junctions of different sizes. Due to the 

complex connections among the ending points, automatic examination of correctly 

connected junctions is often unreliable. An interrupted junction structure generally has 3 

disconnected ending points (for bifurcations) or 4 ending points (for crossings). For 

example, the crossing example shown in the first row of Fig. 11(c) will be wrongly judged as 

a correct case since it has NB = 4 (four ending points of a gap before reconnection) and NA = 

1 (connected ending points) based on a similar ground truth masking criterion as proposed in 

Section IV-B. However, this kind of junction cases can be very easily validated by human 

experts. In this work, we validate the junction reconnection based on the visual judgment of 

two human experts. Only if both of the two experts agree that a reconnection is successful, 

we consider it a correct judgment. Otherwise, we say the reconnection is unsuccessful. The 

criteria for correct and wrong cases of the crossings/bifurcations reconnection are defined in 

Fig. 11.

Table I shows the validation results of the proposed method on gap sizes of λ = 15 × 15, 23 

× 23, 31 × 31 and 39 × 39 for the HRF-Patch dataset. We can observe that among 410 

missing junctions with gap size 15 × 15, 401 of them are successfully connected. The Se, Sp 

DC and MCC are also computed and compared to show the high performance of our 

method. Intuitive examples of the recovered junctions are shown in Fig. 12, where the 

correct reconnections of several challenging interruptions are highlighted with red circles.

F. Validations on the Interrupted Corneal Nerve Fibers

Corneal nerve fibers (see Fig. 13) are complex curvilinear structures with varying contrasts, 

and therefore interruptions appear very often in the segmented fibers. In this validation 

dataset, different gap sizes of λ = 13 × 13, 19 × 19, 25 × 25 and 31 × 31 are created by 

considering the general gap sizes in the automatic corneal nerve fiber segmentation results 

[9]. See Table I, 5278, 5278, 5278 and 4251 gaps are respectively obtained for the four 

cases, among which 5255 (99.6%), 5165 (98%), 4962 (94%) and 3577 (85%) are 

respectively connected after applying our line completion approach.
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G. Validations on the Automatic Segmentation Results

In the previous sections, we evaluate the proposed method on artificially created gaps in 

different image modalities. To demonstrate the reconnection ability of our method on 

realistic cases, we give more specific evaluations of our method on interrupted segments 

from established automatic segmentation results. In Table II, the automatic retinal vessel 

segmentations obtained by Soares et al.’s supervised method [23] on the DRIVE dataset, the 

fiber extraction results obtained by Zhang et al.’s LADOS method [9] on the corneal nerve 

fiber dataset and the retinal vessel segmentations obtained by Sureshjani et al.’s BIMSO 

method [47] on a DRIVE&IOSTAR patch dataset are used to evaluate the performance of 

our proposed algorithm. Those realistic gaps generally range from 5 × 5 to 13 × 13 in 

Soares’ vessel segmentation results, from 4 × 4 to 36 × 36 in LADOS’ fiber segmentation 

results and from 3 × 3 to 14 × 14 in BIMSO’s vessel segmentations. To better evaluate the 

success rate (SR) of our method on realistic cases, we particularly set up the above 

DRIVE&IOSTAR patch dataset by selecting 80 image patches of size 81 × 81 with gaps 

from the BIMSO segmentation results on the DRIVE and IOSTAR datasets. This patch 

dataset mainly includes the relatively large gaps (above 3 × 3) and specific junction cases as 

shown in Fig. 14 for the evaluation, and excludes those small gaps (below 3 × 3) since they 

can be easily recovered by applying the proposed method. Among 199 gaps of all the 

patches, our method successfully bridges 182 of them with two iterations. In Fig. 14, we 

show the qualitative evaluations of different cases from the automatic segmentation results.

V. DISCUSSION

In Table I, three different gap sizes for the DRIVE images are used to evaluate the proposed 

reconnection method. The high success rates (SR) of respectively 98.5%, 96% and 92% for 

the three sets show that most of the gaps are successfully reconnected after applying our 

method. Significant increases of 0.0611, 0.1108, 0.1544 on the Se values can be respectively 

observed on the three gap sizes after processing. The similar performance is also explained 

in the measurements of DC and MCC. The Sp values in both Tables I and II show slight 

decreases because of the small amount of propagation at vessel/fiber endings. In the first row 

of Fig. 10, the DRIVE images have gaps in more crowded curvilinear structures (with an 

average of 104 gaps per image) and are thus more challenging to recover all the gaps. 

Nevertheless, the proposed method is still able to bridge most of the gaps between segments 

(Fig. 10(c) and (d)) effectively without disturbing their neighbors. The blue color in Fig. 

10(d) presents the correct connections, and the black color shows the missing connections. 

We can see that the false negatives (black color) are mainly located at the place where the 

segments are very small or close to junctions, such that the big gaps cannot provide 

sufficient context information for the reconnection. This is also the reason why the obtained 

SR value is 92% for the gap size 15 × 15 compared with the SR of 96% for 11 × 11.

The validation results of the IOSTAR dataset in Table I shows higher SR values than those 

of the DRIVE dataset. This is because the IOSTAR dataset has relatively less small vessels 

and interruptions (with an average of 76 gaps per image). Even for the largest gap size 15 × 

15, significantly higher measurements of Se: 0.9906, Sp: 0.9996, DC: 0.9878 and MCC: 

0.9874 are obtained after being processed by our reconnection method, compared with the 
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values of Se: 0.8354, Sp: 1, DC: 0.9102 and MCC: 0.9118 before the processing. The 

second row in Fig. 10 give the reconnection results from the IOSTAR dataset. One practical 

advantage of the proposed method is that, with the efficient group convolution a large 

number of curvilinear gaps can be easily recovered without a predetection of the broken 

segments.

In Fig. 11, the criteria for correct and wrong connections of missing crossings and 

bifurcations under different conditions are provided. According to that, the human experts 

are able to distinguish a correct/wrong gap completion result easily, as explained in Section 

IV-E. In Table I, all the performance metrics give remarkable improvements after applying 

the proposed reconnection approach on the HRF-Patch dataset. Even for the gap size of 39 × 

39, the Se value increases from 0.7533 before the processing to 0.9552 after the processing. 

In Fig. 12, reconnection results of crossings and bifurcations are given to show the good 

performance of our method. Complex junction structures are very well connected according 

to their local contexts and alignments. This is a quite difficult task due to the amount of 

candidates (endpoints) for reconnection, which is generally larger than for a broken segment. 

In Fig. 12(a)–(c), reconnection on the original patches (400 × 400) is given to show the 

capability of recovering interrupted junction structures. In Fig. 12(d)–(f), examples of 

zoomed image patches (200 × 200) are given to demonstrate the good performance of our 

method on challenging junction cases (under the red circles), where poor context 

information is provided for the reconnection of missing junctions due to the big gaps. 

Nevertheless, our method is still able to bridge those interruptions and achieves a perfect 

junction-preservation, as emphasized in blue color in Fig. 12(d)–(f).

In this work, we also proposed a orientation score based segment-wise thinning (SWT) 

technique (in Section III-C) to deal with the imperfect 2D morphological thinning. This 

SWT technique is particularly useful in producing correct curvilinear skeletons at large 

crossings. In Fig. 12, the SWT technique is applied to thin each complete crossing segment 

separately after the reconnection in orientation scores.

Table I provides the performance measurements on a more complex image modality, i.e. the 

corneal nerve fibers, where the distribution of curvilinear structures is more complicated due 

to the high density and diverse connections. Thus, the reconnection task on corneal nerve 

fibers is more difficult compared to retinal vessels. See examples in Fig. 13. For gap sizes of 

13 × 13, 19 × 19 and 25 × 25 with 5278 gaps, our method recovers respectively 99.6%, 98% 

and 94% connections. The global performance on the whole dataset with gap size 25 × 25 is 

able to reach high values of Se: 0.9743, Sp: 0.9991, DC: 0.9594 and MCC: 0.9589 after the 

reconnection, in comparison with the values of 0.7838, 0.8788 and 0.8839 before the 

processing. For even larger size of 31 × 31 with 4251 gaps, our method can still successfully 

connect 85% of the total gaps and keep high measurements of Se: 0.9665, Sp: 0.9991, DC: 

0.9529 and MCC: 0.9522. In the top row of Fig. 13, we give an example of gap fillings on 

the corneal nerve fibers. We also show a zoomed image patch with size 350 × 450 in the last 

row for better visualization of the reconnection results. We can observe that although the 

gaps in nerve fiber images are close to each other due to the high structure density, our 

method is still capable of bridging those gaps without affecting their neighborhoods.
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Table II and Fig. 14 respectively show the qualitative and quantitative evaluations of the 

proposed reconnection algorithms on realistic segmentation cases. Note that the amount of 

gaps in realistic segmentations are much less compared with the large number of artificially 

created gaps. However, we can still observe remarkable improvement of the Se level from 

0.7097 to 0.7311 on Soares’ segmentation results, from 0.7261 to 0.7887 on LADOS’ 

segmentations and from 0.8660 to 0.9038 on BIMSO’s segmentations. The DC and MCC 

metrics also give higher performance values after applying our reconnection method. Our 

method can successfully fill 182 of 199 gaps (SR: 91.5%) on the DRIVE&IOSTAR patch 

dataset with only two iterations. The performance evaluations on those realistic gap datasets 

show that our method can deal with gaps of different size distributions simultaneously.

In principle, we need more iterations to fill the large gaps, but we also want to reduce the 

amount of iterations to avoid the propagation at vessel/fiber endings. Hence, a reasonable 

number of iterations should be set to achieve the balance between the Se and Sp. The gap 

filling process of our method is mainly determined by both the diffusion constant and the 

number of iterations. For a certain application, we need to first make a rough estimation 

about the average gap size. By considering the average gap size and the image resolution, 

the best practice is that we choose a reasonable diffusion constant D33 such that the average 

gap size is filled after 1 or 2 iterations. Then, we can simply set the number of iterations as 3 

to make sure the large gaps are also connected. The proposed approach can still preserve the 

geometrical properties of curvilinear structures with one or more iterations. We also show 

the convergence of our method by repeating experiments on the DRIVE gap dataset (in 

Table I) using different numbers of reconnection iterations. In Fig. 15, the corresponding 

Matthews correlation coefficient (MCC) performance curve is obtained by evaluating the 

proposed method with different numbers of iterations. We can see that after 1 or 2 iterations, 

the MCC performance remains stable. By increasing the number of iterations to 3 or 4, our 

method still maintains high performance. Therefore, we can always make a proper choice of 

the number of iterations for different image modalities to satisfy the practical requirement of 

the reconnection performance.

The proposed method leads to an efficient gap filling process. The line completion kernel 

can be generated and stored locally in the computer. Hence, the main computational cost of 

our method depends on the selected numbers of orientations in the reconnection process. We 

have evaluated the running time of the reconnection pipeline using Mathematica 11.1 with a 

computer of 3.4 GHz CPU. The time requirement for processing a full retinal image in the 

DRIVE/IOSTAR dataset is about 3.9 seconds for 1 iteration and 7.6 seconds for 2 iterations, 

which are sufficient to reconnect the gaps in our experiments. The computational efficiency 

can be further improved by optimizing the implementation of our method.

VI. CONCLUSION

In this paper, we have proposed an effective and automatic reconnection algorithm for 

bridging the interrupted curvilinear skeletons in ophthalmologic images. This method 

employs the contour completion process in the roto-translation group SE 2 ≡ ℝ2 × S1 to 

achieve line and contour propagation/completion. Experiments are performed on 4 datasets 
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with different image modalities, and the validation results show that the proposed method 

works robustly for the reconnection of complex curvilinear interruptions.
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Fig. 1. 
Segmentation in retinal images (Row 1) and corneal nerve liber images (Row 2) with the 

presence of interruptions, (a) The original patch, (b) the ground truth and (c) the 

segmentation results in row 1 and 2 were obtained from the methods by Soares et al. [23] 

and Zhang et al. [9], respectively.
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Fig. 2. 
Example of grouping line segments in human’s perceptual system, which is in accordance 

with the Gestalt law of good continuation.
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Fig. 3. 
A 2D image with interrupted curves is lifted to the 3D orientation scores with separation of 

crossings. Rotation-invariant operators Φ in the score domain strongly relate to operators ϒ 
in the image domain. The last figure shows the disentangled elongated structures and the 

rotating frame {𝒜1, 𝒜2, 𝒜3}.
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Fig. 4. 
A 3D curve (solid green curve) is obtained by lifting a 2D curve (dashed green curve) into 

the roto-translation group SE(2). The dashed blue contours represent the tangent plane at the 

group elements g and g′.
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Fig. 5. 
Example of the modelings of the stochastic completion kernel and the exact completion 

kernel, (a) Completion process models drawing in one direction to connect the given 

boundary conditions. (b) The x-y projection of the Monte Carlo simulation of the stochastic 

random process for contour completion (50000 paths). (c) The 3D completion kernel 

generated from the exact solution of the Fokker-Planck equation and its projection on 

different planes.
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Fig. 6. 
Examples of the completion process in SE(2) via time integration with negative exponential 

distribution (Row 1) and Gamma distribution (Row 2). Column (a) presents the negative 

exponential distribution with α = 0.05 and Gamma distribution with α = 0.05 and k = 3, 

Column (b) shows the contour plots of the 2D projection of the explicit completion kernel. 

Column (c) gives the 3D “ink propagation” for filling the gaps between two group elements 

g = 51, 2, 29
24π  and g′ = 51, 100, 19

24π , where the Gamma distribution gives better propagation 

and avoids singularities at the origin as shown in (d).
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Fig. 7. 
(a) Example of a 3D completion kernel; (b) Some of the orientation layers of the completion 

kernel.
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Fig. 8. 
The proposed pipeline (Algorithm 1) for bridging the interrupted curvilinear gaps via 

completion process in SE(2). (a) Original skeleton, (b) Data representation and kernel in 

SE(2). (c) SE(2) group convolution, (d) Segment-wise thinning.
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Fig. 9. 
The pipeline of applying the proposed segment-wise thinning (SWT) approach on an image 

patch with crossings, and its comparison with the classical 2D thinning method. (a) and (b) 

Show the original image and its orientation scores, respectively. (c) Shows thinning on the 

separated components/segments in orientation scores. (d) Shows the well-preserved thinning 

results based on the proposed SWT approach, and compared with the classical 2D thinning 

in (d).
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Fig. 10. 
Examples of applying our method on interrupted retinal vessels. Row 1–3: a DRIVE image 

(565 × 584) and two IOSTAR image patches (170 × 150). (a) original images; (b) skeletons 

with gap size 15 × 15; (c) 2D projections after reconnection in orientation scores; (d) 

performance maps, where green represents the original structures, blue indicates the 

correctly recovered gaps, red means the false positives and black represents the missing 

connections.
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Fig. 11. 
Criterion lor determining a correctly/wrongly connected crossing/bifurcation. Green color 

represents the curvilinear skeletons, (a) Original gaps. (b) Example 1. (c) Example 2. (d) 

Example 3. (e) Example 4. (f) Example 5.
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Fig. 12. 
Examples of applying the proposed reconnection method on interrupted retinal vessel 

junctions. (a)–(c) The reconnection process on 3 HRF-Patch images (400 × 400). (d)–(f) 3 

zoomed image patches (200 × 200) for better visualization. Row 1: the original images from 

the HRF-Patch dataset; Row 2: the junctions with gap size λ = 31 × 31; (c) the 2D 

projection after applying the proposed reconnection method; (d) the reconnection 

performance maps, where green represents the original structures, blue indicates the 

correctly recovered junctions. The red circles emphasize the challenging junctions.
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Fig. 13. 
Examples of applying the proposed reconnection method on the interrupted corneal nerve 

fiber skeletons (1536 × 1536). (a) Row 1: the original images with clipped empty 

boundaries, and Row 2: a zoomed patch (220 × 320) for better visualization; (b) the broken 

vessel skeleton map with gap size λ = 31 × 31; (c) the 2D projection after applying the 

proposed reconnection method in orientation scores; (d) the reconnection performance maps, 

where green represents the original structures, blue indicates the correctly recovered gaps, 

red means the false positives and black gives the missing connections.
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Fig. 14. 
Examples of applying the proposed reconnection method on the vessel/fiber segmentation 

results from automatic approaches. Row 1: validation on a segmented retinal image patch 

(115 × 125) obtained by Soares at al.’s method [23]; Row 2: validation on an extracted 

corneal never fiber image patch (260 × 260) obtained by Zhang et al.’s LADOS method [9]; 

Row 3: validation on a segmented retinal image patch (81 × 81) obtained by Sureshjani et 
al.’s BIMSO method [47]. (a) The original images; (b) Binarized skeletons of 

segmentations; (c) the 2D projections after reconnection; (d) the performance maps, where 

green represents the original structures, blue indicates the ture positives, red means the false 

positives and black gives the missing connections.
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Fig. 15. 
The Matthews correlation coefficient (MCC) performance curve obtained by evaluating the 

proposed method on the DRIVE gap dataset (with the gap size 15 × 15) using different 

numbers of reconnection iterations.
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