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Abstract

This book chapter describes the use of droplet microfluidics to phenotype single cells. The basic 

process flow includes the encapsulation of single cells with a specific probe into aqueous micro-

droplets suspended in a biocompatible oil. The probe is chosen to measure the phenotype of 

interest. After incubation, the encapsulated cell turns the probe fluorescent and renders the entire 

droplet fluorescent. Enumerating drops that are fluorescent quantifies the concentration of cells 

possessing the phenotype of interest. Examining the distribution of fluorescence further allows one 

to quantify the heterogeneity among the cell population.

1 INTRODUCTION

Establishing relationship among cell phenotype, gene expression and genotype is critical in 

many fields of biological and clinical research. While cells can share the same genotype, 

gene expression is stochastic and regulated by many processes, including environmental 

factors (Cai, Friedman, & Xie, 2006; Elowitz, Levine, Siggia, & Swain, 2002; Yu, Xiao, 

Ren, Lao, & Xie, 2006). As such, the same genes in different cells often have different 

expression levels. As a result, cells with identical genotypes may have different phenotypes 

(Avery, 2006). It is these differences in gene expressions (and subsequent pathways) that 

make each cell a unique entity, leading to heterogeneity in cellular behavior and other 

observed phenotypes within a genotypically identical population. The ability to quantify and 

measure variations in phenotypes, ideally at the single-cell level, is thus critical to the 

fundamental understanding of cellular mechanisms that govern the link between genotype, 

gene expression, and phenotype (Barkai & Leibler, 2000; Ozbudak, Thattai, Kurtser, 

Grossman, & van Oudenaarden, 2002; Silva & Vogel, 2016). Such understanding is in turn 

important for disease diagnostics and treatment (Heiden, Cantley, & Thompson, 2009; 

Kawasaki, Fujita, Nagaike, Tomita, & Saito, 2017; Singh & Sivabalakrishnan, 2015).

Nevertheless, phenotypic measurements have been performed in bulk cell populations 

traditionally. The ensemble averaged results often mask cell-to-cell differences and the 

presence of different subpopulations (Altschuler & Wu, 2010; Vera, Biswas, Senecal, Singer, 

& Park, 2016). For example, the developmental states of individual Bacillus subtilis cells 

were found to be heterogeneous, but such heterogeneity was masked by population-averaged 

readouts (Kearns & Losick, 2005). Single-cell analysis decomposed the population 

1Corresponding author: sindy@stanford.edu. 

HHS Public Access
Author manuscript
Methods Cell Biol. Author manuscript; available in PMC 2019 November 27.

Published in final edited form as:
Methods Cell Biol. 2018 ; 148: 133–159. doi:10.1016/bs.mcb.2018.09.006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heterogeneity during the growth of B. subtilis bacteria and revealed two alternative 

developmental states during the exponential phase of bacterial growth. Here, the inability to 

identify the heterogeneity in phenotypes can have negative biological and clinical 

consequences in the diagnosis and treatment of diseases.

In order to fully characterize the heterogeneity within a cell population, there has been 

increasing recognition that phenotyping with single-cell resolution is needed. Various 

methods have been developed in recent years that leverage advances in imaging techniques. 

For example, Yang et al. demonstrated the phenotyping of mammalian tissues with single-

cell resolution by observing differences in quantities such as cell protein expression and 

showed that they could distinguish between normal and cancerous cells (Yang et al., 2014). 

The key novelty was in making large volumes of tissue optically clear while preserving 

fluorescent and protein-based signals. This ability allowed them to observe spatial 

differences in phenotypes between cells. Their method included tissue preservation by 

crosslinking the tissue to hydrogel monomers, rapid whole-organism optical clearing using a 

mild detergent, immunolabeling, and cell imaging. In another example, Patsch et al. 

developed an image acquisition platform to track the dynamic phenotype of single cells in 

heterogeneous populations over time for measuring phenotypic heterogeneity in protein 

translocation, proliferation, cell death, and motility (Patsch et al., 2016). By identifying and 

filtering out unrealistic trajectories, they increased data quality without introducing bias to 

track cell-to-cell variation. They showed the ability to track the dynamic phenotype of 

thousands of cancer cells in a heterogeneous population, and to detect subpopulations, 

including early apoptotic events and pre-mitotic cells.

In recent years, microfluidics has emerged as a powerful technology for single-cell analysis. 

For example, Toriello et al. were able to distinguish cells with moderate silencing from cells 

with complete silencing after siRNA knockdown in individual Jurkat cells (Toriello et al., 

2008). Single-cell measurements were enabled by a microfluidic device with single-cell 

capture pads and electrophoresis separation channels for single-cell measurements on the 

variation of mRNA knockdown as a result of siRNA treatment. Recently, droplet-based 

microfluidics has shown to be a promising method for single-cell encapsulation and analysis 

(Zilionis et al., 2017). For example, El Debs et al. demonstrated the screening of hybridoma 

clones with different levels of secreted antibodies with single-cell resolution. Conventional 

hybridoma screens require the generation of immortalized hybridoma cell lines and 

expanding clones in microtiter plates and can take several weeks. In this work, the authors 

replaced this work flow with a droplet-based microfluidic platform consisting of modules for 

the generation, incubation, fusion, and sorting of droplets (El Debs, Utharala, Balyasnikova, 

Griffiths, & Merten, 2012). They were able to reduce the screening time from over several 

weeks to less than a day. The success of this method relied on the compartmentalization of 

individual cells inside drops, which increased the effective concentration of cell-secreted 

molecules inside the drops and thus reduced the time needed to detect the molecules. The 

downstream sorting module in the platform further enabled the separation of cells with high 

antibody expression levels from those that had low levels.

In this book chapter, we describe the methods we have developed based on droplet 

microfluidics to phenotype single cells. We demonstrate the methods via two examples. In 
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both examples, we encapsulate single cells with a reporter or probe (e.g., fluorogenic 

enzyme substrates, live-dead indicators such as alamarBlue) into aqueous micro-droplets 

suspended in a continuous phase of a biocompatible oil. After incubation, the encapsulated 

cell turns the probe fluorescent and renders the entire droplet fluorescent. Enumerating drops 

that are fluorescent quantifies the concentration of cells possessing the phenotype of interest. 

Examining the distribution of fluorescence further allows us to quantify the heterogeneity 

among the cell population. In example 1, the phenotype of interest is the activity of an 

enzyme. We aim to quantify cells expressing BlaC, a β-lactamase specific to Mycobacterium 
tuberculosis, with intended application in the rapid diagnosis of tuberculosis (TB). The 

approach is based on the co-encapsulation of the BlaC-specific fluorogenic probe “CDG-

OMe” and a bacteria sample into micro-droplets. Counting drops that are fluorescent allows 

us to quantify the concentration of cells that express BlaC. Combined with an automated 

droplet counting scheme, our results demonstrate the detection of BlaC-expressing cells at 

concentrations ranging from 10 to 107cfu/mL. Furthermore, the encapsulation of single cells 

in drops maintains the specificity of the detection scheme even when the concentration of 

bacteria that do not express BlaC exceeds those that do by one million-fold. In example 2, 

the phenotype of interest is metabolic function and cellular viability. Here we aim to 

quantify metabolically active Escherichia coli by using alamarBlue, a live-dead redox 

indicator, as the probe, with potential applications in identifying bacteria contamination in 

food, water, and other sources. After the incubation step, drops that contain metabolically 

active cells turn fluorescent. We show that by considering the distribution of fluorescence 

intensity, we can infer the heterogeneity arising from biological cell-to-cell variations or 

from non-biological sources.

2 MATERIALS AND METHODS

2.1 FABRICATION AND DESIGN OF MICROFLUIDIC DROPLET GENERATOR

We fabricated microchannels in poly(dimethylsiloxane) (PDMS) using soft lithography (Xia 

& Whitesides, 1998). The microchannels were rendered hydrophobic by treatment with 

Aquapel (Pittsburgh, PA) to avoid droplet wetting of the wall. Monodisperse droplets of 

diameter ~31 to 52 μm (corresponding volume ~16 to 75 pL) were generated using flow-

focusing microchannels with a volume dispersity <3% (Anna, Bontoux, & Stone, 2003). As 

shown in Fig. 1, the continuous phase was introduced into two side channels, and the two 

dispersed phases were mixed immediately before they were injected into a central channel. 

We used two separate inlets for the two dispersed phases: one for bacterial sample and one 

for the probe to measure the phenotype of interest.

2.2 CONTINUOUS PHASE

We chose to use a fluorinated solvent as the continuous phase due to their chemical 

inertness, gas permeability and biocompatibility (Holtze et al., 2008). Common choices of 

fluorinated solvents for cell-based droplet microfluidics assays include hydrofluoroether 

HFE-7500 (3M) and Fluorinert FC-40 (3M).
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2.3 DROPLET STABILIZER

To stabilize droplets against coalescence, droplet stabilizer was pre-mixed in the continuous 

phase prior to droplet generation. Two common types of droplet stabilizers are surfactants 

and amphiphilic nanoparticles. Both adsorb at the liquid-liquid interface and prevent droplet 

coalescence (Gu, Duits, & Mugele, 2011). Surfactants are most commonly used in current 

droplet-based assays. In order to stabilize water-in-fluorinated oil emulsions, the surfactant 

typically contains a fluorinated tail and a PEGylated headgroup. This type of surfactants is 

shown to be biocompatible and is capable of stabilizing drops against coalescence over a 

period of at least a few months (Holtze et al., 2008). Nevertheless, this type of surfactant is 

also found to mediate inter-drop molecular transport of small, hydrophobic molecules such 

as organic fluorophores. The transport is believed to occur via the reversible adsorption and 

desorption of surfactant molecules at the water-oil interface, and their association and 

transport of small molecules from one drop to the other through the continuous phase (Chen, 

Gani, & Tang, 2012; Gruner et al., 2016). Such transport leads to the cross-contamination of 

droplet contents and destroys assay accuracy (Chen et al., 2012; Litten, Blackett, 

Wigglesworth, Goddard, & Fielden, 2015). Recently, our group has shown that amphiphilic 

nanoparticles, such as partially fluorinated silica nanoparticles, are capable of suppressing 

the inter-drop transport of small molecules due to the irreversible adsorption of the particles 

to the liquid interface (Pan, Lyu, & Tang, 2015; Pan et al., 2014). In example 1 (Section 3), 

we used a biocompatible fluoro-surfactant “EA-surfactant” (RainDance Technologies, 

Lexington, MA), a PEG-PFPE amphiphilic block copolymer (Holtze et al., 2008), as the 

droplet stabilizer. The concentration was 2% (wt/wt) in HFE-7500 as the continuous phase. 

In example 2 (Section 4), we used 60nm fluorinated silica nanoparticles to stabilize the 

drops, because alamarBlue is known to leak from surfactant-stabilized drops into other drops 

(Chen et al., 2012). The concentration of silica nanoparticles was 6% (wt/wt) in HFE-7500 

as the continuous phase (Pan, Kim, Blauch, & Tang, 2016; Pan et al., 2015, 2014).

2.4 DISPERSED PHASES

Probes.—The probes used to measure the phenotypes of interest are typically fluorogenic 

to facilitate the use of standard fluorescence microscopy for the readout of the results of the 

assay. Various fluorogenic probes have been used to indicate the presence and/or activity of 

target molecules, genes, metabolites, and proteins, and cells (Mehrotra, 2016). In this work, 

we used two fluorogenic probes as examples. In example 1 (Section 3), we used a BlaC-

specific fluorogenic enzyme reporter, CDG-OMe, as our probe (Xie et al., 2012). BlaC is a 

β-lactamase specific to M. tuberculosis (Hugonnet, Tremblay, Boshoff, Barry, & Blanchard, 

2009; Ioerger et al., 2010). Previously, it was shown that CDG-OMe demonstrated a 200-

fold increase in fluorescence upon hydrolysis by BlaC (Xie et al., 2012). In example 2 

(Section 4), we used alamarBlue as our fluorogenic probe to measure cell viability. 

AlamarBlue is a cell viability indicator that is converted into a bright fluorescent product by 

metabolically active cells via cellular redox reactions. The fluorescence evolution of 

alamarBlue indicates cellular metabolic activity and has been used previously for the 

detection of a range of live cells including bacteria and mammalian cells (Boedicker, Li, 

Kline, & Ismagilov, 2008; Churski et al., 2012; Yajko et al., 1995).
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Cell sample.—The cell samples used for the two examples were E. coli expressing BlaC in 

2-(N-morpholino) ethanesulfonic acid (MES) buffer (0.1M, pH 6.6) and wildtype E. coli 
(K-12 BW25113) in Luria-Bertani (LB) broth, respectively. In example 1, we also validated 

some of our results using Bacillus Calmette–Guérin (BCG), a strain of attenuated 

Mycobacterium bovis.

2.5 ENCAPSULATION OF CELLS INTO DROPS

By using a sufficiently low cell concentration, we were able to encapsulate single cells into 

droplets as governed by Poisson distribution (Collins, Neild, deMello, Liu, & Ai, 2015). For 

example, when a bacterial solution with a concentration of 106 cells/mL is 

compartmentalized into 50-pL droplets, the average number of cells per drop is given by Eq. 

(1).

λ = 106cells
mL × 50 pL

drop = 0.05 cells/drop (1)

Based on Poisson distribution, we obtain a probability of having k (k = 0, 1, 2, …) cells in a 

single droplet as:

P(k cells in each drop ) = λke−λ

k! = 0.05ke−0.05

k! (2)

P(k = 0 cells in each drop) = 0.050e−0.05

0! = 95.12% (2a)

P(k = 1 cell in each drop) = 0.051e−0.05

1! = 4.76% (2b)

P(k ≥ 2 cells in each drop ) = 1 − 0.050e−0.05

0! − 0.051e−0.05

1! = 0.12% (2c)

Therefore, among the entire droplet population, 95.12% are empty, 4.76% contain a single 

cell, and 0.12% drops contain more than one cell. That is, approximately 97.5% of droplets 

that contain cells have a single cell in the drop. This value is important to note when 

considering the distribution of the probe intensity (see details in Section 4).

2.6 DROPLET INCUBATION

After droplet generation, incubation of the drops is typically needed to allow sufficient time 

for the desired biological actions to take place. Droplet incubation can be either on-chip or 

off-chip. On-chip incubation includes flowing droplets through delay-lines or trapping 

droplets in microfluidic arrays (Frenz, Blank, Brouzes, & Griffiths, 2009; Shembekar, 

Chaipan, Utharala, & Merten, 2016). Due to the small length scale of these on-chip 

incubators, the incubation time is typically on the order of seconds to minutes only. For 
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incubation time on the order of hours to days, off-chip incubation is typically performed by 

collecting the droplets as an emulsion into conventional test tubes, syringes or capillaries 

(Mazutis et al., 2009). Compared with on-chip incubation, off-chip droplet incubation allows 

for the incubation of a larger number of droplets for longer periods of time, but requires the 

reinjection of droplets into another microfluidic channel for subsequent interrogation or 

other manipulations (Shembekar et al., 2016). In such reinjection process, care must be 

taken to avoid the break-up of droplets (Gai, Khor, & Tang, 2016; Gai, Kim, Pan, & Tang, 

2017; Khor, Kim, Schutz, Schneider, & Tang, 2017; Pan, Lyu, & Tang, 2017; Rosenfeld, 

Fan, Chen, Swoboda, & Tang, 2014). In the examples described here, we collected the 

droplets after their generation into Eppendorf tubes and incubated them off-chip for different 

time periods depending on the specific cell strains and probes used.

2.7 DROPLET INTERROGATION

To interrogate droplet content, an analytical measurement step is performed after the 

incubation step, such as bright-field microscopy, fluorescence microscopy, laser induced 

fluorescence, Raman spectroscopy, mass spectrometry, and nuclear magnetic resonance 

spectroscopy (Zhu & Fang, 2013). In our examples, we used fluorescence microscopic 

imaging and photomultiplier tube (PMT) for the interrogation of the fluorogenic probes in 

the drops.

To image the droplets under the microscope, we reinjected the drops from the incubation 

tube into a PDMS well with a height of 30 μm. This height was less than the diameter of a 

drop when spherical and was chosen so that the drops were packed as a monolayer in the 

well. Fluorescence images were subsequently obtained by a 10× microscope objective in an 

inverted optical microscope coupled with an Electron Multiplying Charge Coupled Device 

(EMCCD) camera (Andor Technology, South Windsor, CT). As shown in Fig. 2, we 

normalized all measured fluorescent intensity (Imeasured) using this equation: Inormalized = 

(Imeasured–Imin)/(Imax–Imin). The maximum intensity (Imax) was defined as the intensity 

when the enzymatic reaction was complete (i.e., when the intensity was saturated) at t = 30h. 

The minimum intensity (Imin) was defined as the average intensity in negative drops at t = 

15min. The maximum intensity was the same for all drop sizes, because we used the same 

channel for intensity measurements and the path length for fluorescence measurement was 

fixed.

To count fluorescent drops (Figs. 3–4), we reinjected the drops into a tapered channel 

consisting of a narrow constriction with a cross section of 30μm × 30μm at a flow rate of 

0.6mL/h. The volume fraction of the reinjected drops was about 80%. The width of the 

constriction (30 μm) was less than one droplet diameter (35–70μm) to ensure that the 

droplets passed through the constriction one at a time. Excitation light from a UV lamp was 

focused onto the constriction using a 40 × microscope objective in an inverted microscope 

(Nikon Eclipse TE2000). The fluorescence from the drops was collected from the same 

objective through an emission filter into a photomultiplier tube “PMT” (Hamamatsu product 

number: 56420001). A gain of 13 V was applied to the PMT. We automated the recoding of 

PMT output voltages with a custom LabView script. A voltage peak above the threshold 

value was identified as a fluorescent drop. We quantified the number of fluorescent drops by 
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counting the number of voltage peaks above the threshold value. To set the threshold voltage 

(Vth) to differentiate a fluorescent drop from a non-fluorescent drop, we first measured the 

mean Vnegative  and the standard deviation (σ) in voltage from drops without bacteria 

(“negative drops”). A threshold value was then set atV th = Vnegative + nσ. A value of n = 6 

was used such that < 1 − erf n
2 = 1.97 × 10−9 of the negative drops had a value exceeding 

Vth. Voltage peaks with values V > Vth were counted as a fluorescent drop. Based on the 

detected number of fluorescent drops, the number of cells can then be estimated from 

Poisson statistics using Eq. (3).

Ncell = Nln N
N − N+

(3)

where N+ is the number of fluorescent drops and N is the total number of drops used.

3 EXAMPLE 1. QUANTITATIVE DETECTION OF CELLS EXPRESSING BlaC 

USING DROPLET-BASED MICROFLUIDICS FOR USE IN THE DIAGNOSIS OF 

TUBERCULOSIS

Here, we describe the use of our droplet microfluidics platform for detecting cells expressing 

BlaC, ultimately intended to be used for the detection of TB. To quantify cells expressing 

BlaC, we encapsulated BlaC-specific fluorogenic probe CDG-OMe and the bacteria sample 

in a large number (≥108) of picoliter droplets. The bacteria sample was prepared at a limiting 

dilution such that each drop contained one or no cells (see Section 2.5). We used E. coli 
expressing BlaC as a surrogate to characterize our method and validate some of our results 

using BCG cells. If cells expressing BlaC were present inside a drop, the probe was 

hydrolyzed to render the droplet fluorescent (Fig. 2A).

3.1 FLUORESCENCE DETECTION IN MICRO-DROPLETS

Imaging of drops with the co-encapsulation of B-PER.—The probe CDG-OMe and 

lysis buffer B-PER (Bacterial-Protein Extraction Reagent, Thermo Scientific) were co-

encapsulated with cells into each drop. B-PER enabled the mild extraction of proteins from 

bacteria and was effective in facilitating the transport of the probe to the enzyme here, even 

though the probe was already designed to be cell-permeable. Furthermore, the enzyme 

extracted from bacteria allowed Tokyo Green (the fluorophore of CDG-OMe) to be formed 

outside the cell and render the entire droplet fluorescent. This ability was important in 

facilitating the counting of fluorescent drops using a simple optical setup. We thus used B-

PER in all subsequent experiments.

3.2 RELATIONSHIP BETWEEN DROPLET SIZE AND FLUORESCENCE TURN-ON RATE

Fig. 2 shows the effect of droplet size on the rate of fluorescence increase. For drops that 

contained a cell, the rate of increase in fluorescence intensity increased with decreasing 

droplet size, as expected. We measured the initial rate of fluorescence increase v by finding 

the slope of the initial linear portion of the curves depicted in Fig. 2B. Fig. 2C shows that v 
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scaled nicely with the inverse of droplet volume V, i.e., v~ V–1 This scaling confirms that 

the primary effect of drop size was indeed that of increasing the concentration of the cell 

(and the enzymes) inside the drop. For drops that were 16 pL in volume, the fluorescence 

intensity reached 80% of its maximum value in about 150min for E. coli expressing BlaC 

(Fig. 2B). With our current imaging system, the detection of a positive fluorescence signal 

(defined to be at an intensity level that is three times the standard deviation of the noise 

level) can be achieved in <60min. We further validated our method using BCG in 28-pL 

drops and found that the fluorescence turn-on rate was comparable to that of E. coli 
expressing BlaC (Fig. 2B). The expression level of BlaC in BCG may be different from the 

endogenous BlaC level in Mtb. The actual detection time for Mtb may be different from that 

shown here under similar conditions, but is still expected to be significantly shorter than the 

4–8 weeks lag time required for the culture-based method.

3.3 HIGH THROUGHPUT DETECTION OF FLUORESCENT DROPS

To detect a small proportion of cells within the bacterial sample, it is necessary to count a 

large number of drops. To that end, we reinjected the drops into a tapered channel containing 

a constriction that could fit only one drop at a time. The fluorescence from the drops was 

collected using a photomultiplier tube (PMT). Fig. 3A shows a representative voltage output 

from the PMT. The voltage peaks corresponded to a fluorescent drop. Based on the voltage 

output, the number of BlaC-expressing cells could then be estimated from Eq. (3).

3.4 DYNAMIC RANGE OF OUR METHOD

We counted the number of fluorescent drops using PMT and compared this number with the 

number of cells as detected by standard methods based on optical density measurement 

(NanoDrop) and serial dilutions of the bacteria sample. Fig. 3B shows the linear relationship 

between the measured concentration of cells and the input concentration of cells over the 

range of 10–107cfu/mL. In deriving the concentration of cells from the counted number of 

fluorescent drops, we have accounted for Poisson statistics in the encapsulation of cells in 

drops using Eq. (3). The upper detection limit of our method is bounded by bacteria 

concentration at which all drops become occupied by cells. For droplet volume of 10pL, the 

highest concentration of cells we can detect is approximately 108 cfu/mL, a concentration 

much higher than that needed in practical applications. The lower detection limit of our 

method is, in theory, one fluorescent drop or one cell. At very low concentrations of cells, 

the practicality of our method is limited by the speed of the droplet generation and 

interrogation process (Lyu et al., 2015). For the sample at 10cfu/mL, we used a sample 

volume of 1 mL. At the flow rates used for a single droplet generator, it took about 6h to 

generate the drops, much longer than the incubation time needed for the fluorescence signal 

to turn on. The droplet generation time can be reduced by incorporating parallel droplet 

generators, which have been described by multiple groups where up to 512 parallel 

generators have been reported (Blainey, Milla, Cornfield, & Quake, 2012; Li, Greener, 

Voicu, & Kumacheva, 2009; Nisisako, Ando, & Hatsuzawa, 2012; Nisisako & Torii, 2008; 

Romanowsky, Abate, Rotem, Holtze, & Weitz, 2012). However, the use of a single droplet 

generator here did not change the principle of our method. For the serial interrogation of the 

sample at 10cfu/mL, we counted a total of 1 mL of drops, which took about 1h. Kim et al. 

showed that it is possible to count drops in a massively parallel format at a rate of ~0.25 
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million drops/s (Kim et al., 2015). Given this rate, it would require only 2 min to interrogate 

1 mL of sample. The assay would then be rate-limited by the kinetics of the probe and the 

enzyme.

3.5 SENSITIVITY AND SPECIFICITY OF THE DETECTION SCHEME

Contamination of patient samples with non-Mtb or environmental organisms can lead to 

false positives in the diagnosis. It was recently shown that a healthy lung contains diverse 

microbial communities (Blainey et al., 2012). In patients with pneumonia caused by the 

infection of S. pneumonia, the concentration of S. pneumoniae can exceed 107 cfu/mL 

(Blainey et al., 2012). To differentiate Mtb from other microorganisms and to avoid false 

positives, it is critical that our method is specific only to Mtb, or BlaC. A previous study has 

shown the specificity and sensitivity of our probe CDG-OMe for BlaC versus its close class 

A homologue TEM-1 Bla, as well as versus β-lactamases produced by Pseudomonas, 

Staphylococcus and the environmental mycobacterium M. smegmatis (Xie et al., 2012). 

When the concentrations of BlaC and TEM-1 Bla are the same, the probe CDG-OMe has > 

1000-fold selectivity of BlaC over its close A homologue TEM-1 Bla. In actual patient 

samples, the concentration of Mtb (and thus BlaC) can be many times smaller than that of 

other bacteria. The probe fluorescence intensity for 10cfu of BCG was only 1.2 times higher 

than that of 105 cfu of other bacteria that expressed β-lactamase, including methicillin-

resistant S. aureus (MRSA) (Xie et al., 2012). Based on the enzyme kinetic parameters for 

the hydrolysis of CDG-OMe by BlaC and TEM-1 Bla (Xie et al., 2012), we used a simple 

Michaelis-Menten model to estimate the concentration of TEM-1 Bla above which the 

fluorescence turn-on rate of CDG-OMe by TEM-1 Bla exceeds that by BlaC for a fixed 

probe concentration. Fig. 4A shows that when BlaC is as equally concentrated as TEM-1 

Bla, the probe fluorescence turn-on rate is 3800-fold higher for BlaC than for TEM-1 

Bla(i.e.,
vBlaC

vTEM−1 Bla
≈ 3800, where vBlaC and vTEM–1 Bla are the initial rates of product 

formation, or the rate of probe fluorescence turn-on, in the presence of BlaC and TEM-1 

Bla, respectively). However, this ratio diminishes to 1 when TEM-1 Bla is about 3800-fold 

more concentrated than BlaC. This limited ratio of turn-on rates is a challenge for the 

specific detection of BlaC.

This challenge is overcome in droplet microfluidics when individual cells are 

compartmentalized into droplets. The effective concentration of a single cell in a drop is 

fixed and is determined only by the volume of the drop, even though the bulk concentration 

of non-BlaC expressing cells is many times higher than that of BlaC-expressing cells. The 

use of droplets for single-cell compartmentalization thus allows the original selectivity of the 

probe to be preserved at
vBlaC

vTEM−1Bla ≈ 3800. As Fig. 4B shows, when the probe was used with 

droplet microfluidics, the specificity of probe was indeed maintained in each drop. We were 

able to measure the concentration of E. coli expressing BlaC accurately at 10cfu/mL, when it 

was mixed with E. coli expressing TEM-1 Bla or wild-type E. coli present at 106 times 

higher concentration than E. coli expressing BlaC.
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4 EXAMPLE 2. MEASURING VARIABILITY IN METABOLISM WITH SINGLE-

CELL RESOLUTION

In this example, we encapsulated single E. coli cells with viability probe alamarBlue into 

micro-droplets. We show that the examination of the distribution of fluorescence intensity of 

alamarBlue from the drops gives us information about the heterogeneity arising from both 

biological and non-biological sources.

4.1 FLUORESCENCE DETECTION OF E. coli IN MICRO-DROPLETS

Similar to example 1 in Section 3, in this study, we observed an increase in fluorescence 

intensity in drops containing E. coli over time (Fig. 5A). Fig. 5B shows the distribution of 

droplet intensity after 5, 150, 240 and 420 min of droplet generation.

The detection of a positive signal was achieved in 150min with our imaging system. Because 

of single-cell encapsulation, the fluorescence signal emitted from the drop can be directly 

correlated to the viability and metabolic activity of the cell encapsulated in the drop. Similar 

to example 1, we can enumerate the fluorescent drops and calculate the corresponding 

measured cell concentration by Eq. (3).

4.2 EFFECT OF BIOLOGICAL AND NON-BIOLOGICAL HETEROGENEITY ON 
FLUORESCENCE INTENSITY DISTRIBUTION

As Fig. 5B shows, the distribution of fluorescent signals from the droplets was broad. The 

broad distribution was caused by both biological sources (e.g., cell-to-cell variations and 

stochasticity in metabolism) and non-biological sources (e.g., variations in droplet sizes, 

reagent concentrations and other experimental conditions). Here, we model the results of a 

droplet-based assay that accounts for the effect of biological heterogeneity in cellular 

metabolism based on the conversion of resazurin, the effective component of alamarBlue, to 

the fluorescent product resorufin by metabolically viable cells. We also account for the effect 

of non-biological heterogeneity, such as experimental variations in droplet size and reagent 

concentration. While we focus on a droplet-based assay here, we note that this analysis can 

be useful in the analysis of heterogeneity in typical well-plate assays as well.

4.2.1 Reaction model for the conversion of resazurin to resorufin—Viable cells 

turn resazurin into resorufin, which is more fluorescent than resazurin. The equation for a 

simplified model of the reaction can be written as Eq. (4).

A + cell B + cell (4)

where A is resazurin and B is resorufin. We model this reaction with three reaction equations 

Eqs. (5–7).

d[B]
dt = k1[A][cells] (5)
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d[A]
dt = − d[B]

dt (6)

[cells] = [cells]02t f
(7)

For simplicity, we assume second-order kinetics for the conversion of resazurin to resorufin. 

We also assume that cell doubling frequency f is independent of the concentration of 

resazurin, resorufin, or any other chemical, and that cells are in log phase and do not reach 

an equilibrium cell concentration.

Our model can be further simplified if we assume a uniform concentration of chemicals 

within the drop. In drops that are not moving, mixing occurs primarily due to diffusion. If 

diffusion occurs more quickly than the reaction, we can assume the droplet is well mixed. To 

test this assumption, we calculate the dimensionless Damkhöler number, Da. We define Da 

for our system in Eq. (8).

Da = diffusion time
reaction time =

r2
D

k1[ cells ] −1 = r2

D k1[ cells ] (8)

For the reaction time, we used cell concentration instead of resazurin concentration because 

the cell concentration is typically lower than that of resazurin and is therefore expected to be 

rate-limiting. For this calculation, we use a typical drop radius of r = 10μm, a diffusion 

constant of D = 10−10 m2/s, and assume 1 cell per drop. We also estimate k1 from published 

reaction kinetics plots to be approximately 10−16 m3/(cells/s) (Al-Nasiry, Geusens, 

Hanssens, Luyten, & Pijnenborg, 2007) Plugging these parameters into Eq. (8) gives Da 

~10−2, indicating that the reaction is limiting and that we can assume the drops are well-

mixed via diffusion compared with the reaction time scale. This assumption holds for several 

hours, until 1 cell has divided into many cells such that Da approaches 1. Here, we have not 

accounted for convection in the drops which always occurs if the drops are in motion 

(Leong, Gai, & Tang, 2016). Such convection should further decrease Da. On the other hand, 

for faster reaction conditions, physical mixing of the vessel containing the droplets may be 

necessary to create the conditions required for well-mixed droplets.

We now solve for the analytical solution to Eqs. (5–7). [A](t) can be immediately solved 

after plugging in for the initial concentration of cells, [cells]0, and defining k =
k1

ln(2)  to give 

Eq. (9).

[A](t) = c1exp
−k[cells]02 f t

f (9)
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where c1 =
[A]0

exp −
k[cells]0

f

 ,given by the boundary condition [A](t = 0) = [A]0. The solution 

for [B](t) then follows using the boundary conditions of [B](t=0) = 0 to give Eq. (10).

[B](t) = [A]0 − c1exp
−k[cells]02 f t

f (10)

We plot the results of this equation in Fig. 6 for different values of k, f, and [cells]0. From 

Eq. (10), we can also see that the concentration of B (i.e., resorufin) is most sensitive to f, 
the cell division frequency. This result is expected because the concentration of one of the 

reactants—the cells here—is increasing exponentially over time at a rate which depends on 

f. This increase in cell concentration can then make up for the decrease in reactant and yield 

a higher reaction rate than a typical second-order reaction with both reactant species 

decreasing over time.

The readout for resorufin concentration in our experiments is fluorescence intensity. The 

concentration of resazurin and resorufin can be related to fluorescence intensity via the Beer-

Lambert law in Eq. (11).

I = l εA[A] + εB[B] (11)

where I is the fluorescence intensity, l is the optical path-length, and εi is the wavelength-

dependent molar fluorescence coefficient of species i. Because we measure the drop 

fluorescence in wells with a height smaller than the droplet diameter, the pathlength l is 

fixed. Using data from the literature Perrot, Dutertre-Catella, Martin, Warnet and Rat (2003), 

we estimate the ratio between the fluorescent coefficients of resazurin and resorufin to be 

1:10.

4.2.2 Biological and non-biological heterogeneity—The broad distribution or the 

heterogeneity in fluorescence intensity among the drops can be explained by two factors: (1) 

biological heterogeneity among the cells and/or (2) non-biological heterogeneity among the 

drops.

Biological heterogeneity can arise from differences in genotype and phenotype among 

encapsulated cells. This heterogeneity can lead to variations in cellular metabolic rate and 

division rate. In our reaction model, varying k and f represents cells having different 

metabolic rates and division rates.

Non-biological heterogeneity can arise from differences in droplet size, the initial number of 

cells encapsulated in each drop, and/or chemical concentration inside the drop. For our flow-

focusing droplet generation system, the variability in drop volume is <3% typically (Pan et 

al., 2017). The number of cells per drop is determined by Poisson distribution as detailed in 

Section 2.5. For an initial bacterial concentration of 5 × 105cells/mL compartmentalized into 

61 pL drops, approximately 98.48% of the drops that contain cells contain a single cell, 
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whereas 1.52% of the them contain 2 or more cells. In a droplet generation system similar to 

ours which mixes reactants immediately prior to their encapsulation in droplets, a variability 

of 0–5% in reactant concentration in droplets was reported (Song & Ismagilov, 2003). This 

variability likely arises from fluctuations in the flow rates of the two dispersed phases due to 

mechanical fluctuations from the syringe pumps.

To account for both biological and non-biological heterogeneities, we included the following 

as input parameters in our model: (1) A cell-to-cell biological variability in k and f from 0% 

to 10%, assuming a normal distribution. (2) A variability in drop volume from 0% to 3%, 

and a variability in reactant concentration from 0% to 5%. We assumed a normal distribution 

for these two variations. (3) The number of cells in each droplet was determined by a 

Poisson distribution with a mean of 0.05 cells per drop.

4.2.3 Results of model accounting for biological and non-biological 
heterogeneity—Fig. 7 shows the results of the effects of biological and non-biological 

heterogeneity on the distribution of droplet fluorescence in our model. We first consider the 

case when all drops that contain cells have exactly a single cell in them (Fig. 7A–C). This 

case is useful to illustrate the effect of biological and non-biological heterogeneity, since 

only a small fraction of drops contain more than one cell, and new methods have been 

reported to beat Poisson statistics and further decrease the fraction of drops that contain 

more than one cell (Kamalakshakurup & Lee, 2017).

In absence of any heterogeneity (Fig. 7A(i)), each fluorescence peak corresponds to 0 or 1 

cells and the number of drops in each peak is determined by Poisson distribution. In the 

presence of biological heterogeneity only (Fig. 7A), as biological heterogeneity increases 

(by increasing the variability in metabolic rate k and doubling frequency f from 0% to 10%), 

the width of the fluorescence peak increases. Measuring the standard deviation in the 

fluorescence intensity gives a quantitative measure of the biological heterogeneity in the 

absence of non-biological heterogeneity. In the presence of non-biological heterogeneity 

only (Fig. 7A(i), B(i), and C(i)), a similar trend is observed. As non-biological heterogeneity 

increases (by increasing the variability in droplet volume V from 0% to 3% and reactant 

concentration [A]0 from 0% to 5%), the width of the fluorescence peak increases. In the 

absence of biological heterogeneity, measuring the standard deviation in the fluorescence 

intensity gives a quantitative measure of the non-biological heterogeneity.

In most practical applications, both biological and non-biological heterogeneity are present. 

In these cases, measuring the width of the fluorescence peaks alone is insufficient to 

differentiate the contribution from biological and non-biological heterogeneity. If we are 

interested in measuring biological heterogeneity using droplets, it is critical to first 

characterize or reduce the non-biological heterogeneity. Table 1 shows that when biological 

heterogeneity is low (i.e., variability in k = 3% and variability in f= 3%), the system is very 

sensitive to variability in drop size. For this case, increasing the variability in drop volume 

from 0% to 3% increased the measured variability in fluorescence by 14% (standard 

deviations of 6.83 ± 0.17 and 7.82± 0.12, respectively). On the other hand, when biological 

heterogeneity is increased to 10% (i.e., variability in k = 10% and variability in f= 10%), the 

system is less sensitive to variability in drop size. For this case, increasing the variability in 
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drop volume from 0% to 3% does not increase the measured fluorescence variability 

(standard deviations of 23.03 ± 0.33 and 22.79 ± 0.11, respectively). If the drop volume 

variability is further increased to 10%, the measured fluorescence variability is increased 

significantly (26.98 ± 0.72). Therefore, if the variability in drop size is small compared with 

biological heterogeneity, variability in drop size is expected to have insignificant effect on 

the measured fluorescence variability. A similar effect is expected if the non-biological 

variability arises from variations in reactant concentration.

Next, we consider the case where the drops that contain cells can have one or more cells in 

them according to Poisson statistics. Fig. 7D shows that when biological and non-biological 

heterogeneity are low, drops containing more than one cell are easy to distinguish. However, 

when biological and non-biological heterogeneities are increased (Fig. 7D(iii)), it becomes 

increasingly difficult or impossible to distinguish between drops containing one and two 

cells. In this case, the measured heterogeneity, represented by the standard deviation in the 

fluorescence distribution, is higher than the actual heterogeneity.

4.2.4 Prediction of biological heterogeneity with known non-biological 
heterogeneity—In cases where both biological and non-biological heterogeneity exist, it 

is possible to calculate the contribution from biological heterogeneity using the propagation 

of uncertainty if all sources of non-biological heterogeneity are known. In general, the 

overall uncertainty ωR in result R can be calculated using Eq. (12).

ωR = ∂R
∂x1

ω1
2

+ ∂R
∂x2

ω2
2

+ … + ∂R
∂xn

ωn

2 1/2
(12)

where x1 through xn are the set of independent variables and ω1 through ωn are the 

uncertainties of the independent variables (Holman & Gajda, 2001). Of importance is that 

the effect of each independent variable on the overall result R must be well-characterized or 

modeled in order for the derivatives to be obtained. In this equation, the uncertainty is 

equivalent to the standard deviation of the variable, assuming a normally distributed error.

In our system, the result of interest R is the fluorescence intensity of the drop, I. Eq. (11) can 

be expanded to give the fluorescence intensity as a function of our independent variables V, 

[A]0, k, and f, assuming 1 cell per drop [cells]0 = 1
V  in Eq. (13).

I = l εA − εB c1exp −k2 f t

f V + εB[A]0 (13)

The uncertainty in the droplet fluorescence can then be written as:

ωI = ∂I
∂V ωV

2
+ ∂I

∂[A]0
ω[A]0

2
+ ∂I

∂k ωk
2

+ ∂I
∂f ω f

2 1/2
(14)
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For each case plotted in Fig. 7A–C, the uncertainty ωI was calculated from the uncertainty 

in V, [A]0, k, and f. Fig. 8 shows that, as expected, the calculated uncertainty and the 

measured standard deviation in droplet fluorescence (for the drops with 1 cell from Fig. 7A–

C) had a perfect correlation (R2 = 1). This result indicates that each droplet is analogous to a 

separate experimental measurement, and that the distribution in droplet fluorescence can be 

understood as the uncertainty in the fluorescence due to the combined uncertainty (or 

heterogeneity) in each independent variable.

We then look at whether biological heterogeneity could be predicted from known values of 

non-biological heterogeneity, ωV and ω[A]0, and overall measured fluorescence 

heterogeneity ωI. Here, we focus on biological heterogeneity due to the conversion of 

resazurin to resorufin only, i.e., ωk is finite and unknown, and assume ωf = 0 in Eq. (14), 

which could occur if the cell is arrested to not divide over the length of the experiment. This 

gives an equation for ωk,calc in Eq. (15).

ωk, calc =
ωI

2 − ∂I
∂V ωV

2 − ∂I
∂[A]0

ω[A]0

2

∂I
∂k

2

1/2

(15)

Table 2 shows the values for ωk,calc calculated using Eq. (15), the measured standard 

deviation in fluorescence intensity (ωI) (Fig. 7A–C), and known non-biological 

heterogeneities (i.e., known ωV and ω[A]0). Table 2 also shows the actual value of ωk, which 

was the standard deviation we input into the model in Fig. 7. As expected, the calculated 

ωk,calc matched exactly with ωk for ωf = 0. However, for cases where ωf is finite, the 

extraction of the contribution from the different sources of biological heterogeneity will be 

more difficult, unless the sources can be controlled or measured separately.

4.2.5 Limitations of our model—A first limitation is that, as long as the drops do not 

leak (Chen et al., 2012; Pan et al., 2015, 2014), the heterogeneity in fluorescence is expected 

to vanish at the end point when all resazurin is converted to resorufin. For applications that 

aim to quantify biological heterogeneity, the fluorescence distribution must be measured 

before any drops have completely converted resazurin to resorufin. For applications that aim 

to quantify the number of cells instead of quantifying biological heterogeneity, performing 

the measurement after the assay has reached the end point will generate a more accurate 

result than at an earlier time point, but at the expense of increased assay time. A second 

limitation of our model is that we have not considered any side reactions. Side reactions 

between cell media and the reactant could increase the non-biological heterogeneity. 

Complex media containing cell remnants, such as LB, appear to be more likely to cause side 

reactions. We found that in our system, resazurin reacts with certain components in LB, 

leading to a small but measurable increase in the heterogeneity as can be seen from the drops 

which don’t contain cells in Fig. 5B. A third limitation of our model is that we assumed 

second-order rate kinetics only. To fully capture the reactions, more complex models may be 

necessary such as those that account for the effect of cell concentration, nutrient density of 

the media, and the effect of chemicals or antibiotics on division rate. For example, oxygen 
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concentration may vary between drops, which would be expected to affect the metabolic and 

division rates of the cells. This variation in oxygen concentration could in turn lead to an 

undesirable increase in biological heterogeneity. Further development of the model should 

account for these limitations in order to accurately quantify the fluorescence distribution in 

droplets to elucidate the underlying heterogeneity.

5 CONCLUSIONS

We have described a droplet-based microfluidic method for the quantification of phenotype 

in single cells. The key advantages of our method are (1) the ability to enumerate cells with 

a lower detection limit of 10cfu/mL; (2) independence of the results on bacteria growth and 

low susceptibility to the risk of contamination compared with culture-based methods (Tortoli 

et al., 1999); (3) preservation of the specificity of the probe regardless of the fraction of 

target cells present in the sample; and (4) the ability to extract the biological and non-

biological heterogeneity by examining the distribution of fluorescence intensity from the 

drops. Our method is applicable to phenotyping different cells as long as a specific probe is 

available. For further analysis and mapping between genotypes and phenotypic results, our 

method can be integrated with droplet sorting and single-cell sequencing (Baret et al., 2009; 

Cao et al., 2013; Grun & van Oudenaarden, 2015; Lasken, 2012; Zilionis et al., 2017).
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FIG. 1. 
Scheme of the microfluidic process flow consisting of three parts: (i) Droplet generation and 

compartmentalization of the bacterial sample with probe. (ii) Incubation of the drops for 

sufficient time for fluorescence to turn on. (iii) Detection of fluorescence from the drops.
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FIG. 2. 
(A) Images of selected droplets containing E. coli expressing BlaC with CDG-OMe and B-

PER, after an incubation period of 15, 40, and 80min, respectively. (B) Fluorescence signal 

from drops of various volumes containing a single cell of E. coli expressing BlaC, and drops 

of 28pL containing BCG. Each data point represents the mean intensity value collected from 

at least 10 drops. The height of the error bars represents one standard deviation from the 

mean. The intensities were normalized to the saturating intensity when the enzymatic 

reactions were complete. (C) Initial rate of fluorescence turn-on as a function of droplet 

volume for the data presented in (B). The line is a fitted curve to the data.
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FIG. 3. 
(A) Fluorescence signal collected from drops generated from a sample containing E. coli 
expressing BlaC at a concentration of 106cfu/mL after 3h of incubation. The nine arrows 

indicate the fluorescent peaks that correspond to nine fluorescent drops detected. The signal 

was obtained from a photomultiplier tube using the setup outlined in Fig. 1(iii). (B) Linear 

relationship between the experimentally measured bacteria concentration and the input 

bacteria concentration. Each data point represents the mean value collected from at least 

three experiments. The height of the error bars is less than that of the data point markers.
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FIG. 4. 
(A) The calculated ratio of fluorescence turn-on rate of probe CDG-OMe by BlaC (vBlaC) 

and by TEM-1 Bla (vTEM-1 Bla), when BlaC and TEM-1 Bla are mixed at different ratios 

([TEM-1 Bla]/[BlaC]). When [TEM-1 Bla]/[BlaC] ~ 103, the turn-on rate of CDG-OMe by 

BlaC equals that by TEM-1 Bla. The graph is calculated based on kinetic parameters of 

CDG-OMe by BlaC and TEM-1 Bla, respectively. (B) Measured concentration of E. coli 
expressing BlaC using droplet microfluidics in three separate experiments: (i) 10cfu/mL E. 
coli expressing BlaC (“E. coliBlaC”) in MES buffer, (ii) 10cfu/mL E. coli expressing BlaC 
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mixed with 107cfu/mL E. coli expressing TEM-1 Bla (“E. coliTEM-1 Bla”), and (iii) 

10cfu/mL E. coli expressing BlaC mixed with 107cfu/mL wild-type E. coli (“E. coliWT”). 

The height of each bar represents the mean concentration collected from at least three 

experiments. The height of the error bars represents one standard deviation from the mean.
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FIG. 5. 
Fluorescence of drops containing E. coli overtime. (A) Fluorescence images of droplets 

generated from a bacterial sample and alamarBlue after an incubation period of (i) 0min and 

(ii) 150min. The droplet with higher fluorescence intensity than other drops in (ii) contained 

E. coli. (B) The distribution of alamarBlue fluorescence intensity from droplets after 

different incubation times. The left axis is for the data represented in blue bars, and the right 

axis is for the data represented in orange bars.
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FIG. 6. 
Concentration of resorufin versus time from our reaction model. Dashed lines denote the 

equilibrium time or end point for the reaction. Both cases plotted on the green curve have the 

same analytical solution.

Lyu et al. Page 26

Methods Cell Biol. Author manuscript; available in PMC 2019 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 7. 
Results of our reaction model in droplets, assuming heterogeneity between drops in cell 

biology, drop volume, and initial reactant concentration. Percentages in legend refer to 

heterogeneity normalized to the mean value. (A) Biological heterogeneity only. (B) 

Biological heterogeneity with 3% heterogeneity in drop volume. (C) Biological 

heterogeneity with 3% heterogeneity in drop volume and 5% heterogeneity in initial reactant 

concentration. All cases assume a Poisson distribution of cells in drops with 5% of the drops 

containing a single cell. Column (i) k=0%, f=0%, Column (ii) k=3%, f=3%, Column (iii) 
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k=10%, f=10%. For (A) through (C), we did not plot drops with >1 cell. (D) Increasing 

biological and non-biological heterogeneity affect the ability to distinguish between drops 

containing 1 and 2 cells.
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FIG. 8. 
Uncertainty in fluorescence calculated from Eq. (14), ωI, compared with the heterogeneity 

of droplet fluorescence measured from Fig. 7A–C.
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Table 1

Standard Deviation of Droplet Fluorescence as a Function of Biological and Drop Volume Heterogeneity

Biological
Heterogeneity

Drop Volume
Heterogeneity

Standard Deviation of Droplet
Fluorescence

3% 0% 6.83 ± 0.17

3% 7.82 ± 0.12

10% 0% 23.03 ± 0.33

3% 22.79 ± 0.11

10% 26.98 ± 0.72

Increasing biological heterogeneity decreased the effect of drop volume heterogeneity on the distribution of fluorescence in drops. Data averaged 
from three simulations.

a
Statistical significance, P<0.01.
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Table 2

Calculated Biological Heterogeneity ωk,calc Using Eq. (15), Assuming ωf = 0

ωk/k (%) ωV/V (%) ω[A]0/[A]0 (%) ωI/I(%) ωk,calc/k (%) Error (%)

0 0 0 0 0 0

3 0 0 1.62 3 0

10 0 0 5.41 10 0

0 3 5 5.26 0 0

3 3 5 5.50 3 0

10 3 5 7.54 10 0

Error is defined here as the difference between ωk,calc and ωk.
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