
PINK1/Parkin Influences Cell Cycle by Sequestering TBK1 at 
Damaged Mitochondria, Inhibiting Mitosis

Shireen A. Sarraf1,8, Dionisia P. Sideris1,8, Nikolaos Giagtzoglou2,9, Lina Ni3, Mark W. 
Kankel4, Anindya Sen2,10, Lauren E. Bochicchio5, Chiu-Hui Huang1, Samuel C. 
Nussenzweig1, Stuart H. Worley3, Paul D. Morton6, Spyros Artavanis-Tsakonas2,7, Richard 
J. Youle1, Alicia M. Pickrell1,3,11,*

1Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, 
Bethesda, MD 20892, USA

2Pathway Discovery Laboratory, Biogen, Inc., Cambridge, MA 02142, USA

3School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 
24061, USA

4Neuromuscular & Movement Disorders, Biogen, Inc., Cambridge, MA 02142, USA

5Translational Biology, Medicine, and Health Graduate Program, Virginia Polytechnic Institute and 
State University, Roanoke, VA 24016, USA

6Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia 
Polytechnic Institute and State University, Blacksburg, VA 24061, USA

7Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA

8These authors contributed equally

9Present address: AMGEN, Neuroscience, Cambridge, MA 02142, USA

10Present address: Prevail Therapeutics, New York, NY 10016, USA

11Lead Contact

SUMMARY

PINK1 and Parkin are established mediators of mitophagy, the selective removal of damaged 

mitochondria by autophagy. PINK1 and Parkin have been proposed to act as tumor suppressors, as 

loss-of-function mutations are correlated with enhanced tumorigenesis. However, it is unclear how 
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PINK1 and Parkin act in coordination during mitophagy to influence the cell cycle. Here we show 

that PINK1 and Parkin genetically interact with proteins involved in cell cycle regulation, and loss 

of PINK1 and Parkin accelerates cell growth. PINK1- and Parkin-mediated activation of TBK1 at 

the mitochondria during mitophagy leads to a block in mitosis due to the sequestration of TBK1 

from its physiological role at centrosomes during mitosis. Our study supports a diverse role for the 

far-reaching, regulatory effects of mitochondrial quality control in cellular homeostasis and 

demonstrates that the PINK1/Parkin pathway genetically interacts with the cell cycle, providing a 

framework for understanding the molecular basis linking PINK1 and Parkin to mitosis.

Graphical Abstract

In Brief

Sarraf et al. use mouse and fly genetics to discover that PINK1 and Parkin influence cell cycle 

progression. Mitophagy and mitosis independently activate TBK1 at damaged mitochondria and 

centrosomes, respectively, influencing whether the cell will address mitochondrial quality control 

or progress with proliferation.

INTRODUCTION

Parkin and PINK1 promote the removal of dysfunctional mitochondria, a process termed 

mitophagy, by specifically targeting damaged mitochondria for lysosomal degradation 

(Pickrell and Youle, 2015). Loss-of-function mutations and deletions in PINK1 and Parkin 
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have been associated with multiple forms of cancer, indicating that both proteins are possible 

tumor suppressors. Pathogenic PINK1 germline variants predispose individuals to high-risk 

neuroblastomas (Pugh et al., 2013). PARK2, the gene that encodes Parkin, resides within a 

common fragile site at chromosome 6q26 (Mitsui et al., 2010). Parkin mutations and 

deletions have also been identified in sporadic colorectal cancer, glioblastomas, and other 

cancer types (Poulogiannis et al., 2010; Veeriah et al., 2010). Previous literature has 

proposed mechanisms by which PINK1 and Parkin independently influence the cell cycle, 

but these studies did not consider mitophagy (Bernardini et al., 2017). PINK1’s known roles 

include activation of inactive cytosolic Parkin upon mitochondrial damage, while in the 

absence of mitochondrial damage, PINK1 is constitutively degraded and thus unable to be 

contribute to cellular processes occurring in the absence of mitochondrial damage (Pickrell 

and Youle, 2015). Therefore, we hypothesized that both PINK1- and Parkin-mediated 

mitophagy must influence cell cycle progression, albeit directly or indirectly.

During mitophagy, PINK1 and Parkin trigger the translocation and activation of Tank 

Binding Kinase 1 (TBK1) to damaged mitochondria (Heo et al., 2015; Lazarou et al., 2015; 

Moore and Holzbaur, 2016; Richter et al., 2016). TBK1 phosphorylates autophagy receptors 

at the mitochondria to promote binding between the developing autophagosome and 

damaged mitochondria (Heo et al., 2015; Lazarou et al., 2015; Moore and Holzbaur, 2016; 

Richter et al., 2016). Our data demonstrate that TBK1 acts at both the damaged 

mitochondria during mitophagy and at centrosomes, where it is activated and necessary 

during mitosis. We show that both PINK1 and Parkin genetically interact with tumor-

suppressing genes and uncover that PINK1/Parkin-mediated activation of TBK1 causes its 

sequestration at damaged mitochondria, thus blocking TBK1’s ability to participate in cell 

cycle progression.

RESULTS

PINK1 and Parkin Genetically Interact with DNA Damage Cell Cycle Checkpoint Proteins

Ataxia telangiectasia mutated (ATM) is a serine threonine kinase activated in response to 

DNA damage, hypoxia, and oxidative stress that results in the phosphorylation of hundreds 

of targets involved in cell-cycle arrest, DNA repair, and apoptosis and senescence (Maréchal 

and Zou, 2013). Several reports also support the notion that loss of ATM leads to 

mitochondrial dysfunction (Eaton et al., 2007; Schroeder et al., 2013; Valentin-Vega et al., 

2012). This observation led us to hypothesize that ATM and Parkin may function together in 

regulating mitochondrial responses to stress. To further explore this possibility, we 

undertook a genetic approach crossing ATM-knockout (KO) and Parkin-KO mice to 

investigate the effect of loss of ATM on Parkin-mediated phenotypes.

Parkin-KO mice are viable, with no overt phenotypes, neuro-degeneration, or reduced 

lifespan (Goldberg et al., 2003). ATM-KO mice are also born viable, but half of the mice 

develop thymic lymphomas after 3 months of age (Barlow et al., 1996). Because both of 

these genetic mutant murine lines are healthy at birth, it was unanticipated that mice with a 

combinatory loss of ATM and Parkin were found at sub-Mendelian ratios, indicating a 

synthetic lethality (Table 1; Figure S1). In order to more readily explore genetic interactions 

of the ATM and Parkin pathways, we confirmed this finding in Drosophila.
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We crossed the park25 mutant fly with a combination of ATM mutant fly lines harboring 

various point mutations (Table 2). Flies homozygous for the STOP codon mutations (ATM3/

ATM3 and ATM6/ATM6) are lethal (Pedersen et al., 2010). Hence, we made combinatory 

fly lines to disrupt ATM. As in the mouse, these crosses resulted in a synthetic lethality, 

resulting in fewer double-mutant pupae hatching when both alleles were mutated (Table 2). 

PINK1 and Parkin reside in the same pathway to control mitophagy and were also shown 

with epistasis experiments in Drosophila (Clark et al., 2006; Park et al., 2006; Poole et al., 

2008). This interaction with ATM extended to PINK1 as heteroallelic combinations of 

Pink1B9 ATM flies also eclosed below the expected number of progeny (Table 2).

The Loss of ATM Does Not Affect PINK1 Accumulation or Parkin Translocation upon 
Mitochondrial Damage

The HCT116 cell line expresses endogenous ATM and Parkin, maintains an intact p53 

response, and has been extensively used to study Parkin-mediated mitophagy (Sarraf et al., 

2013; Yamano et al., 2014). To test whether ATM and PINK1/Parkin were directly 

interacting, we generated ATM-KO HCT116 cells using CRISPR (Table S1). Using this cell 

line, we probed the effects of ATM loss on PINK1/Parkin in the context of mitochondrial 

dysfunction.

Mitochondrial damage induced by an antimycin A and oligomycin A cocktail (OA) caused 

Parkin translocation and PINK1 accumulation as expected (Lazarou et al., 2015) and was 

completely ATM independent (Figures S2A–S2C). Mitochondrial damage did not induce 

autophosphorylation and activation of ATM (Figure S2C). These results were confirmed in 

healthy human and ATM patient fibroblast lines (Figure S2D). In conclusion, Parkin-

mediated mitophagy was uninhibited in the absence of ATM, and the loss of ATM was not 

sufficient to trigger Parkin translocation without exogenous mitochondrial damage.

Given that ATM had no role upstream of Parkin, we examined events downstream of PINK1 

accumulation and Parkin translocation. In cells stably expressing tagged Parkin, prolonged 

treatment with OA showed that the presence or absence of ATM had no effect on the 

degradation of Mfn2, a Parkin substrate (Sarraf et al., 2013) (Figure S2E). The accumulation 

of p62, an autophagy receptor protein, and the lipidation of the autophagosomal protein LC3 

occurred with OA treatment, indicating normal progression of mitophagy in the absence of 

ATM (Figure S2F). The loss of inner membrane mitochondrial proteins (COXII and Tim23) 

and absence of GRP75, a mitochondrial matrix protein, suggested completion of mitophagy 

in both cell lines with prolonged OA treatment (Figure S2G); thus, loss of ATM did not 

influence Parkin-mediated mitophagy.

We then tested whether the loss of PINK1 or Parkin affected nuclear DNA damage 

signaling. We confirmed using western blot that our ATM-KO HCT116 cells displayed a 

typical response to etoposide (Figure S3A). We generated Parkin-KO and PINK1-KO 

HCT116 (Table S1; Figures S3B and S3C) to compare genotypes. We used a homologous 

recombination (HR) reporter construct (DR-GFP) and a non-homologous end- joining 

(NHEJ) reporter construct (EJGFP) to test whether DNA damage repair was inhibited when 

the PINK1-Parkin pathway was disrupted (Figure S3D). In brief, DR-GFP or EJGFP cannot 

express GFP fluorescence unless an SceI restriction site is recombined through HR or NHEJ 
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(Bennardo et al., 2008; Pierce et al., 1999) (Figure S3D). We found that PINK1 and Parkin 

did not have an impact on HR (Figure S3E). The loss of ATM in wild-type cells resulted in 

deficient HR (Kass et al., 2013), which we used as a positive control (Figure S3E). We also 

checked NHEJ, which occurs at a higher rate than HR (Mao et al., 2008). Interestingly, we 

found that NHEJ did appear slightly impaired in PINK1-KO compared with wild-type (WT) 

and Parkin-KO cells, but not to the extent seen in ATM-KO cells (Figure S3F). This did not 

appear to be dependent on ATM signaling or p53 accumulation (Figure S3G).

To determine the specificity of the genetic interaction between ATM and PINK1 and Parkin, 

we crossed ATR mutant flies with Parkin mutant flies. ATR is a PI3K in the same family as 

ATM that responds to single-strand breaks by phosphorylating multiple protein targets 

involved in overlapping pathways with those triggered by ATM activation (Figure 1A) 

(Maréchal and Zou, 2013). Unlike ATM, ATR has not been associated in the literature with 

mitochondrial dysfunction. Interestingly, ATR and Parkin double mutants also caused a 

synthetic lethality (Table 2). Mitochondrial-localized PINK1 and Parkin are unlikely to 

directly interact with nuclear ATM and ATR. Furthermore, we did not observe robust 

evidence that PINK1 and Parkin indirectly affected ATM or vice versa (Figures S2 and S3); 

therefore, we felt that PINK1/Parkin were most likely influencing a common pathway 

downstream of ATM/ATR.

CDK1, CDK2, and CDC25 Interact with and Rescue PINK1 and Parkin Thorax Indentations

We screened 14 RNAi fly lines targeted to genes functioning downstream of ATM and ATR 

to test whether PINK1/Parkin interacted with cell cycle regulation (Table S2; Figure 1A). 

park25 mutant flies display flight muscle degeneration, causing thorax indentations and 

dopaminergic neuron loss perfectly phenocopying mutant Pink1B9 flies (Clark et al., 2006; 

Park et al., 2006; Yang et al., 2006). We scored flies both for survival and for thoracic 

indentations to identify any genetic interactions with the PINK1/Parkin pathway.

The RNAi fly strain targeting String (stg), the CDC25 human ortholog, partially rescued the 

PINK1 mutant fly thorax indentation phenotype (Figure 1B). CDC25 removes phosphate 

residues on active sites of cyclin-dependent kinase (CDK) complexes responsible for cell 

cycle progression (Lim and Kaldis, 2013). CDK1 and CDK2 are major kinases that drive the 

cell cycle by binding to cyclin proteins that flux during G1/S and G2/M transitions (Lim and 

Kaldis, 2013). In a Parkin mutant background, overexpression of stg or a non-degradable stg 
mutant allele (HA-stgmKEN.md) resulted in lethality (Table 2).

Further validating the connection to the cell cycle, our screen also identified CDK1 and 

CDK2 as genetic interactors of both PINK1 and Parkin. Knockdown (KD) of CDK1 and 

CDK2 using multiple different RNAi fly lines ameliorated both PINK1 and Parkin mutant 

thorax phenotypes (Figures 1C–1H; Tables S2 and S3). These data support the notion of a 

genetic interaction between components of the cell cycle machinery and the PINK1/Parkin 

pathway.

The Loss of Endogenous PINK1/Parkin Interferes with Cell Growth

We further explored the effect of PINK1 and Parkin on cell growth by examining primary 

cell lines lacking PINK1 or Parkin. Using Parkin-KO mouse embryonic fibroblasts (MEFs), 
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we measured cell growth. In comparison with control MEFs, we found that proliferation was 

accelerated in Parkin-KO MEF lines (Figure 2A) consistent with an increase in the number 

of Parkin-KO cells at S and M phases (Figures 2B and 2C). Additionally, we examined a 

PINK1 mutant human fibroblast line and found a trend toward accelerated growth compared 

with healthy control fibroblast lines, which also exhibited a similar increase in cells entering 

S and M phases of the cell cycle (Figures 2D–2F). Our data are consistent with other 

observations reporting that cell division was increased after the loss of PINK1 and Parkin 

(Agnihotri et al., 2016; Gong et al., 2014; Requejo-Aguilar et al., 2014).

TBK1 Is Activated During and Necessary for Mitosis

TBK1’s role in innate immunity is extensively studied because it is required to stimulate the 

interferon response (Clément et al., 2008). Our work and that of others previously revealed 

that TBK1 activation at damaged mitochondria promoted efficient mitophagy dependent on 

PINK1 and Parkin activity (Heo et al., 2015; Lazarou et al., 2015; Moore and Holzbaur, 

2016; Richter et al., 2016) (Figure S4). However, an additional role for TBK1 in mitosis has 

also been described (Onorati et al., 2016; Pillai et al., 2015). Because it represents a 

potential link between both Parkin-mediated mitophagy and the cell cycle, we tested 

whether TBK1 was active and necessary for mitosis.

We found that TBK1 was phosphorylated and active during all stages of mitosis at the 

centrosome and midbody (Figure 3A). This activation was not apparent by western blotting 

in an asynchronous population, but upon synchronization of cells at G2/M phase, p-TBK1 

levels were strikingly increased (Figures 3B and 3C), leading to the question of whether 

TBK1 was necessary for the G2/M transition. Either pharmacologically inhibiting TBK1 

kinase activity or genetic KO of TBK1 (Table S1) resulted in a growth defect (Figures 3D–

3F); moreover, we observed decreased numbers of cells in M phase in an asynchronous 

population (Figure 3G). Upon rescue of the TBK1-KO line, we were able to revert the 

growth phenotype (Figures 3H and 3I). There was an increased presence of polyploidy and 

multinucleate cells, presumably harboring cytokinetic defects, in the TBK1-KO cells (Figure 

3J).

Activated TBK1 Is Sequestered from the Centrosomes to Damaged Mitochondria during 
Parkin-Mediated Mitophagy

These data suggest that TBK1 plays an important physiological role in promoting cell cycle 

progression, and because of TBK1’s additional role in promoting mitophagy at damaged 

mitochondria, we hypothesized that during mitochondrial damage, active TBK1 was 

sequestered from centrosomes to mitochondria, resulting in cell-cycle arrest. TBK1’s 

interaction with PINK1/Parkin is not direct; however, TBK1 translocation to damaged 

mitochondria and activation is dependent upon the activation of PINK1 and Parkin (Lazarou 

et al., 2015). In cells either expressing or lacking Parkin, we synchronized at G1/S followed 

by release into either normal growth media or OA (Figure 4A). By 9 h post-release in 

normal growth media, cells progressed through G2/M regardless of the presence or absence 

of Parkin (Figures 4B, 4D, 4E). However, in the context of mitochondrial damage, the 

presence of Parkin inhibited the progression of cells entering the G2/M transition (Figures 

4B and 4C) via sequestration of active p-TBK1 from the centrosome to damaged 
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mitochondria (Figures 4B and 4C). Our data suggest that this sequestration blocked the 

ability of cells to enter mitosis because the status of PINK1 and Parkin had no effect during 

normal G2/M progression in the absence of mitochondrial damage (Figure 4E).

Mitochondrial damage did negatively affect cell growth (Figures 4C and 4D) (Mitra et al., 

2009), so to further test the idea that TBK1 sequestration at mitochondria causes decreased 

mitosis, we attempted two approaches. First, we generated cell lines stably expressing HA-

FLAG-tagged and untagged TBK1 as well as YFP-Parkin (Figure S5A), hypothesizing that 

this may allow us to test our model by increasing additional TBK1 availability during 

mitochondrial dysfunction. However, we found that overexpression of either tagged or 

untagged TBK1 in a background with endogenous TBK1 caused abnormal activation and 

localization in the absence of stimuli (Figures S5B and S5C). We next attempted to 

physically tether TBK1 to mitochondria using the rapalog-induced dimerization system 

(FRB-FKBP). We stably expressed FRB-BFP-Fis1 in the TBK1-KO cell line and transfected 

in FKBP-GFP-TBK1 (Figure 4F). In the absence of rapalog, low levels of FKBP-GFP-

TBK1 were predominately cytosolic (Figure S5D). However, in the presence of rapalog, 

FKBP-GFP-TBK1 translocated to mitochondria and colocalized with the membrane 

potential-dependent dye MitoTracker Red CMXROS (Figure 4G). By physically tethering 

TBK1 to mitochondria and bypassing exogenous mitochondrial damage, we observed a 

significant decrease in the number of mitotic cells in asynchronous conditions compared 

with FKBP-GFP-TBK1-transfected cells without rapalog (Figure 4H).

Drosophila Ortholog ik2 Genetically Interacts with PINK1 and Parkin

In a genome-wide screen for kinases that regulate cell cycle, the TBK1 ortholog in flies (ik2) 

was discovered to regulate mitosis, and KD of ik2 was found to halt cell cycle progression 

during mitosis, resulting in cytokinetic defects (Bettencourt-Dias et al., 2004). We decided to 

test whether ik2 interacted with PINK1 and Parkin genetically. Loss of ik2 on both alleles 

causes first instar lethality (Shapiro and Anderson, 2006). Unexpectedly, we found that loss 

of Parkin suppressed the ik2 recessive lethality (Table 2). Upon further examination, we 

found the loss of ik2 caused a reversal of the thorax indentation phenotype in the Parkin and 

PINK1 mutant flies (Figures 5A and 5B). These experiments provided additional genetic 

evidence of PINK1 and Parkin’s interaction with TBK1.

DISCUSSION

Our work demonstrates a strong genetic interaction between tumor-suppressing genes in 

both mouse and fly and genes involved in mitophagy, leading us to conclude that the PINK1/

Parkin pathway influences the cell cycle. We attribute the ability of PINK1/Parkin-

dependent mitophagy to cause the translocation and sequestration of active TBK1 at 

damaged mitochondria to this genetic interaction. This sequestration of active TBK1 at the 

mitochondria from its physiological role at the centrosome during mitosis contributes to an 

arrest in G2/M.

TBK1 has previously been suggested to have tumor-suppressing activities and involvement 

in cell cycle control. It was first identified in a small interfering RNA (siRNA) screen 

looking for genes causing synthetic lethality with oncogenic K-Ras mutations (Barbie et al., 
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2009). Follow up studies reported a more general role for TBK1 in cell cycle, demonstrating 

its activation during mitosis (Onorati et al., 2016; Pillai et al., 2015). Our data agree with 

these studies, but it is yet unclear how TBK1 is activated at the centrosome and midbody; 

previous reports disagree as to the targets that TBK1 phosphorylates (Kim et al., 2013; Pillai 

et al., 2015). Our data showing abnormal TBK1 activation upon overexpression indicate that 

TBK1 levels and cellular distribution are tightly regulated during each of its physiological 

roles: mitosis, innate immunity, and selective autophagy. Additional studies are needed to 

understand TBK1 regulation during mitosis and how it translocates and is selectively 

activated at different organelles, a topic currently under investigation. Onorati et al. (2016) 

reported mitotic arrest in the context of Zika infection and attributed the mechanism to the 

sequestration of active TBK1 at Zika viral particles. These results are consistent with what 

we observed during mitophagy. Another intriguing line of future inquiry will be to 

understand how innate immunity (Xiao et al., 2017) has the potential to suppress 

tumorigenesis in the context of TBK1.

Mitochondrial damage triggers the activation of p-TBK1 at mitochondria in a PINK1/

Parkin-dependent manner (Heo et al., 2015; Lazarou et al., 2015; Moore and Holzbaur, 

2016; Richter et al., 2016), and our data suggest that this response arrests the cell cycle. 

Mitosis and mitophagy are both tightly regulated processes. Mitosis is a highly 

bioenergetically demanding process that requires stringent regulation of mitochondrial 

import, morphology, and distribution during cell cycle progression (Harbauer et al., 2014; 

Kanfer et al., 2015; Kashatus et al., 2011). Our data indicate that cell cycle progression is 

arrested during mitophagy. If PINK1 and Parkin are absent, the cell cycle continues to 

progress. We speculate that progression through mitosis before or without removing 

damaged mitochondria would be detrimental to the daughter cell. Previous observations 

found that “fit” healthy mitochondria segregate during cell division in stem cells and yeast 

daughter cells through an undefined mechanism (Higuchi et al., 2013; Katajisto et al., 2015). 

We propose that during mitophagy and the clearance of these damaged organelles, it is 

bioenergetically unfavorable to initiate mitosis. A block in mitosis could be a protective 

mechanism to halt cellular division during active mitochondrial clearance.

Our data do not support a direct interaction between ATM and Parkin-mediated mitophagy. 

However, we did find that PINK1-KO cells had impaired NHEJ, and it is possible that 

Parkin may have a link to other DNA damage repair pathways (Sumpter et al., 2016). 

Sumpter et al. (2016) found that Fanconi anemia complementation group proteins had a 

distinct role, separate from their function in the DNA damage response, which was required 

for efficient mitophagy and interacted directly with Parkin. Parkin-null mice have also been 

found to have increased rates of cancer and tumorigenesis after irradiation or when crossed 

to a mouse model of colon cancer (Poulogiannis et al., 2010; Zhang et al., 2011). Our 

findings demonstrate that the DNA damage proteins, ATM and ATR, genetically interact 

with the PINK1/Parkin pathway through their shared function in influencing the cell cycle. 

This does not exclude other possible types of interactions with other damage-sensing 

proteins. There may also be overlap between nuclear and mitochondrial stress signaling. 

Previously, we reported that mtDNA double-strand break signaling may rely partly on 

nuclear DNA damage pathways for premature senescence (Pinto et al., 2017).
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Chk1 and Chk2 did not revert the Pink1B9 thoracic indentations upon KD (Table S2). Unlike 

CDC25 and the CDKs, Chk1 and Chk2 mutant Drosophila do not show dysregulation of cell 

cycle without the presence of DNA-damaging stimuli (Masrouha et al., 2003; Royou et al., 

2005). We speculate that this may be why there was no genetic interaction between Chk1/2 

and PINK1.

Our genetic data indicate that PINK1 and Parkin interact with the cell cycle by directly 

interacting with genes influencing cell cycle progression (CDKs and CDC25/stg) or with 

genes that influence the cell cycle but may have additional roles (ATM and TBK1/ik2). The 

thorax and flight wing develop from adult muscle precursors and a highly proliferative stem 

cell pool (Gunage et al., 2014). We evaluated the flies immediately after eclosion, so we did 

not evaluate a degenerative phenotype upon aging of the post-mitotic thorax muscles but 

rather a developmental defect that was rescued by the KD of the CDKs required for cell 

cycle progression (Pines, 1995). The mouse line is a complete KO of ATM and Parkin, while 

the Drosophila crosses were performed with point mutation mutant lines. ATM-KO mice 

have less severe phenotypes compared with kinase-dead ATM point-mutant mice, which are 

embryonic lethal, accounting for possible compensatory mechanisms in null versus kinase-

dead mice (Daniel et al., 2012). Therefore, when evaluating the genetic data, we cannot 

directly compare findings from mouse and Drosophila, only the general outcome. In the 

Drosophila model, some ATM/Parkin and ATM/PINK1 double-mutant flies survived 

eclosion and notably exhibited phenotypes of each individual mutant fly, indicating that 

ATM and PINK1/Parkin are likely not in the same pathway, further implying that the genetic 

interaction is in parallel ultimately converging upon a common function or outcome involved 

in cell cycle progression. Experiments performed to check for the presence of an interaction 

between ATM and mitophagy or mitophagy and DNA damage confirm this.

Our report and other evidence suggest a global response to PINK1/Parkin-mediated 

mitochondrial clearance. Numerous recent efforts have helped elucidate many of the 

molecular events that occur at the mitochondria as they pertain to Parkin-dependent 

mitophagy (Yamano et al., 2016). However, it is becoming apparent that myriad factors 

contribute to a global cellular response to mitochondrial damage. In a PINK1/Parkin-

dependent manner, mitophagy triggers the nuclear translocation of the transcriptional co-

activator TFEB, which upregulates genes required for lysosomal biogenesis (Nezich et al., 

2015). The C. elegans protein SKN-1 and its human ortholog NRF2, which are 

transcriptional co-activators involved in mitochondrial biogenesis, are also activated during 

mitophagy (Palikaras et al., 2015). These data support a global cellular response aimed at 

arresting cell cycle during mitochondrial quality control.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Alicia M. Pickrell, Ph.D. (alicia.pickrell@vt.edu).

The pHAGE untagged TBK1 and pHAGE N-FLAG-HA TBK1 constructs generated in this 

study have been deposited to Addgene under Cat# 131791 and 131792, respectively (see 
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Key Resource Table). All KO cell lines generated in this study are available by contacting 

the Lead Contact. All Drosophila lines can be obtained from the Indiana University 

Bloomington Drosophila Stock Center, except for the park25 null and the Pink1B9 null flies, 

which were a kind gift from Dr. Leo Pallanck (University of Washington). CRISPR plasmids 

were generated with targeting sequences from either published sources or advice from 

colleagues and are available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—ATM KO mice (ATMtm1Awb/J) were crossed with Parkin KO mice (Park2tm1Shn/J) 

(strains from Jackson Laboratories). The nuclear background was C57BL/6J (backcrossed at 

least > F10). ATM+/− mice of mixed sexes were bred until 1 year of age. ATM+/− Parkin+/

− or ATM+/− Parkin KO mice of mixed sexes were bred until 1 year of age. Parkin KO 

MEFs were generated with Parkin KO mice of mixed sexes bred until 1 year of age. 

Genotyping was performed according to Jackson Laboratories. All mouse procedures were 

performed according to a protocol approved by the NIH/NINDS Institutional Animal Care 

and Use Committee. Mice were housed in a virus-antigen-free facility at the NIH Division 

of Veterinary Resources in a 12 hr light/dark cycle at RT and fed ad libitum with standard 

rodent diet.

Drosophila—Drosophila strains were maintained on standard cornmeal/molasses medium 

at 25°C with a 12-hr light-dark cycle. The park25 null and the Pink1B9 null flies were a kind 

gift from Dr. Leo Pallanck (University of Washington). Fly stocks were obtained from 

Bloomington Fly Stock Depository (Table S2). Multiple male and virgin female flies were 

set up for experimental crosses. Flies of both sexes were analyzed for phenotype and 

eclosion except for PINK1B9 crosses where males were examined. Fly survival and 

phenotyping for thorax indentation were scored 24 hr after eclosion.

Cell Lines—HCT116 cell lines were maintained in McCoy’s 5A (Modified) Media with 

10% FBS. HEK293T and HeLa cell lines were maintained in DMEM high glucose with 

10% FBS, 2mM L-Glutamine, 10mM HEPES, 0.1mM non-essential amino acids, and 1mM 

sodium pyruvate. Cells were routinely tested for mycoplasma contamination. CRISPR KO 

lines generated are found in (Table S1). The PINK1 KO HeLa cell line was a kind gift from 

RJY.

Primary Cells—Patient fibroblast lines obtained from the NINDS depository: ND40066, 

ND36091, ND34769 and from Coriell Institute for Medical Research were as followed: 

GM05294 and GM02052. Patient fibroblasts and MEF cells were maintained in DMEM 

high glucose with 10% FBS, 2mM L-Glutamine, 10mM HEPES, 0.1mM non-essential 

amino acids, and 1mM sodium pyruvate. Cells were routinely tested for mycoplasma 

contamination. Cells for growth curve experiments were used at matching passage numbers. 

Pharmacological drugs used in to treat either cell lines or primary cells are as follows: 10 

μg/ml oligomycin (EMD Millipore) and 5 μg/ml antimycin A (Sigma), 10 μM etoposide, 

1μM BX-795, 100ng/mL nocodazole, 2.5mM thymidine (Sigma), 0.5nM A/C heterodimer 

(rapalog) (Takara), and 10 μM QVD-OPh (Abcam).
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METHOD DETAILS

MEF Generation—Timed pregnant females E12.5–14.5 were sacrificed. Embryos were 

dissected to remove the cerebrum, internal organs, and limbs. The remaining tissue was 

digested with 0.5% trypsin-EDTA. MEFs were used between passages 2–4. Each embryo = 

clone.

Western Blotting—Cells were lysed using 2x LDS buffer containing 50mM DTT and 

boiled for 15 min. Approximately 50 μg of protein lysate was loaded onto 4%–12% Bis-Tris 

gels. Proteins were transferred onto PVDF membranes and blocked with 5% non-fat 

powdered milk. Primary antibodies were incubated 4°C overnight. Antibodies used: PINK1, 

p-ATM S1981, LC3B, TBK1, p-TBK1 S172, p-Histone H3 S10 and p-Histone H3 T11 (Cell 

Signaling), pATM S1981, COXII (Abcam), ATM (Cell Signaling or Sigma), Tim23 (BD 

Biosciences), Mfn2 (in-house), TOM20, Parkin, p53 (Santa Cruz), GAPDH and actin 

(Sigma), p62 (Cedarlane), and HA.11 (Covance). Secondary HRP-linked antibodies (GE 

Healthcare) were incubated at RT for 1 hr. Blots were exposed using peroxidase-based ECL 

(Pierce) detected by a ChemiDoc Imaging System (BioRad).

CRISPR and Knockout Cell Line Generation—CRISPR design was aided by publicly 

available software provided by MIT www.crispr.mit.edu. CRISPR sequences are found in 

Table S1. Primers were annealed and cloned into the linearized gRNA vector, which was a 

gift from George Church (Addgene #41824) using the Gibson Assembly Cloning Kit (NEB). 

HCT116 or HeLa cells were cotransfected using Lipofectamine LTX (Invitrogen) or X-trem-

eGENE9 (Roche) using the above CRISPR plasmid, pEYFP-C1 (Clonetech), and the hCas9 

plasmid, which was a gift from George Church (Addgene #41815) or was cloned into 

SpCas9–2A-Puro, which was a gift from Feng Zhang (Addgene #48139). YFP-positive cells 

were FACS sorted or selected with 1 μg/mL puromycin and serially diluted for single colony 

clones. DNA was extracted using the Zymo gDNA Isolation Kit and genotyped using 

primers (Table S1). PCR products were cloned using CloneJET PCR cloning kit (Invitrogen) 

according to the manufacturer’s instructions. Clones were sequenced to verify KOs (Table 

S1).

Synchronizing Cells—To synchronize cells at the G1/S transition, cells were subjected to 

a double thymidine block (DTB). In brief, cells were exposed to thymidine-containing media 

for 17 hr, released in fresh media for 8 hr, and returned to thymidine-containing media for 

another 16 hr. Cells synchronized at G2/M phase were treated for 16 hr with 100ng/mL of 

nocodazole.

Cloning—pBMN-mCherry-Parkin and pBMN-YFP-Parkin were cloned into BamHI–SalI 

sites of the pBMN-Z vector to generate stable cells lines as previously described (Yamano et 

al., 2014) (Addgene # 59419 and #59416). To generate TBK1 rescue lines, TBK1 cDNA 

was cloned into pDONR223 and transferred into the pHAGE-N’-FLAG-HA-IRES-puro or 

pHAGE-C’-FLAG-HA-IRES-puro vectors using l recombinase in vitro (Invitrogen). A stop 

codon inserted at the end of the TBK1 cDNA ensured it was untagged. The FRB-BFP-Fis1 

and FKBP-GFP-TBK1 construct cloning was described previously (Vargas et al., 2019) and 

given as kind gifts from RJY. Stably expressing FRB-BFP-Fis1 cells were sorted via flow 
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cytometry for low BFP expression and evaluated to ensure normal mitochondrial 

morphology. All constructs were confirmed by DNA sequencing.

Retrovirus or Lentiviral Generation—Retroviral/lentiviral helpers and retroviral/

lentiviral constructs were transfected into HEK293T with Lipofectamine LTX at a 1:3 ratio. 

24 hr after transfection, media was changed. Infectious media containing live virus was 

collected 40 hr later and filtered using a 0.45 μM PES membrane. Virus was used to 

transduce cells with the addition 8 μg/ml of polybrene (Sigma).

Subcloning—TBK1 KO clone 2 was selected to stably reconstitute wild-type TBK1 to 

generate the rescue line. After lentiviral infection, positive cells resistant to 1 μg/mL 

puromycin were subcloned from single cell colonies.

Growth Curves—Cell growth was determined by manual cell counting and CellTiter-

Glo® Luminescent Cell Viability Assay (Promega). For manual counting, 5 × 103 cells were 

plated in a 12- well dish or 3 × 104 cells were plated in a 6-well dish and counted every 24 

hr period using an automated cell counter (Logos Biosystems). For luminescence 

experiments, 300 to 600 cells were plated in white-coated 96-well plates and read with a 

luminescence reader (Victor) according to the manufacturer’s directions every 24 hr. Cells 

treated with 1 μm BX-795 were plated in the presence of the inhibitor, and the drug was 

replaced every 48 h.

BrdU Analysis—Cells were incubated with 10 μM BrdU (Sigma) for 1 hr 30 min. Cells 

were immediately fixed with 4% PFA and incubated with 2N HCl to denature DNA to 

facilitate antibody penetration. 0.1mM sodium borate buffer was used to neutralize HCl 

prior to routine ICC. Cells were imaged on a Zeiss LSM 510 confocal. 5 random fields of 

view were taken for each individual experiment to sample 200–300 cells.

Immunocytochemistry—Cells for imaging were plated in Nunc two-well chamber slides 

(Thermo Fisher). Cells were fixed with 4% PFA and permeabilized with 0.15% Triton 

X-100 followed by blocking with 5% BSA. Primary antibodies were incubated 1hr at RT or 

overnight at 4°C. Antibodies used were as followed: GRP75, p-TBK1S172 (Cell Signaling), 

TOM20 (Santa Cruz), AIM-1/Aurora B and BrdU (BD Biosciences), α-tubulin (Sigma), and 

HA.11 (Covance). Secondary AlexaFluor® (Thermo Fisher) conjugated antibodies were 

incubated for 1 hr RT. Cells were counterstained with 300 nM of DAPI for 5 min (Thermo 

Fisher). Cells were imaged on a Zeiss LSM 510 confocal. 5 random fields of view were 

taken for each individual experiment to sample 200–300 cells. Mitotic cells were identified 

by chromosome condensation and verified by α-tubulin localization/morphology. p-TBK1 

localization was determined by its colocalization with either DAPI or TOM20.

FRB-BFP-Fis1 cells were grown on glass coverslips and transfected 24hrs later with FKBP-

GFP-TBK1 plasmid using XtremeGene9 (Roche). 24hrs after transfection, media was 

changed and cells were treated with rapalog for 24hrs. Cells were either stained with 1nM 

MitoTracker Red CMXROS (ThermoFisher) for 15 minutes and then fixed with 4% PFA or 

fixed and permeabilized as above. Cells were counterstained with 1nM TO-PRO-3 

(ThermoFisher) for 15 minutes. Cells were imaged on a Nikon C2 confocal. 5 random fields 
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of view were taken for each individual experiment to sample 200–300 cells. Mitotic cells 

were identified by chromosome condensation.

HR and NHEJ Recombination Assay—Cells were transfected using Lipofectamine 

LTX with: pCDNA mCherry-C1, pDRGFP (Addgene#26475) or pimEJ5GFP 

(Addgene#44026), and pCBA SceI (Addgene#26477), which were kind gifts from Maria 

Jasin or Jeremy Stark. Cells were sorted on a FACS analyzer (BD Biosciences) to determine 

the population of GFP positive cells normalized to mCherry-C1 expression to account for 

differences in transfection efficiency (Bennardo et al., 2008; Pierce et al., 1999).

QUANTIFICATION AND STATISTICAL ANALYSIS

A Student’s t test was used to determine statistical significance with comparisons between 

two groups. For comparisons between three or more groups, a one way-ANOVA with Tukey 

post hoc analysis was used. A chi-square test was used to determine significance for 

experiments comparing theoretical Mendelian genetic probabilities to experimental 

probabilities for Drosophila eclosion experiments and mouse genotyping experiments. 

GraphPad Prism v7 software was used. Error bars ± SD or SEM noted in legend. *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001.

DATA AND CODE AVAILABILITY

The western blot data generated during this study are available at Mendeley Data https://

doi.org/10.17632/789652xcr3.110.17632/789652xcr3.1 The pHAGE untagged TBK1 and 

pHAGE N-FLAG-HA TBK1 constructs generated in this study have been deposited to 

Addgene under Cat# 131791 and 131792, respectively (see Key Resource Table). Any other 

raw datasets generated during this study are currently being used for future studies and to 

obtain grant funding, but data is available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• PINK1 and Parkin genetically interact with cell cycle-regulatory proteins

• PINK1 and Parkin do not directly signal with the nuclear DNA damage 

response

• Active TBK1 sequestered at damaged mitochondria during mitophagy 

perturbs mitosis

• Fly ortholog of TBK1 rescues PINK1- and Parkin-knockout phenotypes
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Figure 1. CDK1, CDK2, and CDC25 Interact with and Rescue PINK1 and Parkin Thorax 
Indentations
(A) Cartoon of proteins downstream of ATM and ATR that were selected in the targeted 

RNAi fly screen to cross with Pink1B9 or park25 flies driven under the systemic da-G4 or hs-
G4, respectively.

(B) Percentage of flies with the presence or absence of thorax indentations in the Pink1B9 

background expressing UAS-stgRNAi (#29556) under the da-G4 driver. Two hundred to 300 

flies were screened from cross.

(C) Percentage of flies with the presence or absence of thorax indentations in the park25 

background expressing UAS-CDK2RNAi (#36128) under the hs-G4 driver.
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(D) Percentage of flies with the presence or absence of thorax indentations in the Pink1B9 

background expressing UAS-CDK2RNAi (#36128) under the da-G4 driver.

(E) Percentage of flies with the presence or absence of thorax indentations in the park25 

background expressing UAS-CDK1RNAi (#36117) under the hs-G4 driver.

(F) Percentage of flies with the presence or absence of thorax indentations in the Pink1B9 

background expressing UAS-CDK1RNAi (#36117) (G) UAS-CDK2RNAi (#41898) and (H) 

UAS-CDK2RNAi (#35267) under the da-G4 driver. (C–F) At least 200–300 flies were 

screened from crosses.
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Figure 2. Loss of Endogenous PINK1 and Parkin Disrupts Cell Growth and Cell Cycle
(A) Normalized change in manual cell counts for primary MEF lines.

(B and E) Percentage of MEFs (B) and patient fibroblasts (E) positive for BrdU.

(C and F) Percentage of MEFs (C) and patient fibroblasts (F) with Aurora B accumulated in 

the nucleus.

(D) Normalized luminescence measurements for primary patient cell lines.

In (A) and (D), error bars indicate ±SD; n = 2 independent experiments. In (B), (C), (E), and 

(F), error bars indicate ±SD; n = 3 independent experiments.
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Figure 3. TBK1 Is Activated During and Necessary for Mitosis
(A) Confocal images of YFP-Parkin-expressing (green) HeLa cells demonstrating p-TBK1 

(orange) localization throughout the different stages of mitosis. Cells were counterstained 

with DAPI (blue) and α-tubulin (red). Scale bar, 10 μM.

(B and C) Western blot analysis of HeLa cells either in asynchronized growth (B) or 

synchronized at G2/M with nocodazole and released into normal growth media

(C). β-actin was used as a loading control.

(D and E) Normalized luminescence measurements for HeLa cells or (D) treated with 1 μM 

BX-795 (E) or two independent TBK1-KO clones. Error bars indicate ±SD for technical 

replicates.

(F) Western blot analysis of TBK1-KO clones. β-actin was used as a loading control.
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(G) Mitotic cell counts from an asynchronous population of wild-type or TBK1-KO clones. 

Error bars indicate ±SD; n = 3 independent experiments.

(H) Normalized luminescence measurements for HeLa cells, TBK1-KO clone 2, or TBK1 

rescue line. Error bars indicate ±SD for technical replicates.

(I) Western blot analysis of HeLa cells and TBK1 rescue line in asynchronous and G2/M 

synchronization conditions. β-actin was used as a loading control.

(J) Confocal images of HeLa cells or TBK1-KO cells in asynchronous conditions. DAPI 

(blue) was used as a nuclear counterstain, and the cytoskeleton was identified by alpha-

tubulin staining (red). Scale bar, 20 μm.
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Figure 4. Activated TBK1 Is Sequestered from the Centrosomes to Damaged Mitochondria
(A) Confocal images of YFP-Parkin-expressing (green) or wild-type HeLa cells detecting p-

TBK1 (red) localization after double thymidine block (DTB) in DMEM or OA-treated 

media. Cells were counterstained with DAPI (blue) and α-tubulin (gray). White squares 

point to cells magnified in insets. Bottom: timeline of double thymidine synchronization for 

G2/M. Scale bar, 10 μM.

(B) Percentage of cells with p-TBK1 localization at centrosome or mitochondria from 

conditions in (A) after DTB.

(C and D) Percentage of mitotic YFP-Parkin or wild-type cells after DTB release into (C) 

OA media or (D) normal growth media.
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(E) Western blot analysis of HeLa, YFP-Parkin, or PINK1-KO cells either in asynchronous 

growth or synchronized in G2/M. β-actin was used as a control.

(F) Cartoon of induced dimerization system used to physically tether TBK1 to undamaged 

mitochondria upon exposure to rapalog. Illustration made in BioRender (biorender.com, 

with the standard academic license (G) Confocal images of FKBP-GFP-TBK1 (green) in the 

FRB-BFP-Fis1 (blue) parental cell line in the TBK1-KO background treated with rapalog 

for 24 h. Cells were counterstained with MitoTracker Red CMXRos (red). Scale bar, 10 μM. 

Inset scale bar, 2 μM.

(H) Mitotic cell counts from an asynchronous population of cells expressing FKBP-GFP-

TBK1 and FRB-BFP-Fis1 in the TBK1-KO background treated with or without rapalog for 

24 h.

In (B)–(D) and (H), error bars indicate ±SEM; n = 3 independent experiments.).
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Figure 5. Drosophila Ortholog ik2 Genetically Interacts with PINK1 and Parkin
(A) Percentage of flies with the presence or absence of thorax indentations in the ik2[1]/
CyO; park25/TM6B self-cross. At least 200–300 flies were screened from crosses.

(B) Percentage of flies with the presence or absence of thorax indentations from the FM7/y; 
ik2/CyO × Pink1B9/Fm7c; pin/Cyo. At least 200–300 flies were screened from crosses.
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Table 1.

PINK1 and Parkin Genetically Interact with DNA Damage Cell Cycle Checkpoint Proteins in Mouse

ATM Genotype Parkin Genotype Actual Number of Mice Actual Frequency (%) Expected Frequency (%)

Survival of Mice from the ATM+/−Parkin+/− Cross

+/+ +/+ 11 6.70 6.25

+/+ +/− 8 4.87 6.25

+/+ −/− 7 4.27 6.25

+/− +/+ 22 13.41 12.5

+/− +/− 55 33.54 25

+/− −/− 29 29.87 12.5

−/− +/+ 4 2.43 6.25

−/− +/− 8 4.87 6.25

−/− −/− 0 0 6.25****

Survival of Mice from the ATM+/−Parkin+/− × ATM+/−Parkin KO Cross

+/+ +/+ 4 2.79 12.5

+/+ +/− 7 4.89 12.5

+/− −/− 58 40.56 25

+/− +/+ 68 47.55 25

−/− +/− 5 3.49 12.5

−/− −/− 1 .07 12.5****

Survival of Mice from the ATM+/− Cross

ATM genotype

+/+ 10 27.03 25

+/− 20 54.05 50

−/− 7 18.92 25

Table showing the breeding crosses and genotyped progeny from ATM+/−Parkin+/− (top) and ATM+/−Parkin+/− × ATM+/−Parkin KO mice 
(middle) cross. The progeny from ATM+/− crosses were also examined (bottom). ATM+/−Parkin+/− cross, ****p < 0.0001; ATM+/−Parkin+/− × 
ATM ± Parkin KO cross, ****p < 0.0001. ATM+/− cross, not significant.
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Table 2.

PINK1 and Parkin Genetically Interact with DNA Damage Cell Cycle Checkpoint Proteins in Fly

Genotype Eclosion (%)

park25 100%

park25, ATM3/+ 100%

park25, ATM6/+ 100%

park25, ATM8/+ 100%

ATM3/6 29%****

ATM3/8 100%

ATM6/8 72%****

park25, ATM3/6 1.5%****

park25, ATM3/s 35.9%****

park25, ATM6/8 65.4%***

Pink1B9 100%

Pink1B9;;ATM6/+ 88.2%

Pink1B9;;ATM8/+ 54.2%****

Pink1B9;;ATM6/8 34%****

Mei-41[D12];;park25/+ 100%

Mei-41[D12]/+;;park25/+ 100%

Mei-41[D12]/+;;park25 60.5%****

Mei-41[D12];;park25 46.6%****

hs-G4; park25/+ 100%

hs-G4; park25 100%

hs-G4 > stg-HA; park25/+ 100%

hs-G4 > stg-HA; park25 52.5%****

hs-G4; park25/+ 100%

hs-G4; park25 100%

hs-G4 > stgmKEN.md; park25/+ 100%

hs-G4 > stgmKEN.md; park25 44.5%****

Ik2[1]/CyO 100%

Ik2[1]/ Ik2[1] 3.55%****

Ik2[1 / Ik2[1]; park25/+ 44%****

Ik2[1]/ Ik2[1]; park25 66.15****

Table summarizing the ATM mutant flies used in this study. Percentage of flies eclosed for each genotype from park25 self-crosses; ATM3/TM3 × 

ATM6/TM3; ATM3/TM3 × ATM6, park25/TM3; ATM3, park25/TM3 × ATM6, park25/TM3; ATM8/TM3 × ATM3/TM3; ATM8, park25/TM3 × 

ATM3, park25/TM3; ATM8, park25/TM3 × ATM3/TM3; ATM8, park25/TM3 × ATM6/TM3; ATM8/TM3 × ATM6/TM3, and ATM8, 

park25/TM3 × ATM6, park25/TM3. Percentage of flies eclosed from each genotype from FM7 × Pink1B9/FM7 self-crosses, Pink1B9/FM7 × 

ATM6/TM3, Pink1B9/FM7 × ATM8/TM3, and Pink1B9/FM7; ATM6/TM3 × Pink1B9/FM7; ATM8/TM3b. Percentage of flies eclosed for each 

genotype from Mei-41[D-12]/FM7; park25/TM3 self-cross. Percentage of flies eclosed for each genotype from UAS-stg-HA/CyO; park25/TM3 × 
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hs-G4/CyO; park25/TM3 and UAS-HA-stgmKEN.md/CyO; park25/TM3 × hs-G4/CyO; park25/TM3. Percentage of flies eclosed for each 

genotype from ik2[1]/CyO (#5322) and ik2[1]/CyO; park25/TM6B self-crosses. At least 300 flies were screened from crosses.

***
p > 0.001

****
p > 0.0001.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

rabbit anti-GRP75 Cell Signaling Cat#2816; RRID: AB_2120331

rabbit anti-ATM S1981 Abcam Cat#ab81292; RRID: AB_1640207

rabbit anti-PINK1 Cell Signaling Cat#6946; RRID: AB_11179069

rabbit anti-Histone H3 S10 Cell Signaling Cat#53348; RRID: AB_2799431

rabbit anti-Histone H3 T11 Cell Signaling Cat#9764; RRID: AB_659964

mouse anti-Parkin (PRK8) Santa Cruz Cat#sc-32282; RRID: AB_628104

rabbit anti-GAPDH Sigma Cat#G9545; RRID: AB_796208

mouse anti-actin Sigma Cat#A2228; RRID: AB_476697

rabbit anti-Mfn2 in house (RJY) N/A

rabbit anti-TBK1 S172 Cell Signaling Cat#5483; RRID: AB_10693472

rabbit anti-TBK1 Cell Signaling Cat#3504; RRID: AB_2255663

rabbit anti-LC3 Cell Signaling Cat#3868; RRID: AB_2137707

rabbit anti-ATM S1981 Cell Signaling Cat#13050; RRID: AB_2798100

mouse anti-COXII Abcam Cat#ab110258: RRID: AB_10887758

mouse anti-p53 (DO1) Santa Cruz Cat#sc-126; RRID: AB_628082

rabbit anti-ATM Cell Signaling Cat#2873; RRID: AB_2062659

guinea pig anti-p62 Cedarlane now Progen Cat#GP62-C; RRID: AB_2687531

mouse anti-TIM23 BD Biosciences Cat#611222; RRID: AB_398754

mouse anti-BrdU Sigma Cat#B8434; RRID: AB_476811

rabbit anti-AIM1/Aurora B Sigma Cat#A5102; RRID: AB_476740

mouse anti-alpha-tubulin Sigma Cat#T9026; RRID: AB_477593

mouse anti-HA.11 Covance Cat#MMS-101R; RRID: AB_291262

rabbit anti-TOM20 Santa Cruz Cat#sc-11415; RRID: AB_2207533

mouse anti-ATM Sigma Cat#A1106; RRID: AB_796190

Chemicals, Peptides, and Recombinant Proteins

MitoTracker Red CMXRos Thermo Fisher Cat#M7512

TO-PRO-3 Iodide Thermo Fisher Cat#T3605

Lipofectamine LTX with Plus Reagent Thermo Fisher Cat#A12621

XtremeGENE 9 DNA Transfection Reagent Roche Cat#XTG9-RO

NuPAGE LDS Sample Buffer (4X) Invitrogen Cat#NP0007

Oligomycin EMD Millipore Cat#495455

Antimycin A Sigma Cat#A8674

Etoposide Sigma Cat#E1383

BX-795 Sigma Cat#204001

Thymidine Sigma Cat#T1895

Nocodazole Sigma Cat#487928

QVD-Oph Abcam Cat#ab141421

A/C Heterodimerizer (rapalog) Takara Cat#635056

DL-Dithiothreitol Sigma Cat#D0632
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REAGENT or RESOURCE SOURCE IDENTIFIER

SuperSignal West Femto Maximum Sensitivity 
Substrate

Thermo Fisher Cat#34095

ECL Prime Western Blotting System GE Healthcare Cat#RPN2232

NEBuilder HiFi DNA Assembly Master Mix New England Biolabs Cat#E2621

Gateway LR Clonase II Enzyme mix Invitrogen Cat#11791100

Gateway BP Clonase Enzyme Mix Invitrogen Cat#11789013

Puromycin InvivoGen Cat#ant-pr-1

Polybrene Sigma Cat# TR-1003-G

Critical Commercial Assays

CellTiter-Glo® Luminescent Cell Viability Assay Promega Cat#G7570

Deposited Data

pHAGE-N-FLAG-HA-TBK1 Addgene Cat#131791

pHAGE-TBK1-C-FLAG-HA (untagged) Addgene Cat#131792

Western blot data Mendeley Data https://doi.org/10.17632/789652xcr3.110.17632/789652xcr3.1

Experimental Models: Cell Lines

HeLa ATCC® Cat#CCL-2; subcloned from RJY

HCT116 ATCC® Cat#CCL-247

Patient Fibroblasts Coriell GM05294

Patient Fibroblasts Coriell GM02052

Patient Fibroblasts NINDS depository ND40066

Patient Fibroblasts NINDS depository ND36091

Patient Fibroblasts NINDS depository ND34769

HEK293T ATCC® Cat#CRL-3216

ATM KO HCT116 This paper N/A

PINK1 KO HCT116 This paper N/A

Parkin KO HCT116 This paper N/A

TBK1 KO HeLa Clone 2 This paper N/A

TBK1 KO HeLa Clone 4 This paper N/A

PINK1 KO HeLa Kane et al., 2014 N/A

TBK1 KO Clone 2 rescued with TBK1 WT HeLa This paper N/A

FRB-BFP-Fis1 HeLa This paper N/A

Experimental Models: Organisms/Strains

ATM KO Jackson Laboratories B6.129S6-Atmtm1Awb/J

Parkin KO Jackson Laboratories B6.129S4-Prkntm1Shn/J

Recombinant DNA

hCas9 Addgene Cat#41815

pSpCas9(BB)-2A-Puro (PX459) Addgene Cat#48139

pBMN-mCherry-Parkin Addgene Cat#59419

pBMN-YFP-Parkin Addgene Cat#59416

pCBASceI Addgene Cat#26477

pimEJ5GFP Addgene Cat#44026

pDRGFP Addgene Cat#26475
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REAGENT or RESOURCE SOURCE IDENTIFIER

pmCherry-C1 Clonetech Cat#632524

pEYFP-C1 Clonetech Cat#6005–1

gRNA Cloning Vector Addgene Cat#41824

pDONR223 Invitrogen No longer available

pHAGE-FRB-BFP-Fis1 Vargas et al., 2019 N/A

pHAGE-FKBP-mEGFP-TBK1 Vargas et al., 2019 N/A
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