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Abstract

Background: Atypical face processing is a prominent feature of autism spectrum disorder 

(ASD) but is not universal and is subject to individual variability. This heterogeneity could be 

accounted for by reliable, yet unidentified subgroups within the diverse population of individuals 

with ASD. Alexithymia, which is characterized by difficulties in emotion recognition and 

identification, serves as a potential grouping factor. Recent research demonstrates that emotion 

recognition impairments in ASD are predicted by its comorbidity with alexithymia. The current 

study assessed the relative influence of autistic versus alexithymic traits on neural indices of face 

and emotion perception.

Methods: Capitalizing upon the temporal sensitivity of event-related potentials (ERPs), it 

investigates the distinct contributions of alexithymic versus autistic traits at specific stages of 

emotional face processing in 27 typically developing adults (18 female). ERP components 

reflecting sequential stages of perceptual processing (P100, N170 and N250) were recorded in 

response to fear and neutral faces.

Results: The results indicated that autistic traits were associated with structural encoding of faces 

(N170), whereas alexithymic traits were associated with more complex emotion decoding (N250).

Conclusions: These findings have important implications for deconstructing heterogeneity 

within ASD.
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1. Introduction

The ability to perceive and interpret emotions in everyday human interactions is an integral 

part of social development. Specifically, the capacity to discern meaningful affect from faces 

and use it to guide social communication is key for adaptive reciprocal social behavior 

(Ekman & Friesen, 1976). Faces provide infants’ earliest exposure to social information 

(Goren et al., 1975; Johnson et al., 1991; Meltzoff & Moore, 1977, 1989), and the 

development of face processing offers useful information regarding both typical and atypical 

social trajectories (Batty et al., 2011; Chawarska et al., 2013; Elsabbagh et al., 2012). There 

is wide individual variability in face emotion processing, and proficiency in decoding of 

facial expressions influences social performance (Adolphs et al., 2001; Dawson et al., 2002, 

2004; García-Villamisar et al., 2010; Grelotti et al., 2002, Miu et al., 2012).

Atypical facial expression perception is observed in both clinical populations and the general 

population. Difficulties perceiving emotional facial expressions are commonly observed in 

autism spectrum disorder (ASD; American Psychiatric Association, 2013; Capps et al., 

1992; Celani et al., 1999; Coucouvanis et al., 2012; Gepner et al., 2001; Lerner et al., 2013; 

Ozonoff et al., 1990; Rump et al., 2009), though they are neither universal nor required for 

diagnosis. Aligning with the principles of the National Institute of Mental Health’s Research 

Domain Criteria initiative (RDoC; Insel et al., 2010), perception of emotion may represent a 

functional process that contributes to symptomatology in ASD (and other 

neurodevelopmental disorders) but is not necessary for manifestation of the phenotype. 

Specific difficulties with emotion recognition have also been described in individuals 

without ASD or other clinical conditions (Lane et al., 1996, Miu et al., 2012). Alexithymia 
refers to the reduced capacity to recognize and understand affect (Fitzgerald & Bellgrove, 

2006; Fitzgerald & Molyneux, 2004, Sifneos, 1972, 1973), characterized by a compromised 

ability to identify and interpret emotions, including difficulty with facial affect decoding 

(Grynberg et al., 2010; Kano et al., 2003; McDonald & Prkachin, 1990; Prkachin et al., 

2009; Sifneos, 1973; Taylor et al., 1997). Alexithymic traits are distributed on a continuous 

spectrum across the population (Bird et al., 2011), with the level of alexithymic traits present 

in an individual reflecting his or her level of difficulty in processing emotion (Sifneos, 1973, 

Taylor et al., 1997). Alexithymia is estimated to affect 10 percent of the typically developing 

population (Salminen et al., 1999) and 50 percent of individuals with ASD (Hill et al., 2004; 

Silani et al., 2008).

This high co-occurrence of alexithymia and ASD suggests that alexithymic traits may 

contribute to observed emotion processing deficits to the detriment of overall social 

performance (Bird et al., 2011). Behavioral and neuroimaging studies provide evidence that 

alexithymia better predicts emotion deficits in ASD than do broader autistic traits (Allen et 

al., 2013; Bird et al., 2010, 2011; Cook et al., 2013; Lane et al., 1996; Szatmari et al., 2008). 

This line of inquiry suggests distinct contributions of alexithymia versus autistic traits to 

clinical phenotypes. However, the specific nature and neural basis of these potentially 

unique contributors to social processing are poorly understood. For example, alexithymia 

may reflect difficulties in higher levels of information processing rather than in low-level 

perceptual processes, while autistic traits may influence more basic sensory perception, 
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potentially creating secondary downstream influences on subsequent stages of processing 

(Cook et al., 2013).

In the current study, we applied electrophysiological brain recordings to examine the relative 

influences of autistic versus alexithymic traits on distinct facets of face emotion processing 

(e.g., structural encoding of faces, recognition of emotions). The high temporal resolution of 

brain electrophysiology enables dissociation of brain activity associated with discrete stages 

of processing. In perception of facial emotion, electrophysiological studies demonstrate 

relevance of three event-related potential (ERP) components marking distinct stages of 

perceptual processing of faces (Eimer et al., 2003; Eimer & Holmes, 2002). The P100 

reflects neural responses to basic sensory inputs of visual percepts (Itier & Taylor, 2004; Liu 

et al., 2002; Taylor et al., 2001; Taylor, 2002). The N170 is primarily associated with 

perceptual encoding of facial features (Bentin et al., 1996; Blau et al., 2007), although, there 

is some evidence that suggests there may be a relationship between this ERP component and 

emotion processing (Batty & Taylor, 2003). The N250 response is hypothesized to index 

higher-order perceptual decoding of emotional expression (Lerner et al., 2013; Turetsky et 

al., 2007; Wynn et al., 2008). Electrophysiological research investigating face processing in 

ASD versus typically developing individuals has found that N170 latency is slower for faces 

in ASD, with reduced hemispheric lateralization compared to typically developing control 

groups (Dawson et al., 2005; McPartland et al., 2011, 2004). Evidence also shows there is no 

differential P100 response to inverted versus upright faces in ASD, which differs from the 

enhanced P100 amplitude recorded to inverted faces in typically developing samples 

(Hileman et al., 2011; McCleery et al., 2009; O’Connor et al., 2005). No ERP study to date 

has examined the neural bases of face emotion processing in individuals with alexithymia.

The current study capitalized upon the temporal resolution of ERPs to examine the influence 

of subclinical alexithymic and autistic traits on these discrete stages of emotion processing 

in an adult sample without clinical diagnoses. We predicted that, consistent with prior ASD 

research, autistic traits would be associated with variability in the early stages of face 

processing, indexed by the P100 and N170. In contrast, we predicted that alexithymic traits 

would associate with higher order emotion decoding, indexed by the N250. The findings of 

this study regarding neural circuits subserving face emotion processing in typically 

developing adults are intended to provide information about the relation between social 

brain activity and affective function, providing information about a key neural circuit 

germane to both typical development and clinical populations with ASD.

2. Methods

2.1. Participants

Participants included 27 typically developing adults (18 female), between 19 and 28 years of 

age (M=22.85 years, SD=2.62), recruited from the Yale University community in New 

Haven, Connecticut. None reported a history of psychiatric, neurological or motor 

impairments. All participants gave informed consent and were compensated for their 

participation.
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2.2. Procedure

2.2.1. Behavioral Measures—Level of autistic traits was assessed using the Autism 

Quotient (AQ, Baron-Cohen et al., 2001). The AQ is a 50 item self-report questionnaire, 

consisting of five subscales: Social Skill, Attention Switching, Attention to Detail, 

Communication, and Imagination. Respondents select one of four responses for each item 

on the questionnaire (Baron-Cohen et al., 2001). Scores on the AQ Total Score range from 

0–50, with higher levels of autistic traits indicated by increasing scores (Baron-Cohen et al., 

2001). The AQ is demonstrated to be a reliable and valid tool for determining level of 

autistic traits in the typically developing population (Armstrong & Iarocci, 2013; Baron-

Cohen et al., 2001; Hoekstra et al., 2008; Woodbury-Smith et al., 2005), with scores of 32 or 

higher suggesting a clinical level of autistic traits (Woodbury-Smith et al., 2005).

Level of alexithymic traits was assessed using the Bermond Vorst Alexithymia 

Questionnaire (BVAQ, Vorst & Bermond, 2001). The BVAQ is a 20-item self-report 

questionnaire that includes five subscales: Emotionalizing, Fantasizing, Identifying, 

Analyzing, and Verbalizing. Respondents select among 5 response options ranging from “I 

strongly disagree” to “I strongly agree” (Vorst & Bermond, 2001). Higher scores on this 

measure correspond to greater degree of alexithymic traits. The BVAQ has been found to be 

a reliable and valid measure of alexithymic traits with high internal consistency and good 

validity (Gori, 2012).

2.2.2. Experimental Task—Experimental stimuli consisted of dynamic, grayscale 

computer-generated faces. Stimuli subtended a visual angle of 10.2×6.4°. Stimuli were 

presented centrally on a 17-inch computer screen (60Hz, 1,024×768 resolution) using E-

prime 2.0 software (Schneider et al., 2002). The face stimulus set consisted of 70 unique 

affective faces (fearful expression) and 70 unique neutral faces. Two experimental, non-

neutral face conditions (i.e., featural disarrangement and puffed cheeks) were not included in 

ERP data analyses due to our specific focus on contrasting emotional versus neutral faces. 

Moving balls were interspersed as a target detection task to monitor attention.

The paradigm (Naples et al., 2014) was designed such that, within each trial, the 

presentation of faces included an initial static pose followed by a dynamic change of facial 

expression. The paradigm consisted of five blocks, each containing 93 stimuli: 14 fearful 

faces, 14 neutral faces, 56 faces from excluded conditions (featural disarrangement, puffed 

cheeks), and 9 attentional target stimuli. Faces in their initial static pose were presented for 

500ms. A blank screen was presented for 1000ms at the end of each trial. The presentation 

of face stimuli was preceded by a crosshair fixation whose presentation time was jittered 

between 200–300ms.

Participants sat 72cm from the computer screen and were required to passively view the 

faces on the screen. To ensure participants’ attention to the screen, participants were 

instructed to press a button every time they saw the grey ball (i.e., on attentional control 

trials).
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2.2.3. EEG recording

2.2.3.1. Data Collection:  A 128-electrode channel Geodesic Sensor Net (Electrical 

Geodesics Incorporated, Tucker, 1993) was used to record continuous EEG activity. The 

amplifier was automatically calibrated and impedances were kept below 40kΩ. A 0.1Hz high 

pass filter was used to attenuate low frequencies and noise online. The EEG signal was 

amplified (X1000) using EGI NetAmps 200 and digitized at a sampling rate of 500Hz using 

an analog-to-digital converter. All data were referenced to the vertex electrode (Cz) during 

recording and then re-referenced post data collection using an average reference. 

Participants were instructed to sit as still as possible throughout the task to minimize 

movement artifacts.

2.2.3.2. Data Processing and Analyses:  Netstation 4.3.1 was used for all data processing 

and analyses. Raw EEG data were filtered offline using a 30Hz low pass filter. Data 

segmentation was registered offline to stimulus onset, using a window of 100ms pre-

stimulus and 500ms post-stimulus onset. The two face trials directly following the 

attentional control stimuli were discarded (a total of 9 stimuli within each block). EEG data 

were corrected for low signal quality due to bad electrode channels, eye blinks and eye 

movements at thresholds of 200uV, 140uV and 100uV, respectively. Individual electrode 

channels were excluded from analyses if they recorded a bad signal on 40% of the trials. In 

order to account for exclusion of data recorded from excluded electrodes, spline 

interpolation was used to infer and replace data based on activity recorded from surrounding 

electrodes. Individual trials were excluded if they contained more than 10 bad channels, an 

eye blink or eye movement. Remaining data was then re-referenced to an average reference. 

The data for each experimental condition were averaged across trials for each participant and 

then baseline corrected using the 100ms prestimulus interval. Participants that had less than 

25% of good trials in each condition were excluded from analyses. Mean number of 

included trials was 62.15 (standard deviation = 6.21) for the fear condition, and 61.48 

(standard deviation = 9.89) for the neutral condition.

2.2.3.3. ERP components of interest:  Time windows for the ERP components were 

selected based on visual inspection of the grand average waveform and then confirmed in 

individual subject files. The time windows were as follows: 58–152ms (P100), 132–204ms 

(N170) and 172–318ms (N250). Recording sites and electrodes of interest were selected 

based on precedent (Eimer, 2000; Lerner et al., 2013; Liu et al., 2002; Luo et al., 2010; 

McPartland et al., 2004; Wynn et al., 2008). Data for the P100 was averaged across 

electrodes over the occipital region (Liu et al., 2002) (Figure 1B). For the N170, data was 

examined separately for each hemisphere over the left and right posterior lateral regions of 

the scalp (approximating T5 and T6 sites in the 10/20 system; Eimer et al., 1998, 2000; Halit 

et al., 2000; McPartland et al., 2004) (Figure 2B). Data for the N250 was averaged over 

fronto-central scalp based on previous literature (Lerner et al., 2013; Luo et al., 2010; Wynn 

et al., 2008) and visual inspection of N250 magnitude across sites (Figure 3B). For each 

ERP component, peak amplitude and latency to peak was averaged across electrodes of 

interest, for each participant.
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2.3 Statistical analyses

AQ and BVAQ scores were first examined for collinearity to identify appropriateness for 

further analyses investigating their independent contribution to ERP components. Repeated 

measures analyses of covariance (ANCOVA) was then conducted to: 1) Examine the relation 

between behavioral measures and the amplitude and latency of ERP components; and 2) 

Examine the effect of emotion on the amplitude and latency of ERP components, after 

adjusting for the relation between behavioral measures and ERP components. The dependent 

variables were the latencies and amplitudes of each ERP component. Within-subjects factors 

included experimental conditions and hemisphere (for the N170). Alexithymic traits and 

autistic traits were considered as covariates. Bonferroni adjustment controlled for multiple 

comparisons, and post-hoc bivariate correlations were conducted to infer the directionality 

of identified effects and further examine the relationship between the AQ subscales (Social 

Skill, Attention Switching, Attention to Detail, Communication and Imagination) and ERP 

measures where significant findings were identified.

3. Results

3.1. Behavioral results

Scores on the AQ ranged from 6 to 27 (M=14.93, SD=5.56), and scores on the BVAQ 

ranged from 28 to 69 (M=45.78, SD=9.91). Kolmogorov-Smirnov goodness of fit test was 

conducted to examine distributions. Scores on both behavioral measures were normally 

distributed [AQ: D=.09. p>.05; BVAQ: D=06, p>.05] and without outliers. The AQ and 

BVAQ were not significantly correlated [r(25)=.14, p=.48], suggesting the scales measured 

distinct attributes within the sample.

3.2. P100

3.2.1. Amplitude—No main effects of emotion on P100 amplitude were detected when 

either behavioral measure was included in the analysis as a covariate [Range: F(1,25)=0.01-

F(1,25)=0.36; p=.56- p=.92], and no interaction effects for either emotion and AQ or 

emotion and BVAQ were detected [Range: F(1,25)=0.53- F(1,25)=0.29; p=.60- p=.82]. 

There was no statistically significant main effect of either AQ score [F(1,25)=.32, p=.57] or 

BVAQ score [F(1,25)=.03, p=.87] on P100 amplitude, indicating that neither autistic nor 

alexithymic traits had a significant effect on early visual processing of faces, indexed by the 

P100 amplitude.

3.2.2. Latency—There were no statistically significant main effects of emotion on P100 

latency when either AQ or BVAQ was included in the analysis as a covariate [Range: 

F(1,25)=1.15- F(1,25)=2.36; p=.14- p=.29], and there was no interaction effect of emotion 

with either AQ [F(1,25)=.28, p=.60] or BVAQ [F(1,25)=1.46, p=.24]. There was no 

statistically significant main effect of either AQ [F(1,25)=1.84, p=.19] or BVAQ [F(1,25)=.

58, p=.45] on P100 latency. Thus, neither autistic nor alexithymic traits had a significant 

effect on the speed of early visual processing of faces, indexed by the P100 latency.
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3.3. N170

3.3.1. Amplitude—Results showed no statistically significant main effects of either 

emotion [Range: F(1,25)=0.03- F(1,25)=2.49; p=.13- p=.87] or hemisphere [Range: 

F(1,25)=0.33- F(1,25)=1.34; p=.26- p=.57] on N170 amplitude after including either 

behavioral measure as a covariate. There was no statistically significant interaction effect of 

emotion with AQ [F(1,25)=.44, p=.51] or with BVAQ [F(1,25)=1.76, p=.20]. There was also 

no statistically significant interaction effect of hemisphere with AQ [F(1,25)=2.02, p=.17] or 

with BVAQ [F(1,25)=.23, p=.63]. However, there was a statistically significant three-way 

interaction of emotion, hemisphere and AQ [F(1,25)=4.47, p=.05]. There was also a 

statistically significant main effect of AQ on N170 amplitude [F(1,25)=7.84, p=.01], but no 

statistically significant main effect of BVAQ on N170 amplitude [F(1,25)=.13, p=.73]. There 

was no statistically significant interaction of emotion, hemisphere and BVAQ [F(1,25)=.11, 

p=.74].

Correlational analyses to clarify the observed three-way interaction between AQ, 

hemisphere and emotion revealed significant negative associations between AQ scores and 

right N170 amplitude for fearful [r(25)=−.55, p=.003] and neutral [r(25)=−.44, p=.02] faces 

(Figure 2C), as well as for left N170 amplitude for the neutral condition [r(25)=−.49, p=.01]. 

There were no statistically significant relationships between BVAQ scores and N170 

amplitude for either emotion condition [p>.05].

To clarify whether a particular subset of autistic traits was driving the negative association 

between N170 amplitude and AQ total score, additional correlational analyses were 

conducted between N170 amplitude and individual AQ subscales. These analyses revealed a 

negative association between the Attention Switching subscale and bilateral N170 amplitude 

for both fearful [left: r(25)=−.42, p=.03; right: r(25)=−.58, p=.002] and neutral [left: r(25)=

−.51, p=.01; right: r(25)=−.50, p=.01] faces. A significant negative relationship was also 

found between the Social Skills subscale and right N170 amplitude for fearful faces [r(25)=

−.41, p=.04]; no other relationships were significant.

3.3.2. Latency—There were no statistically significant main effects of emotion [Range: 

F(1,25)=.77- F(1,25)=2.16; p=.15- p=.39] or hemisphere [Range: F(1,25)=.92- 

F(1,25)=3.18; p=.09- p=.35] on N170 latency after including either behavioral measure as a 

covariate. There were also no statistically significant interactions between emotion and 

either AQ [F(1,25)=1.20, p=.28] or BVAQ [F(1,25)=1.37, p=.25] or between hemisphere and 

either AQ [F(1,25)=.27, p=.61] or BVAQ [F(1,25)=2.31, p=.14]. There was no statistically 

significant three-way interaction [F(1,25)=.17, p=.69]. Finally, there were no statistically 

significant main effects of either AQ [F(1,25)=1.90, p=.18] or BVAQ [F(1,25)=.15, p=.70] 

on N170 latency. These results indicate that emotion, hemisphere, and degree of either 

alexithymic or autistic traits did not influence efficiency of structural face decoding, indexed 

by N170 latency.

3.4. N250

3.4.1. Amplitude—Results showed no statistically significant main effect of emotion on 

N250 amplitude when either behavioral measure [Range: F(1,25)=.003- F(1,25)=.90; p=.35- 
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p=.96] was included in the analysis as a covariate and no interaction effect for emotion and 

either AQ [F(1,25)=.76, p=.39] or BVAQ [F(1,25)=.001, p=.98]. These results indicate that 

the N250 amplitude was not influenced by emotion irrespective of autistic or alexithymic 

traits. There were no statistically significant main effects of either AQ [F(1,25)=.03, p=.87] 

or BVAQ [F(1,25)=1.28, p=.27] on N250 amplitude, indicating that neither autistic nor 

alexithymic traits influenced N250 amplitude.

3.4.2. Latency—There were no statistically significant main effects of emotion on N250 

latency when either behavioral measure was included in the analysis as a covariate [Range: 

F(1,25)=1.19-F(1,25)=1.89; p=.18- p=.29], and there were no significant interactions for 

emotion and either AQ [F(1,25)=1.10, p=.31] or BVAQ [F(1,25)=.77, p=.39]. These results 

indicate that N250 latency was not influenced by emotion irrespective of scores on either 

behavioral measure. There was no statistically significant main effect of AQ on N250 

latency [F(1,25)=.17, p=.68]. However, results revealed a statistically significant main effect 

of BVAQ on N250 latency [F(1,25)=4.99, p=.04]; suggesting that alexithymic, not autistic 

traits modulated the efficiency of higher order emotion processing, as indexed by N250 

latency.

Correlational analyses showed a negative correlation [r(25)=−.43, p=.03] between BVAQ 

and N250 latency for the neutral condition (Figure 3C). This suggests that individuals with 

higher levels of alexithymic traits have more rapid N250 responses to neutral faces. There 

were no statistically significant associations between AQ scores and N250 latency for either 

condition [Range: r(25)=.04- r(25)=.12, p=.54- p=.85], and the relationship between BVAQ 

scores and N250 latency to fearful faces was also non-significant [r(25)=−.37, p=.06].

4. Discussion

This study examined the differential influence of subclinical alexithymic and autistic traits 

on the neural processing of facial expressions in typically developing adults. The three ERP 

components of interest were the P100, N170 and N250, which index visual processing, 

structural encoding, and perceptual decoding of emotions, respectively. Results provide 

initial evidence that autistic traits and alexithymic traits differentially contribute to specific 

facets of face processing. Autistic traits were associated with structural encoding of faces, 

indexed by the N170, whereas alexithymic traits were associated with higher order emotion 

processing, indexed by the N250.

The P100 reflects early, low-level visual processing of stimuli and is evoked as an 

endogenous response to faces (Hileman et al., 2011; Itier & Taylor, 2004). The results of this 

study showed no effect of level of either autistic or alexithymic traits on P100 amplitude or 

latency, in response to either fearful or neutral faces. Thus, early stages of visual processing 

appear not to depend on either the emotional content of face stimuli and do not differ as a 

function of autistic or alexithymic traits in typically developing adults.

The N170 is associated with the subsequent stage of perceptual processing and reflects basic 

structural encoding of faces (Bentin et al., 1996; Eimer, 2000). In line with our hypotheses 

and prior studies in clinical populations (McPartland et al., 2011), level of autistic traits 
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influenced N170 response; however, counter to our predictions and prior research in clinical 

populations, higher levels of autistic traits were associated with a more negative (i.e., larger) 

N170 amplitude. This contrasts with prior research in clinical groups, which has revealed 

attenuated amplitude in individuals with ASD. Interestingly, post-hoc analyses of AQ 

subscales showed that, bilaterally, the observed negative relationship was largely driven by 

the Attention Switching subscale, across both fearful and neutral conditions; a reduced 

ability to shift attention was associated with larger N170 amplitude. This may suggest that 

individuals with limited attentional flexibility demonstrate persistent attention to visual 

information, in this case exemplified by enhanced response to face stimuli. This would 

predict similar enhancement to non-face stimuli, which were not included in the present 

study, suggesting an important direction for future research. There was no effect of 

alexithymic traits on the strength of face processing as indexed by the N170, irrespective of 

condition or hemisphere, suggesting that autistic but not alexithymic traits exert effects on 

initial stages of face processing.

In line with our predictions, alexithymic but not autistic traits were associated with emotion 

decoding processes indexed by the N250 component. Specifically, alexithymic traits had a 

significant influence on the efficiency of face emotion processing. Higher levels of 

alexithymia were associated with shorter latency to faces without emotional expressions. 

This unpredicted association with neutral expressions suggests that alexithymic traits may 

confer benefits, in terms of processing efficiency, in contexts in which facial information is 

not conflated with emotional expression. Though the current findings support the notion of 

alexithymic traits relating to efficiency in affective decoding at a later stage in perceptual 

processing (Parker et al., 2005; Prkachin et al., 2009), the nature of this relationship requires 

clarification in future research.

The N250 component has been proposed to reflect higher-order processing of emotion (Luo 

et al., 2010). However, in this study we found no main effect of emotion (neutral versus fear) 

on N250 amplitude or latency, despite elicitation of a robust N250 response by face stimuli. 

This may reflect our experimental design’s reliance on neutral faces, which may not 

categorically be perceived as purely neutral (e.g., neutral differs from a natural resting 

expression; Young et al., 1997; Etcoff & Magee, 1992). Rather, neutral faces can be 

perceived as negatively-valenced and can evoke increased responses in the amygdala, which 

is associated with the processing of emotions such as fear (Birbaumer et al., 1998; Thomas 

et al., 2001). It is possible that our study may not have shown distinct N250 responses to 

emotional expressions because our design contrasted fearful faces with neutral faces, the 

latter inadvertently convey negative valence. Although the use of fearful faces to study 

emotional face processing is well researched, particularly in studies examining the N250 

component (Lerner et al., 2013; Luo et al., 2010; Turetsky et al., 2007; Wynn, Lee, Horan, & 

Green, 2008), future studies examining this ERP component with a broader range of 

emotional stimuli and specifically in contrast to neutral expressions will better inform the 

specific role of the N250 in emotion decoding.

This study targeted a typically developing population, wherein subclinical autistic and 

alexithymic traits exist on a continuum with their phenotypic presentation in an attenuated 

form relative to the clinical populations. One limitation of this study is that it did not use a 
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clinical sample to investigate the relative influence of traits on social perception. However, 

the results of this study inform broader understanding of both the clinical overlap between 

ASD and alexithymia and the degree to which emotion processing relates to clinical features 

associated with ASD (Bolte et al., 2011; Constantino & Todd, 2003; Miu et al., 2012). 

Furthermore, study findings regarding the neural circuits subserving face emotion processing 

enable parallels to be drawn to the ASD population and provide a base upon which future 

studies can be conducted in the clinical population. Another key caveat to this study is the 

sample size. Though normative for neuroscience studies, our sample of 27 may yield limited 

statistical power to detect small effects assessed by personality questionnaires. This work 

requires replication in larger samples.

The few studies that have directly examined the role of co-occurring alexithymia in ASD 

individuals showed that alexithymia, rather than ASD symptomatology itself, was the most 

important contributor to emotion processing problems underlying social dysfunction in the 

patient population (Bird et al., 2010, 2011; Cook et al., 2013). A recent behavioral study 

exploring this overlap showed that alexithymia, rather than ASD, was associated with 

impaired ability to decode emotions. Alexithymia did not, in contrast, contribute to deficits 

in earlier stages of sensory information processing (Cook et al., 2013). Our current findings, 

which utilized electrophysiological methods, corroborate and expand upon these previous 

findings by demonstrating unique contributions of alexithymia and autistic traits to 

differential stages of face perceptual processing. Aligning with the results of prior behavioral 

research, our results revealed an association between alexithymia and emotion-specific 

stages of information processing, whereas ASD symptoms were more strongly associated 

with deficits at earlier stages of information processing (i.e., face structural encoding).

These findings have important implications for parsing heterogeneity associated with ASD 

and support the notion that alexithymia is relevant in explaining behavioral heterogeneity in 

ASD. In particular, the independent role of alexithymia in emotion processing deficits could 

be informative in considering possible neurobiologically relevant subgroups within ASD. 

More specifically, there may be a need to define subgroups of individuals with ASD having 

more or less alexithymic traits in order to better understand the stages of perceptual 

information processing that may drive their social difficulties (Georgiades, 2013). This 

endeavor would enable tailoring of future ASD intervention techniques to more specific core 

deficits or underlying dysfunction, rather than to the broad endpoint deficit in emotion 

recognition and understanding (McPartland & Pelphrey, 2012). Therefore, there is a need to 

account for this overlap with alexithymia when investigating social emotion perception in 

ASD. Future research in individuals with ASD is necessary to further deconstruct the 

concept of heterogeneity in emotion processing evidenced in this study as it applies to 

clinical populations.
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• Alexithymic and autistic traits uniquely contribute to different stages of 

emotion processing.

• Level of autistic traits influence the N170, which is associated with structural 

encoding of faces.

• Level of alexithymic traits associated with emotion decoding processes, 

indexed by the N250 component.

• Results have important implications for parsing behavioral heterogeneity 

within ASD.
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Figure 1. 
A: Grand average waveforms describing the P100 across all participants for fear and neutral 

conditions; B: P100 recording sites.
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Figure 2. 
A: Grand average waveforms describing the right lateralized N170 across all participants for 

fear and neutral conditions; B: N170 recording sites; C: Correlation between right lateralized 

N170 amplitude for neutral condition and AQ scores.
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Figure 3. 
A: Grand average waveforms describing the N250 across all participants for fear and neutral 

conditions; B: N250 recording sites; C: Correlation between N250 latency for neutral 

condition and BVAQ scores.
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