
ORIGINAL RESEARCH
ADULT BRAIN

Deep-Learning Convolutional Neural Networks Accurately
Classify Genetic Mutations in Gliomas

X P. Chang, X J. Grinband, X B.D. Weinberg, X M. Bardis, X M. Khy, X G. Cadena, X M.-Y. Su, X S. Cha, X C.G. Filippi, X D. Bota,
X P. Baldi, X L.M. Poisson, X R. Jain, and X D. Chow

ABSTRACT

BACKGROUND AND PURPOSE: The World Health Organization has recently placed new emphasis on the integration of genetic infor-
mation for gliomas. While tissue sampling remains the criterion standard, noninvasive imaging techniques may provide complimentary
insight into clinically relevant genetic mutations. Our aim was to train a convolutional neural network to independently predict underlying
molecular genetic mutation status in gliomas with high accuracy and identify the most predictive imaging features for each mutation.

MATERIALS AND METHODS: MR imaging data and molecular information were retrospectively obtained from The Cancer Imaging
Archives for 259 patients with either low- or high-grade gliomas. A convolutional neural network was trained to classify isocitrate
dehydrogenase 1 (IDH1) mutation status, 1p/19q codeletion, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methyl-
ation status. Principal component analysis of the final convolutional neural network layer was used to extract the key imaging features
critical for successful classification.

RESULTS: Classification had high accuracy: IDH1 mutation status, 94%; 1p/19q codeletion, 92%; and MGMT promotor methylation status,
83%. Each genetic category was also associated with distinctive imaging features such as definition of tumor margins, T1 and FLAIR
suppression, extent of edema, extent of necrosis, and textural features.

CONCLUSIONS: Our results indicate that for The Cancer Imaging Archives dataset, machine-learning approaches allow classification of
individual genetic mutations of both low- and high-grade gliomas. We show that relevant MR imaging features acquired from an added
dimensionality-reduction technique demonstrate that neural networks are capable of learning key imaging components without prior
feature selection or human-directed training.

ABBREVIATIONS: CNN � convolutional neural network; IDH � isocitrate dehydrogenase; MGMT � O6-methylguanine-DNA methyltransferase; VASARI �
Visually AcceSAble Rembrandt Images

Diffuse infiltrating gliomas are a heterogeneous group of pri-

mary tumors with highly variable imaging characteristics,

response to therapy, clinical course, and prognoses. This well-

known heterogeneity is, in part, attributed to the multiple varia-

tions in the genetic and epigenetic mutations that occur early in

tumorigenesis.1 For example, isocitrate dehydrogenase 1 and/or 2

(IDH1 and/or 2)–mutant glioblastomas demonstrate significantly

improved survivorship compared with IDH wild-type glioblas-

tomas (31 months versus 15 months).2,3 Similarly, patients with

anaplastic oligodendrogliomas with 1p/19q codeletion benefit

from combined procarbazine/lomustine/vincristine therapy and

radiation therapy compared with patients without the muta-

tion.4,5 Regarding chemotherapy response, glioblastomas with

O6-methylguanine-DNA methyltransferase (MGMT) promoter

methylation demonstrate improved response to the combination

of temozolomide and radiation therapy versus radiation therapy
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alone (21.7 versus 15.3 months).6 The World Health Organiza-

tion has recently placed new emphasis on the integration of ge-

netic and molecular information for CNS tumor-classification

schemes, including IDH1 status and 1p/19q codeletion and sev-

eral other molecular or genetic markers.7 Thus, knowledge of tu-

moral genetic information is needed to accurately monitor pa-

tients with gliomas and guide personalized therapies.

At present, information regarding underlying genetic and mo-

lecular alterations of gliomas is based on analysis of tumor tissue

obtained during an operation. However, although high-grade

gliomas are known to infiltrate widely into the surrounding non-

enhancing peritumoral region,8 biopsies are often limited to the

easily accessible areas of the enhancing tumor. Additionally, mo-

lecular genetic testing can be costly or not widely available, and

the results may take weeks, thereby delaying important therapeu-

tic decisions. Noninvasive imaging techniques that can provide

complimentary insight into clinically relevant genetic mutations

may expedite and coordinate care among clinicians, minimizing

these delays.

MR imaging can noninvasively assess the entire tumor, allow-

ing both a global and regional (voxelwise) characterization of mo-

lecular genetics, in contrast to the spatially limited assessment of

tissue biopsy. Specifically, both spatial and temporal variations in

genetic expression are known to result in heterogeneous altera-

tions in tumor biology, including changes in angiogenesis, cellu-

lar proliferation, cellular invasion, and apoptosis.9 These biologic

changes are reflected in the complex imaging features of gliomas,

manifest by varying degrees of enhancement, infiltration, hemor-

rhage, reduced diffusion, edema, and necrosis. Attempts to stan-

dardize visual interpretation of malignant gliomas for tissue clas-

sification have led to the Visually AcceSAble Rembrandt Images

(VASARI) feature set, a rule-based lexicon to improve the repro-

ducibility of interpretation.10 However, a limitation of such ap-

proaches is the need for a priori feature selection and human

visual interpretation, which innately distills a complex dataset of

over a million voxels per MR imaging to a handful of numeric

descriptors—a “big data” challenge.

The purpose of this study was to classify genetic variations of

diffuse infiltrating gliomas using deep-learning/machine-learn-

ing approaches implemented with convolutional neural networks

(CNNs). CNN approaches model the animal visual cortex by ap-

plying a feed-forward artificial neural network to simulate multi-

ple layers of neurons organized in overlapping regions within a

visual field, with each layer acting to transform the raw input

image into more complex, hierarchic, and abstract representa-

tions.11 Thus, it is natural to consider applying deep-learning

methods to biomedical images. We hypothesized the following: 1)

A CNN can be trained to independently predict underlying mo-

lecular genetic mutation status in gliomas with high accuracy, and

2) a trained CNN can identify predictive imaging features for a

given mutation.

MATERIALS AND METHODS
Subjects
MR imaging data were retrospectively obtained from The Cancer

Imaging Archives for patients with either low- or high-grade glio-

mas.12 Corresponding molecular genetic information was ob-

tained from The Cancer Genome Atlas. Only patients with full

preoperative MR imaging, including T2, FLAIR, and T1-weighted

pre- and postcontrast acquisitions, were included in the analysis.

Corresponding molecular information for each patient was ob-

tained, including IDH1 status, 1p/19q codeletion, and MGMT

promoter methylation.13

Image Preprocessing
For each patient, all imaging modalities were coregistered using

the FMRIB Linear Image Registration Tool (FLIRT; http://www.

fmrib.ox.ac.uk/fsl/fslwiki/FLIRT).14,15 Registration was imple-

mented with a linear affine transformation algorithm using 12 df,

trilinear interpolation, and a mutual-information cost function.

The reference volume for coregistration was the highest resolu-

tion sequence, most commonly the postcontrast T1-weighted ac-

quisition. The average time for coregistration was approximately

1 minute per volume. On a typical multicentral processing unit

core workstation, the required total of 3 registrations per patient

can be performed simultaneously as separate processes, thus al-

lowing all modalities to be coregistered in approximately 1

minute.

Each input technique was independently normalized using z-

score values (� � 0, � � 1). From these, a custom in-house fully

automated whole-brain extraction tool– based 3D convolutional

neural network was used to remove extracranial structures. Next,

a fully automated brain tumor segmentation tool was used to

identify lesion margins. This algorithm was the top-performing

tool as evaluated in the international 2016 Multimodal Brain Tu-

mor Segmentation Challenge.16 It is based on a serial fully convo-

lutional neural network architecture with residual connections

and performs whole-tumor segmentation in approximately 1 sec-

ond. These masks were used to generate cropped slice-by-slice

images of the tumor on all modalities, each of which were subse-

quently resized to a 32 � 32 � 4 input.

No other form of preprocessing was necessary for this study.

Specifically, the flexibility of CNNs allows robust classification,

even in the absence of conventional image-preprocessing steps

such as histogram normalization or bias field correction.

Convolutional Neural Networks
CNNs are an adaption of the traditional artificial neural network

architecture whereby banks of 2D convolutional filter parameters

and nonlinear activation functions act as a mapping function to

transform a multidimensional input image into a desired out-

put.17 Network overview and details are provided in the On-line

Appendix.

Feature Analysis
The final feature vector produced by a neural network through

serial convolutions often encodes for redundant information,

given the flexibility of the algorithm to choose any feature neces-

sary to produce accurate classification. In the architecture used

for this study, this means that many of 64 features in the final

hidden layer will be highly correlated to each other. To decom-

pose this encoded information and gain insight into features

learned by the algorithm, we applied principal component anal-

ysis to the final feature vector with various dimensionally reduced
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subspaces, L �.1,5 By means of this ap-

proach, the principal component analy-

sis–reduced features, whose weights have

the largest absolute value magnitude with

respect to the final classification, can be

identified. These features can be inter-

preted as those automatically learned by

the algorithm that are most influential in

classification of any given mutation status.

These final imaging features identified by

the algorithm are shown in Figs 1–4.

Statistical Analysis
To evaluate overall per-patient accu-

racy, we pooled mean softmax scores

across all image slices, with a threshold

of 0.5 used to determine mutation clas-

sification. As an example of IDH status,

an average softmax score of �0.5 repre-

sents prediction of mutant status, while

an average softmax score of �0.5 repre-

sents prediction of wild-type status.

While a softmax score of 0.5 is the stan-

dard threshold for neural network clas-

sification, it is possible to arbitrarily

change this cutoff to between 0 and 1 to

alter the sensitivity and specificity of the

network. By means of this approach,

overall algorithm performance on a

wide range of thresholds is reported as

an area under the curve calculation for

each mutation.

To assess algorithm generalization, we

used a 5-fold cross-validation approach.

For each of the 5 experimental iterations,

20% of the data were used for validation,

while the remaining 80% of the data were

used for training. Results are reported for

only patients in the validation cohort after

5-fold cross-validation.

RESULTS
Subjects
A total of 5259 axial slices of tumor from

259 patients with gliomas (135 men/122

women/2 unknown; mean age, 53.2

years; mean survival, 18.8 years) were

included for analysis. The distribution

of gliomas included the following:

21.2% (55/259) grade II, 22.8% (59/259)

grade III, and 55.2% (143/259) grade IV

gliomas. There were 2 gliomas that had

available genetic information but no

World Health Organization grade as-

signment. IDH1 mutant and wild-type

tumors accounted for 45.9% (119/259)

and 54.1% (140/259) of patients, respec-

tively; 1p/19q codeletions and nondele-

FIG 1. T1 postcontrast features most highly correlated with IDH1 mutation status. Prototypical
cases as identified by our convolutional neural network imaging features associated with IDH wild
types (A and C) and mutation (B and D). Specifically, IDH wild types demonstrate thick and
irregular enhancement (A) or thin, irregular poorly marinated peripheral enhancement (B). In
contrast, patients with IDH mutation demonstrate absent or minimal enhancement (C) with
well-defined tumor margins (D).

FIG 2. FLAIR features most highly correlated with IDH1 mutation status. Prototypical cases as
identified by our convolutional neural network imaging features are associated with IDH wild
types (A and B) and mutation (C and D). IDH wild types demonstrate infiltrative patterns of edema,
seen as more irregular (A) and ill-defined (D) margins of FLAIR signal abnormality. Patients with IDH
mutation demonstrate central areas of cysts with FLAIR suppression (C) and well-defined tumor
margins (D).
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tions accounted for 12.0% (31/259) and

88.0% (228/259) of patients, respec-

tively. MGMT promoter methylated

and unmethylated accounted for 56.4%

(146/259) and 43.6% (113/259) of pa-

tients, respectively. The mean tumor

size determined by automated segmen-

tation masks was 105.6 cm3.

CNN Accuracy
Overall, the algorithm correctly pre-

dicted IDH1 mutation (mean, 94%;

range between cross validations, 90%–

96%), 1p/19q codeletion (mean, 92%;

range, 88%–95%), and MGMT promoter

methylation (mean, 83%; range, 76%–

88%) on 5-fold cross-validation. The area

under the curve for IDH mutation (mean,

0.91; range, 0.89–0.92), 1p/19q codele-

tion (mean, 0.88; range, 0.85–0.90), and

MGMT promoter methylation (mean,

0.81; range, 0.76–0.84) also reflected high

performance. The CNN was trained for

25,000 iterations (approximately 3000 ep-

ochs with batch sizes ranging from 12 to

48) before convergence. A single forward

pass during test time for classification of

new cases can be achieved in 0.0043 sec-

onds. Overall, the imaging workflow takes

5.12 seconds per patient (4–5 seconds for

detection and preprocessing and the re-

maining 0.0043 seconds for classification).

Feature Analysis
For IDH1 mutation (Figs 1 and 2), the

most predictive features were the fol-

lowing: absent or minimal areas of en-

hancement (the presence of a larger por-

tion of nonenhancing tumor), central

areas of cysts with low T1 and FLAIR

suppression, and well-defined tumor

margins. By comparison, IDH1 wild-

type tumors tended to demonstrate a

larger portion of enhancing tumor

with thick enhancement; thin, irregular,

poorly marginated peripheral enhance-

ment with central necrosis; and an infil-

trative pattern of edema (seen as more

irregular and ill-defined margins of T2/

FLAIR signal abnormality).

For 1p19 codeletion (Fig 3), the most

predictive features were left frontal lobe

location, ill-defined tumor margins, and

larger portion of enhancement. Com-

pared with either IDH1 mutation or

MGMT promoter methylation, many

features learned by the CNN for 1p19

FIG 3. MR imaging features most highly correlated with 1p/19q codeletion. Prototypical cases as
identified by our convolutional neural network imaging features are associated with 1p/19q ab-
sence (A and B) and presence (C and D) codeletion status. Features predictive of the absence of
1p/19q codeletion are poor enhancement (A) and increased vasogenic edema (B). Features pre-
dictive of the presence of 1p/19q codeletion are increased enhancement (C) and a left frontal
predominance and ill-defined FLAIR margins with mass effect (D).

FIG 4. Features most highly correlated with MGMT methylation. Prototypical cases as identified
by our convolutional neural network imaging features associated with unmethylated (A and B)
and methylated (C and D) MGMT statuses. Features predictive of MGMT unmethylated status
include thick enhancement with central necrosis (A) with infiltrative edema patterns (B). In con-
trast, features predictive of MGMT promoter methylated status include nodular and heteroge-
neous enhancement (C) with masslike FLAIR edema (D).
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codeletion were highly correlated to each other; this finding

resulted in an overall smaller number of differentiable features.

For MGMT promoter methylation (Fig 4), the most predictive

features were a heterogeneous, nodular enhancement; the pres-

ence of an eccentric cyst; more masslike edema (larger lesions with

a higher portion of nonenhancing tumor component) with corti-

cal involvement; and slight frontal and superficial temporal pre-

dominance. By comparison, unmethylated tumors tended to

demonstrate thin rim enhancement, central areas of necrosis,

solid enhancement, more vasogenic edema, and a slight, deep

temporal predominance.

DISCUSSION
The variability of clinical outcomes in patients with diffuse infil-

trating gliomas is, in part, predicated on molecular and genetic

heterogeneity, which has spurred the development and study of

noninvasive tools to better classify these tumors. In this study, we

used a deep-learning approach to classify individual somatic mu-

tations of diffuse infiltrating gliomas, World Health Organization

II–IV, including IDH1 status; 1p/19q codeletion; and the presence

of MGMT promoter methylation with an accuracy of 94% (90%–

96%), 92% (88%–95%), and 83% (76%– 88%), respectively. We

were able to implement the entire preprocessing pipeline from

tumor detection to tissue segmentation to mutation classification

without human supervision. Furthermore, neural networks have

been criticized for being “black boxes” that generate uninterpre-

table feature vectors, which limits insight into the underlying

mechanism for image classification. In this study, we applied a

dimensionality-reduction approach to visually display the highest

ranking features of each mutation category.

Molecular analysis of tumors has significantly impacted the

diagnosis of glial tumors, with important implications for both

prognosis and therapy guidance. The recently published 2016

World Health Organization Classification of Tumors of the Cen-

tral Nervous System included several molecular genetic altera-

tions as important features of tumor classification.7 One of the

significant changes has been in the classification of oligodendro-

gliomas, in which mutations of IDH1 or 2 and 1p/19q codeletion

are the defining and diagnostic markers. Additionally, hyper-

methylation of the MGMT promoter, an enzyme involved in

DNA de-alkylation and mediation of DNA damage, is a positive

prognostic factor.6 Patients with a methylated MGMT promoter

have improved survival and better response to radiation therapy

with concurrent temozolomide.6,18

Prior classic machine-learning approaches for linking imaging

features to these genetic alternations in gliomas have typically

relied on human-derived feature extraction such as textural anal-

ysis approaches or rule-based systems such as VASARI. For exam-

ple, Ryu et al19 applied texture analysis to evaluate glioma heter-

ogeneity to distinguish low- and high-grade gliomas with an 80%

accuracy. Additionally, Drabycz et al20 described a textural anal-

ysis approach to classifying MGMT promoter methylation status

in patients with glioblastomas with 71% accuracy. More recently,

Kanas et al21 achieved a 74% accuracy in distinguishing the

MGMT promoter methylation status from gliomas acquired from

The Cancer Genome Atlas using a multivariate prediction model

based on qualitative imaging features from the VASARI lexicon.

While these approaches have improved the reproducibility and

accuracy of classification, the need for manual a priori feature

selection remains an inherently limiting factor, a process depen-

dent on expert opinion and an assumption of relevant features.22

As a result, there has been a recent paradigm shift toward end-

to-end machine learning using CNNs, which are rapidly outper-

forming conventional benchmarks on various computer vision

tasks.11,23 These models are capable of automatically identifying

patterns in complex imaging datasets, thus combining both fea-

ture selection and classification into 1 algorithm and removing

the need for direct human interaction during the training process.

With deep-learning approaches, classification error rates of pop-

ular computer vision benchmarks have been significantly lower

and now outperform humans on the same task.24-26

Recent use of CNNs has started to yield promising results in

multiple medical imaging disciplines, including the detection

of pulmonary nodules,27 colon cancer,28 and cerebral microb-

leeds.29 For example, Lakhani and Sundaram30 applied a CNN

approach to automatically identify patients with pulmonary tu-

berculosis with an area under the curve of 0.99, allowing radiolo-

gists to achieve a 97% sensitivity and 100% specificity. This out-

come is in comparison with an area under the curve of up to 0.84

using classic machine-learning approaches such as texture and

shape analysis.31 Additionally, Chang et al32 developed a CNN

approach to automatically identify and count tumor cells from

localized biopsy samples of patients with glioblastomas with an

accuracy of 96.2%. Zhang et al33 observed that a CNN approach

performed significantly better than other techniques for brain

segmentation in infants, including random forest, support vector

machine, coupled level sets, and most voting.

Given the potential advantages of deep learning, a few studies

have also started to explore the use of CNN-based approaches in

the determination of glioma mutation status from MR imaging.

Recently, Chang et al34 used a 34-layer residual neural network to

predict IDH status with up to 89% accuracy using MR imaging in

combination with patient age. Compared with the current study,

the network used by Chang et al has several million parameters

(�1 order magnitude larger than the customized network used in

this study), in part limiting overall accuracy through compensa-

tory measures needed to prevent overfitting. Furthermore, only

several prototypical slices of the tumor were used (compared with

the entire volume in this study), which were then combined in all

3 orthogonal planes (requiring high-resolution isotropic imag-

ing). Korfiatis et al35 also recently described a 50-layer residual

network architecture to predict MGMT status. However, the re-

ported classification accuracy of 94.9% comprising 2027 of 2612

images (78%) used for testing contained no tumor at all. Further-

more, the 155 patients used in that study were derived completely

from just a single academic center. Finally, in comparison with

these prior works, the current study is the first to demonstrate the

feasibility of a single neural network architecture to simultane-

ously predict the status of multiple different mutations (IDH1

status, 1p/19q codeletion, MGMT promoter methylation) with

minimal preprocessing in an efficient, fully automated approach.

Despite high accuracy, a commonly cited limitation of CNNs

is the apparent difficulty in understanding the underlying black

box analytic engine of a network. Several recent studies, however,
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have proposed novel techniques such as deconvolutional neural

networks and occlusion saliency maps to develop a deeper mech-

anistic understanding of the classification process.36 In this study,

we introduced a new technique to visualize the imaging features

most relevant to the classification of genetic mutation status using

principal component analysis as a means of dimensionality reduc-

tion and disentanglement of the final feature vector layer. This

approach is useful in medical imaging domains in which the dif-

ferentiating characteristics of the various disease classes may not

be well-established, helping to identify clusters of imaging find-

ings that can be used to guide practicing physicians (Figs 1– 4).

In general, the clusters of imaging features identified by the

neural network in this study represent a composite of various

qualitative descriptions found elsewhere in the literature. For ex-

ample, MR imaging features predictive of IDH1 mutant status

included absent or minimal areas of enhancement, central areas

of cystlike necrosis with low T1 and FLAIR suppression, and well-

defined tumor margins. This result is in line with existing litera-

ture, in which IDH1 mutants have been reported to demonstrate

absent or minimal enhancement37-39 and well-defined tumor

margins.38,40 By contrast, we observed that IDH1 wild-type tu-

mors demonstrated thick and irregular enhancement with an in-

filtrative pattern of edema.

For 1p/19q codeletion, the most predictive features were fron-

tal lobe location, ill-defined tumor margins, and increased en-

hancement. This finding is also in line with existing literature,

which has demonstrated that tumors with 1p/19q codeletion are

more likely to be found in the frontal cortex.41 Additionally,

Sonoda et al39 demonstrated that codeleted tumors are more

likely to show contrast enhancement. Finally, the margins of 1p/

19q codeleted tumors have also been characterized as poorly

circumscribed.42

With regard to MGMT promoter methylation, the most pre-

dictive features were a mixed, nodular enhancement; the presence

of an eccentric cyst or area of necrosis; more masslike edema with

cortical involvement; and slight frontal and superficial temporal

predominance. Existing literature has similarly observed that tu-

mors with MGMT promoter methylation tend to have a frontal

lobe location43,44 (often colocalization with the IDH1 mutation in

this region43) and the presence of an eccentric necrotic cyst.20,45

By comparison, we observed that nonmethylated tumors tended to

demonstrate rim enhancement with central areas of necrosis. This

observation is also congruent with other literature that has used sub-

jective visual assessment, in which nonmethylated tumors are ob-

served to demonstrate either ring enhancement with central necro-

sis,20,46 solid enhancement,21 and ill-defined margins.45

When one interprets the results of our study, several limita-

tions should be kept in mind. First, this is a relatively small sample

size (n � 259) compared with the neural network studies within

the nonmedical domains, which typically include tens of thou-

sands. To address this limitation, we designed a tailormade neural

network architecture with a relatively small number of parame-

ters/layers and high normalization. Additionally, all imaging in-

put was resampled to a relatively small size (32 � 32 � 4) to

prevent overfitting. Therefore, input for prediction is limited to

4096 voxels on any given slice of tumor as opposed to the potential

tens of thousands of voxels. Second, this study is a retrospective

study of The Cancer Imaging Archives dataset, a heterogeneous

dataset from multiple different contributing sites. However, the

success of our network on this dataset suggests that the underlying

CNN approach in this study is capable of handling nonuniform

imaging protocols. Last, this study is limited by lack of an inde-

pendent dataset. While the cross-fold validation technique used

in this study ensures that the model generalizes well to held-out

cohorts from The Cancer Imaging Archives dataset, generaliza-

tion to unseen datasets remains to be determined. Future studies

will need to expand the training set to include a variety of cancer

sites and MR imaging scanners.

CONCLUSIONS
The results of our study show the feasibility of a deep-learning

CNN approach for the accurate classification of individual genetic

mutations of both low- and high-grade gliomas. Furthermore, we

demonstrate that the relevant MR imaging features acquired from

an added dimensionality-reduction technique are concordant

with existing literature, showing that neural networks are capable

of learning key imaging components without prior feature selec-

tion or human directed training.
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