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R E S E A R C H  M E T H O D S

Detecting and quantifying causal associations in large 
nonlinear time series datasets
Jakob Runge1,2*, Peer Nowack2,3,4, Marlene Kretschmer5†, Seth Flaxman4,6, Dino Sejdinovic7,8

Identifying causal relationships and quantifying their strength from observational time series data are key 
problems in disciplines dealing with complex dynamical systems such as the Earth system or the human body. 
Data-driven causal inference in such systems is challenging since datasets are often high dimensional and nonlinear with 
limited sample sizes. Here, we introduce a novel method that flexibly combines linear or nonlinear conditional inde-
pendence tests with a causal discovery algorithm to estimate causal networks from large-scale time series datasets. 
We validate the method on time series of well-understood physical mechanisms in the climate system and the human 
heart and using large-scale synthetic datasets mimicking the typical properties of real-world data. The experiments 
demonstrate that our method outperforms state-of-the-art techniques in detection power, which opens up entirely 
new possibilities to discover and quantify causal networks from time series across a range of research fields.

INTRODUCTION
How do major climate modes such as the El Niño Southern Oscillation 
(ENSO) influence remote regions via global teleconnections? How 
are physiological processes in the human body coupled? Also, through 
which pathways do different brain regions interact? Identifying causal 
association networks of multiple variables and quantifying causal 
strength are key challenges in the analysis of complex dynamical 
systems, especially since, here, interventional real experiments, the 
gold standard of scientific discovery, are often unethical or practically 
impossible. In climate research, model simulations can help to test 
causal mechanisms, but these are very expensive, time consuming, 
and represent only an approximation of the real-world physical 
processes (1). We here introduce an approach that learns causal 
association networks directly from time series data. These data- 
driven approaches have become increasingly attractive as recent 
decades have seen an explosion in data availability from simulations 
and real-world observations, for example, in Earth sciences (2). We 
therefore identify an urgent need for the development of novel causal 
discovery methods that can take advantage of this recent surge of 
big data, which, as we show here, has the potential to facilitate progress 
in many areas of sciences.

In a typical observational analysis scenario, for example, in 
climate science, a researcher has a hypothesis on the causal influence 
between two processes given observed time series data. The data 
may consist of different climatological variables (e.g., temperature 
and pressure) at one location, or of time series that represent re-
gional averages of climatological variables, for example, commonly 
defined climate indices. For example, she may be interested in the 
influence of the regional ENSO index on an index characterizing 
the temperature variability over certain land areas of North America. 

Suppose the time series show a clear correlation, suggesting a rela-
tionship between the two processes. To exclude other possible 
hypotheses that may explain such a correlation, she will then include 
other relevant variables. In highly interconnected systems, there are 
typically many possible drivers she could test, quickly leading to 
high-dimensional causal discovery problems.

The goal in time series causal discovery from complex dynam-
ical systems is to statistically reliably estimate causal links, includ-
ing their time lags. Climatic teleconnections, for example, can take 
days to months. Two key challenges are the typically high dimen-
sionality of these causal discovery problems and the often strong 
interdependencies. For instance, in a system comprising dozens to 
hundreds of variables (e.g., different regional climate indices), 
correlations will arise not only because of direct causal effects but 
also because of autocorrelation effects within each time series, in-
direct links, or common drivers (Fig. 1). Ideally, a causal discovery 
method detects as many true causal relationships as possible (high 
detection power) and controls the number of false positives (incorrect 
link detections). Causal discovery can help to better understand 
physical mechanisms, to build more parsimonious prediction models, 
and to more reliably estimate the strength of causal effects, which 
can be done in different frameworks, for example, the potential 
outcome (3) or graphical model frameworks (4, 5). Put simply, 
causal discovery will be useful in situations where researchers 
wish to study complex dynamical systems in a way that goes 
beyond simple correlation analyses. Of course, any causal inter-
pretation will rest on a number of assumptions (4, 5) as we further 
discuss below.

A major current approach not only in Earth data analysis (6–9) 
but also in neuroscience (10, 11) is to estimate time-lagged causal 
associations using autoregressive models in the framework of 
Granger causality (12, 13). If implemented using standard regres-
sion techniques, then the high dimensionality of typical datasets 
leads to very low detection power (the “curse of dimensionality”) 
since sample sizes are often only on the order of a few hundred (e.g., for 
a monthly time resolution with 30 years of satellite data). This 
shortcoming leads to a dilemma that has limited applications of 
Granger causality mostly to bivariate analyses that cannot, however, 
account for indirect links or common drivers. Complementary to 
linear Granger causality, state- space methods (14, 15) better address 
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nonlinear state-dependent couplings, but these are also difficult to 
extend to high-dimensional scenarios.

There are methods that can cope with high dimensionality, such 
as regularized regression techniques (16–18), but mainly in the context 
of prediction and not causal discovery where assessing the signifi-
cance of causal links is more important. An exception is Lasso 
regression (17), which also allows discovering active variables. 
Another approach with some recent applications in geosciences 
(19–24) is algorithms aimed specifically at causal discovery (4, 5, 25), 
which use iterative independence and conditional independence testing. 
However, both regularized regression (26) and recent implementa-
tions of causal discovery algorithms do not deal well with the strong 
interdependencies due to the spatiotemporal nature of the variables, 
as we show here. In particular, controlling false positives at a desired 
level is difficult for these methods and becomes even more challeng-
ing for nonlinear estimators. In summary, these problems lead to 
brittle estimates of causal networks and causal effects, and a more 
reliable methodology is required. In (2), the authors present an 
overview of the state of the art in causal inference methods and 
discuss related challenges with a focus on Earth sciences.

We present a causal network discovery method based on the 
graphical causal model framework (5) that scales well with large time 
series datasets featuring linear and nonlinear, time-delayed depen-
dencies. Through analytical results, real-world applications, and 
extensive numerical experiments, we demonstrate that the proposed 
method has substantial advantages over the current state of the art in 
dealing with interdependent time series datasets on the order of dozens 
to hundreds of variables for sample sizes of a few hundred or more, 
yielding reliable false-positive control and higher detection power. We 
also find that more reliable causal network estimates yield more 
precise estimates of causal effects, bridging causal discovery with 
causal effect inference frameworks such as the potential outcome 
framework. Our approach enables causal analyses among more 
variables, opening up new opportunities to more credibly estimate 
causal networks and causal effects from time series in Earth system 
science, physiology, neuroscience, and other fields.

CAUSAL DISCOVERY
Motivating example from climate science
In the following, we illustrate the causal discovery problem on a 
well-known long-range teleconnection. We highlight two main 
factors that lead the common autoregressive Granger causal model-
ing approach to have low detection power: reduced effect size due to 
conditioning on irrelevant variables and high dimensionality.

Given a finite time series sample, every causal discovery method 
has to balance the trade-off between too many false positives (incorrect 
link detections) and too few true positives (correct link detections). 
A causality method ideally controls false positives at a predefined 
significance level (e.g., 5%) and maximizes detection power. The 
power of a method to detect a causal link depends on the available 
sample size, the significance level, the dimensionality of the problem 
(e.g., the number of coefficients in an autoregressive model), and 
the effect size, which, here, is the magnitude of the effect as mea-
sured by the test statistic (e.g., the partial correlation coefficient). 
Since the sample size and the significance level are usually fixed in 
the present context, a method’s power can only be improved by 
reducing the dimensionality or increasing the effect size (or both).

Consider a typical causal discovery scenario in climate research 
(Fig. 2). We wish to test whether the observational data support the 
hypothesis that tropical Pacific surface temperatures, as represented 
by the monthly Nino 3.4 index (further referred to as Nino; see map 
and region in fig. S2) (27), causally affected extratropical land air 
temperatures (28) over British Columbia (BCT) for 1979–2017 (T = 
468 months). We chose this example since it is well established and 
physically understood that atmospheric wave trains induced by in-
creased sea surface temperatures over the tropical Pacific can affect 
North American temperatures but not the other way around (9, 29–31). 
Thus, the ground truth here is Nino → BCT on the (intra)seasonal 
time scale, allowing us to validate causality methods.

We start with a time-lagged correlation analysis and find that the 
two variables are correlated in both directions, that is, for both 
positive and negative lags (Fig. 2A and see fig. S2 for lag functions), 
suggesting also an influence from BCT on Nino. The correlation 
Nino → BCT has an effect size of ≈ 0.3 (P < 10−4) at a lag of 2 months. 
In the networks in Fig. 2, the link colors denote effect sizes (gray 
links are spurious), and the node colors denote the autocorrelation 
strength.

Lagged correlation cannot be used to infer causal directionality 
and not even the correct time lag of a coupling (20). Hence, we now 
move to causal methods. To test Nino → BCT, the most straight-
forward approach then is to fit a linear autoregressive model of BCT 
on past lags of itself and Nino and test whether and which past co-
efficients of Nino are significantly different from zero. This is equivalent 
to a lag-specific version of Granger causality, but one can phrase 
this problem also more generally as testing for conditional indepen-
dence between Ninot− and BCTt conditional on (or controlling for) 
the common past   X t  

−  = ( Nino  t−1  ,  BCT  t−1  , … ) , denoted   Nino  t−   ⫫  
BCT  t  ∣ X t  

−  ∖ { Nino  t−  } . For estimating conditional independencies 
(see below), the time index t runs through the samples up to the 
time series length T.   X t  

−   is, in practice, truncated at a maximum time 
lag max, which depends on the application and can be chosen 
according to the maximum causal time lag expected in the complex 
system or based on the largest lag with significant correlation. We 
call this general approach full conditional independence testing 
(FullCI; see table S3 for an overview of methods considered in this 
paper) and illustrate it in a linear partial correlation implementation 

A B

Fig. 1. Causal discovery problem. Consider a large-scale time series dataset 
(A) from a complex system such as the Earth system of which we try to estimate 
the underlying causal dependencies (B), accounting for linear and nonlinear 
dependencies and including their time lags (link labels). Pairwise correlations yield 
spurious dependencies due to common drivers (e.g., X1 ← X2 → X3) or transitive 
indirect paths (e.g., X2 → X3 → X4). Causal discovery aims to unveil such spurious 
dependencies, leading to estimated causal networks that are, therefore, much 
sparser than correlation networks.
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for this example, that is, we test  ( Nino  t−  ,  BCT  t  ∣ X t  
−  ∖ { Nino  t−  }) ≠ 0  

for different lags , which is the effect size for FullCI.
Using a maximum time lag max = 6 months, we find a significant 

FullCI partial correlation for Nino → BCT at lag 2 of 0.1 (P = 0.037) 
(Fig. 2A) and no significant dependency in the other direction. That 
is, the effect size of FullCI is strongly reduced compared to the cor-
relation (≈ 0.3) when taking into account the past. However, as 
mentioned before, such a bivariate analysis can usually not be inter-
preted causally, because other processes might explain the relationship. 
To further test our hypothesis, we include another variable Z that 
may explain the dependency between Nino and BCT (Fig. 2B). 
Here, we generate Z artificially for illustration purposes and define 
  Z  t   = 2 ·  Nino  t−1   +   t  

Z   for independent standard normal noise    t  
Z  . 

Thus, Nino drives Z with lag 1, but Z has no causal effect on BCT, 
which we assume a priori unknown. Here, we simulated different 
realizations of Z to measure detection power and false-positive rates. 
We find that the correlation would be even more misguiding a causal 
interpretation since we observe spurious links between all variables 
(Fig. 2B). The FullCI partial correlation, with   X t  

−   including the past 
of all three processes and not just BCT and Nino, now has an effect 
size of 0.09 for Ninot−2 → BCTt compared to 0.1  in the bivariate 
case. At a 5% significant level, this link is only detected in 53% of the 
realizations (true-positive rate, arrow width in Fig. 2).

What happened here? As mentioned above, detection power 
depends on dimensionality and effect size. Conditioning on the past 

of variable Z slightly increases the dimensionality of the conditional 
independence test, but this only partly explains the low detection 
power. If Z is constructed in such a way that it is independent of Nino, 
then the FullCI partial correlation is 0.1 again, as in the bivariate 
case, and the true-positive rate is 85%. The more important factor is 
that, since Nino drives Z, Z contains information about Nino, and 
because Z is part of the conditioning set   X t  

−  , it now “explains away” 
some part of the partial correlation  ( Nino  t−2  ,  BCT  t  ∣ X t  

−  ∖ { Nino  t−2  }) , 
thereby leading to an effect size that is just 0.01 smaller, which 
already strongly reduces the detection rate.

Suppose we got one of the realizations of Z for which the link 
Ninot−2 → BCTt is still significant. To further illustrate the effect of 
high dimensionality on detection power, we now include six more 
variables Wi (i = 1, …, 6), which are all independent of Nino, BCT, 
and Z but coupled between each other in the following way (Fig. 2C): 
  W t  

i   =  a   i   W t−1  i   + c  W t−2  i−1   +   t  
i    for i = 2, 4, 6 and   W t  

i   =  a   i   W t−1  i   +   t  
i    for 

i = 1, 3, 5, all with the same coupling coefficient c = 0.15 and a1,2 = 0.1, 
a3,4 = 0.5, and a5,6 = 0.9. Now, the FullCI effect size for Ninot−2 → 
BCTt is still 0.09, but the detection power is even lower than before 
and decreases from 53% to only 40% because of the higher dimen-
sionality. Thus, the true causal link Ninot−2 → BCTt is likely to be 
overlooked.

Effect size is also affected by autocorrelation effects of the included 
variables: The coupled variable pairs   W t−2  i−1  → W t  

i    (i = 2, 4, 6) differ in 
their autocorrelation (as visualized by their node color in Fig. 2C) 

C

B

A

Fig. 2. Motivational climate example. Correlation, FullCI partial correlation, and PCMCI partial correlation between the monthly climate index Nino (3.4 region) 
(27) and land air temperature over British Columbia (28) (A) for 1979–2017 (T = 468 months), as well as artificial variables [Z and Wi in (B and C)]. Node colors depict 
autocorrelation strength, edge colors the partial correlation effect size, and edge widths the detection rate estimated from 500 realizations of the artificial variables 
Z and Wi at a significance level of 5%. The maximum lag is max = 6. Correlation does not allow for a causal interpretation, leading to spurious correlations (gray 
edges) (A). FullCI identifies the correct direction Nino→BCT but loses power because of smaller effect size (B) and higher dimensionality (C) if more variables are 
added. PCMCI avoids conditioning on irrelevant variables, leading to larger effect size, lower dimensionality, and, hence, higher detection power. See fig. S2 for 
more details.
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and, although the coupling coefficient c is the same for each pair, their 
FullCI partial correlations are 0.15, 0.13, and 0.11 (from lower to 
higher autocorrelation). Similar to the above case, conditioning on 
past lags, here   W t−1  i    (i = 1, 3, 5), explains away information, leading 
to a smaller effect size and lower power the higher their autocorrelation 
is. Conversely, we here observe more spurious correlations for higher 
autocorrelations (Fig. 2C, left).

This example illustrates a ubiquitous dilemma of causal discovery 
in many fields: To strengthen the credibility of causal interpreta-
tions, we need to include more variables that might explain a spurious 
relationship, but these lead to lower power to detect true causal links 
due to higher dimensionality and possibly lower effect size. Low de-
tection power also implies that causal effect estimates become less 
reliable as we show in Results. Ideally, we want to condition only on 
the few relevant variables that actually explain a relationship.

Causal network discovery with PCMCI
The previous example has shown the need for an automated proce-
dure that better identifies the typically few relevant variables to con-
dition on. We now introduce such a causal discovery method that 
helps to overcome the above dilemma and more reliably estimates 
causal networks from time series data.

Graphical models (4, 5) are a convenient way to represent causal 
interdependencies of a system. While the networks depicted in 
Fig. 1B and Fig. 2 are easier to visualize, they do not fully represent 
the spatiotemporal dependency structure underlying complex dy-
namical systems. Time series graphs (32–34) provide a more com-
prehensive view (see Fig. 3 and section S1 for more details). Consider 
an underlying time-dependent system   X  t   = ( X t  

1 , … ,  X t  
N )  with

   X t  
j   =  f  j  (P( X t  

j   ) ,   t  
j  )  (1)

where fj is some potentially nonlinear functional dependency and    t  
j    

represents mutually independent dynamical noise. The nodes in a 
time series graph represent the variables   X t  

j    at different lag times, 
and  P( X t  

j   ) ⊂  X t  
−  = ( X  t−1  ,  X  t−2  , … )  denotes the causal parents of 

variable   X t  
j    (Fig. 3B, nodes with black arrows) among the past of 

all N variables. A causal link   X t−  
i   →  X t  

j    exists if   X t−  
i   ∈ P( X t  

j  ) . 
Another way to define links is that   X t−  

i    is not conditionally inde-
pendent of   X t  

j    given the past of all variables, defined by   X t−τ  
i    ⫫   X t  

j  ∣ 
X t  

−  ∖ { X t−τ  
i  } , with   ⫫   denoting the absence of a (conditional) indepen-

dence (34). The goal in causal discovery is then to estimate the causal 
parents from time series data. FullCI directly tests the link-defining 
conditional independence, but recall that in Fig. 3A, the high di-
mensionality of including Nmax − 1 conditions on the one hand, 
and the reduced effect size due to conditioning on   X t−1  1    and   X t−1  2    (sim-
ilar to the example in Fig. 2), on the other, leads to a potentially 
drastically reduced detection power of FullCI.

Causal discovery theory (4, 5) tells us that the parents  P( X t  
j  )  of a 

variable   X t  
j    are a sufficient conditioning set that allows establishing 

conditional independence [causal Markov property (5)]. Thus, in 
contrast to conditioning on the whole past of all processes as in 
FullCI, conditioning only on a set that at least includes the parents 
of a variable   X t  

j    suffices to identify spurious links. Markov discovery 
algorithms (5, 35) such as the PC algorithm (named after its inventors) 
(25) allow us to detect these parents and can be flexibly implemented 

with different kinds of conditional independence tests that can 
accommodate nonlinear functional dependencies and variables that 
are discrete or continuous. These properties allow for greater flexi-
bility than attempting to directly fit the possibly very complex func-
tional dependencies in Eq. 1. However, as shown in our numerical 
experiments, the PC algorithm should not be directly used for the 
time series case.

Our proposed approach is also based on the conditional inde-
pendence framework (5) and adapts it to the highly interdependent 
time series case. The method, which we name PCMCI, consists of two 
stages: (i) PC1 condition selection (Fig. 3B and algorithm S1) to identify 
relevant conditions   ̂  P ( X t  

j  )  for all time series variables   X t  
j   ∈ { X t  

1 , … ,  X t  
N }  

and (ii) the momentary conditional independence (MCI) test (Fig. 3C 
and algorithm S2) to test whether   X t−  

i   →  X t  
j    with

   MCI :   X t−τ  i    ⫫   X t  
j  ∣ ̂  P  (    X t  

j   )   ∖  {    X t−τ  i   }  ,  ̂  P  (    X t−τ  i   )     (2)

Thus, MCI conditions on both the parents of   X t  
j    and the time- 

shifted parents of   X t−  
i   . The two stages (i) and (ii) serve the following 

purposes: PC1 is a Markov set discovery algorithm based on the PC- 
stable algorithm (36) that removes irrelevant conditions for each of 
the N variables by iterative independence testing (illustrated by shades 
of red and blue in Fig. 3B). A liberal significance level PC in the tests 
lets PC1 adaptively converge to typically only few relevant conditions 
(dark red/blue) that include the causal parents P in Eq. 1 with high 
probability but might also include some false positives (marked 
with a star in Fig. 3B). The MCI test (Fig. 3C) then addresses false- 
positive control for the highly interdependent time series case.

More precisely, in the PC1 algorithm, we start for every variable   X t  
j    

by initializing the preliminary parents   ̂  P ( X t  
j   ) = ( X  t−1  ,  X  t−2  , … ,  X  t−   max    ) . 

In the first iteration (p = 0), we conduct unconditional indepen-
dence tests and remove   X t−  

i    from   ̂  P ( X t  
j  )  if the null hypothesis   X t−  

i   ⫫  
X t  

j    cannot be rejected at a significance level PC. In Fig. 3B, for the 
parents of   X t  

1  , this would likely be the case for the lagged variables 
  X t−  

4    (light shades of red). In each next iteration (p → p + 1), we first 
sort the preliminary parents by their (absolute) test statistic value 
and then conduct conditional independence tests   X t−  

i   ⫫  X t  
j  ∣S , 

where S are the strongest p parents in   ̂  P ( X t  
j   ) ∖ { X t−  

i  } . After each 
iteration, independent parents are removed from   ̂  P ( X t  

j  ) , and the 
algorithm converges if no more conditions can be tested (see details in 
Materials and Methods). In Fig. 3B, for   X t  

3   (blue shades), the algorithm 
converges already after p = 1-dimensional conditions have been tested. 
Since these tests are all very low dimensional compared to FullCI 
(or Granger causality), they have higher detection power.

In the second stage, the MCI test (Fig. 3C) uses the estimated 
conditions as follows. For testing   X t−2  1   →  X t  

3  , the conditions   ̂  P ( X t  
3 )  

(blue boxes in Fig. 3C) are sufficient to establish conditional inde-
pendence (Markov property), that is, to identify indirect and 
common cause links. The additional condition on the lagged parents 
  ̂  P ( X t−2  1  )  (red boxes) accounts for autocorrelation, leading to correctly 
controlled false-positive rates at the expected level as further dis-
cussed below in our theoretical results. The significance of each link 
can be assessed based on the P values of the MCI test. These can, 
subsequently, also be adjusted according to procedures such as false 
discovery rate control (37). The main free parameter of PCMCI is 
the significance level PC in PC1, which should be regarded as a 
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hyperparameter and can be chosen on the basis of model selection 
criteria such as the Akaike information criterion (AIC) or cross- 
validation. Further technical details can be found in Materials and 
Methods.

Our method addresses the problem of detecting the topological 
structure of causal networks, that is, the existence or absence of links 
(at different time lags). A follow-up question is to quantify causal 
effects, that is, the strength of causal links, which can be done not 
only in the framework of graphical causal models (4, 5, 38, 39) but 
also using other frameworks such as structural causal modeling (4) 
or potential outcomes (3, 40). The three frameworks are equivalent 
(41) but differ in their notation and how assumptions are formulated. 
In the “Estimating causal effects” section, we will demonstrate how 
our causal discovery method can be used to more reliably estimate 
causal effects in high-dimensional settings.

Linear and nonlinear implementations
Both the PC1 and the MCI stage can be flexibly combined with any 
kind of conditional independence test. Here, we present results for 
linear partial correlation (ParCorr) and two types of nonlinear 
(GPDC and CMI) independence tests (Fig. 3D). GPDC is based on 
Gaussian process regression (42) and a distance correlation (43) test 
on the residuals, which is suitable for a large class of nonlinear 
dependencies with additive noise. CMI is a fully nonparametric test 
based on a k-nearest neighbor estimator of conditional mutual 
information that accommodates almost any type of dependency (44). 

The drawback of greater generality for GPDC or CMI, however, is 
lower power for linear relationships in the presence of small sample 
sizes. These conditional independence tests are further discussed in 
section S4 and table S1.

Assumptions of causal discovery from observational data
Our method and notation follows the graphical causal model frame-
work (4, 5). For a causal interpretation based solely on observational 
data, this framework rests on the standard assumptions (5) of Causal 
Sufficiency (or Unconfoundedness), implying that all common drivers 
are among the observed variables, the Causal Markov Condition, 
implying that   X t  

j    is independent of   X t  
−  ∖ P( X t  

j  )  given its parents  P( X t  
j  ) , 

and the Faithfulness assumption, which requires that all observed 
conditional independencies arise from the causal graphical structure. 
For the present time series case, we assume no contemporaneous 
causal effects and, since typically only a single realization is available, 
we also assume stationarity. Another option would be to use in-
dependent ensembles of realizations of lagged processes. We elaborate 
on these assumptions in Discussion. See (2, 34) for an overview of 
causal discovery on time series.

RESULTS
Theoretical properties of PCMCI
We here briefly discuss several advantageous properties of PCMCI, 
in particular, its computational complexity, consistency, generally 

A B C

D

Fig. 3. Proposed causal discovery method. (A) Time series graph (32–34) representing the time-lagged causal dependency structure underlying the data. FullCI tests 
the presence of a causal link by   X t−  

i    ⫫  X t  
j   ∣  X t  

−  ∖ { X t−  
i   } , where ⫫ denotes (conditional) independence and   X t  

−  ∖ { X t−  
i   }  the past of all N variables up to a maximum time lag 

max excluding   X t−  
i     (gray boxes). (B) Illustration of PC1 condition selection algorithm for the variables X1 (top) and X3 (bottom): The algorithm starts by initializing the pre-

liminary parents   ̂  P ( X t  
j   ) =  X t  

−  . In the first iteration (p = 0), variables without even an unconditional dependency (e.g., uncorrelated) are removed from   ̂  P ( X t  
j  )  (lightest shade 

of red and blue, respectively). In the second iteration (p = 1), variables that become independent conditional on the driver in   ̂  P ( X t  
j  )  with largest dependency in the previous 

iteration are removed. In the third iteration (p = 2), variables are removed that are independent conditionally on the two strongest drivers and so on until there are no 
more conditions to test in   ̂  P ( X t  

j  ) . In this way, PC1 adaptively converges to typically only few relevant conditions (dark red/blue) that include the causal parents  P  with 
high probability and potentially some false positives (marked with a star). (C) These low-dimensional conditions are then used in the MCI conditional independence test: 
For testing   X t−2  1    →  X t  

3  , the conditions   ̂  P ( X t  
3 )  (blue boxes) are sufficient to establish conditional independence, while the additional conditions on the parents   ̂  P ( X t−2  1   )  (red 

boxes) account for autocorrelation and make MCI an estimator of causal strength. (D) Both the PC1 and the MCI stage can be flexibly combined with linear (ParCorr) or 
nonlinear (GPDC and CMI) independence tests (see section S4 and table S1). ParCorr assumes linear additive noise models and GPDC only additivity. The gray scatter plots 
illustrate regressions of X, Y on Z and the black scatter plots the residuals. The red cubes in CMI illustrate the data-adaptive model–free k-nearest neighbor test (44), which 
does not require additivity.
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larger effect size than FullCI, and interpretability as causal strength, 
as explained in more detail in section S5.

In the condition selection stage, PCMCI efficiently exploits sparsity 
in the causal network and has a complexity in the number of vari-
ables N and maximum time lag max that is polynomial. In the 
numerical experiments, we show that runtimes are comparable or 
faster than state-of-the-art methods. Consistency implies that 
PCMCI provably estimates the true causal graph in the limit of 
infinite sample size under the standard assumptions of causal dis-
covery (5, 34) and also in the nonlinear case, provided that the correct 
class of conditional independence tests is used. In section S5.3, we 
also elaborate on why MCI, empirically, well controls false positives 
even for highly autocorrelated variables, which is due to the con-
ditioning on the parents   ̂  P ( X t−  

i  )  of the lagged variable. Theoretical 
results for finite samples would require strong assumptions (45, 46) 
or are mostly impossible, especially for nonlinear associations. 
Because of the condition selection stage, MCI typically has a much 
lower conditioning dimensionality than FullCI. Further, avoiding 
conditioning on irrelevant variables also can be shown to always 
yield a greater (or equal) effect size than FullCI. Irrelevant variables 
are not explanatory for causal relationships, and they may also lead 
to smaller effect sizes if they are caused by the considered driver 
variable. Both of these factors lead to typically much higher detec-
tion power than FullCI (or Granger causality) for small and large 
numbers of variables as further discussed in section S5.4. Last, while 
detecting the causal network structure is the main goal of PCMCI, 
the MCI test statistic also yields a well-interpretable notion of a 
normalized causal strength, as further discussed in section S5.5 and 
(38, 39). Thus, the value of the MCI statistic (e.g., partial correlation 
or CMI) allows us to rank causal links in large-scale studies in a 
meaningful way.

Real-world applications
To validate causal discovery methods, we ideally would have real- 
world datasets with known underlying ground truth of causal 
dependencies. Such datasets are rare especially for the causal inter-
dependencies of large numbers of variables. Here, we analyze small-
scale climate and cardiovascular examples where the underlying 
physical mechanisms are well understood. In the next section, we 
also validate the method on large-scale synthetic datasets that mimic 
the properties of real-world data. In (2), the causality benchmark 
platform www.causeme.net is introduced, which facilitates method 
evaluation on a growing body of synthetic and real-world datasets.

Returning to the motivating climate example including synthetic 
variables (Fig. 2, right), PCMCI efficiently estimates the true causal 
relationships with high power in all three cases, in contrast to FullCI. 
The condition selection algorithm PC1 identifies only the relevant 
conditions and finds, in particular, that Z is not a parent of BCT. The 
MCI conditional independence test for the link Ninot−2 → BCTt 
then has the same partial correlation effect size ≈0.10 (P = 0.036 in 
case A) in all three cases (Fig. 2, A to C). The detection power is 
>80% even for the high-dimensional case in Fig. 2C. Furthermore, 
PCMCI correctly estimates the causal effect strength ≈ 0.14 among 
the links   W t−2  i−1   →  W t  

i    (i = 2, 4, 6), resulting in similar detection power 
irrespective of different autocorrelations in different Wi time series.

In Fig. 4A, we show that PCMCI can reconstruct the Walker cir-
culation (47) in the tropical Pacific including the link to the Atlantic, 
where the underlying physical mechanism is theoretically well 

understood and has been validated with detailed physical simula-
tion experiments (48): Warm surface air temperature anomalies in 
the East Pacific (EPAC) are carried westward by trade winds across 
the Central Pacific (CPAC). Then, the moist air rises over the West 
Pacific (WPAC), and the circulation is closed by the cool and dry air 
sinking eastward across the entire tropical Pacific. Furthermore, the 
CPAC region links temperature anomalies to the tropical Atlantic 
(ATL) via an atmospheric bridge (49). Pure lagged correlation 
analysis results in a completely connected graph with significant 
correlations at almost all time lags (see lag functions in fig. S3), 
while PCMCI with the linear ParCorr conditional independence test 
better identifies the Walker circulation and Atlantic teleconnection. 
In particular, the link from EPAC to WPAC is correctly identified 
as indirectly mediated through CPAC.

From the Earth system, we turn to the human heart in Fig. 4B. 
We investigate time series of heart rate (B), as well as diastolic (D) 
and systolic (S) blood pressure of pregnant healthy women (50, 51). 
It is well understood that the heart rate influences the cardiac stroke 
volume, which, in turn, drives diastolic blood pressure (Starling’s 
law). Furthermore, the mechanism by which diastolic blood pres-
sure drives systolic blood pressure is the effect of the stroke volume, 
the corresponding pulse pressure, and the total peripheral resistance 
(52). Here, we cannot assume linear inter dependencies and, thus, 
use the information-theoretic CMI implementation of PCMCI. 
With mutual information (MI), we obtain only a fully connected 
graph, while the physiologically plausible causal chain B → D → S is 
correctly reconstructed with PCMCI.

These examples for a relatively small number of variables show 
how causal discovery with PCMCI helps to identify physical mecha-
nisms from time series. As further detailed in Discussion, since 
these analyses typically cannot assume that no unobserved common 
drivers exist, care should be taken with a causal interpretation of 
direct links. On the other hand, the absence of direct links can 
indeed be interpreted as the absence of direct causal associations 
under weaker assumptions, such as in the case of those from the 
EPAC to the WPAC and from heart rate to systolic blood pressure.

Model setup for high-dimensional synthetic  
data experiments
Following our illustrative examples, we evaluate and compare the 
performance of PCMCI together with other common causal methods 
more systematically in numerical experiments that mimic the properties 
of real-world data. Here, we model six of the major challenges of 
time series from complex systems: high dimensionality, time-lagged 
causal dependencies, autocorrelation, strong nonlinearity, observa-
tional noise, and nonstationarity (2). Figure 5A gives an example 
model for N = 10 variables, where the edge colors denote the (posi-
tive or negative) coefficient corresponding to causal links and the 
node color depicts the autocorrelation strength. Figure 5B shows a 
time series realization illustrating some strongly autocorrelated 
variables. We create a number of models with different random 
network topologies of N time series variables with each network 
having L = N linear or nonlinear causal dependencies (except for 
the bivariate case N = 2 with L = 1). From each of these models, we 
generate 100 time series datasets (each of length T) to assess true- 
and false-positive rates of individual causal links in a model with the 
different causal methods. As illustrated in Fig. 5A, the boxplots in 
the following figures show the distribution of these individual link 
false- and true-positive rates across the large variety of random 

http://www.causeme.net
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networks, for each network size N differentiated between weakly 
and strongly autocorrelated pairs of variables in the left and right 
boxplots, respectively (defined by the average autocorrelation of 
both variables being smaller or larger than 0.7). We depict only 
results for cross-links here, not for auto-links within a variable. The 
full model setup is detailed in section S6, table S2 lists the experi-
mental setups, and section S2 and table S3 give details on the com-
pared methods.

High dimensionality with linear relationships
In Fig. 5C, we first investigate the performance of linear causal dis-
covery methods on numerical experiments with linear causal links; 
nonlinear models are shown in Fig. 5 (D and E). The setup has a 

sample length of T = 150 observations and N = 2, …, 100 variables. 
All cross-links have the same absolute coupling coefficient value 
(but with different signs) and, hence, the same causal strength. Next 
to correlation (Corr) and FullCI (similar to Granger causality, here 
implemented with an efficient vector-autoregressive model estimator), 
we compare PCMCI with the original PC algorithm as a standalone 
method and Lasso regression (pseudo-code given in algorithm S3) as 
the most widely used representative of regularized high-dimensional 
regression techniques that can be used for causal variable selection. 
Table S3 gives an overview of the compared methods, and imple-
mentation details for alternative methods are given in section S2. 
The maximum time lag is max = 5, and the significance level is 5% 
for all methods.

A

B

Fig. 4. Real-world applications. (A) Tropical climate example of dependencies between monthly surface pressure anomalies for 1948–2012 (T = 780 months) in the West 
Pacific (WPAC; regions depicted as shaded boxes below nodes), as well as surface air temperature anomalies in the Central (CPAC) and East Pacific (EPAC), and tropical 
Atlantic (ATL) (65). The left panel shows correlation (Corr), and the right panel shows PCMCI in the ParCorr implementation with max = 7 months to also capture long time 
lags. Significance was assessed at a strict 1% level. (B) Cardiovascular example of links between heart rate (B) and diastolic (D) and systolic (S) blood pressure (T = 600) of 
13 healthy pregnant women. The left panel shows MI, and the right panel shows PCMCI in the CMI implementation with max = 5 heart beats and default parameters 
kCMI = 60 and kperm = 5 (see table S1). The graphs are obtained by analyzing PCMCI separately for the 13 datasets and showing only links that are significant at the 1% level 
in at least 80% of the subjects. In all panels, node colors depict autodependency strength and edge colors the cross-link strength at the lag with maximum absolute value. 
See lag functions in fig. S3 and Materials and Methods for more details on the datasets. Note the different scales in colorbars.
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Fig. 5. Numerical experiments for causal network estimation. (A) The full model setup is described in section S6 and table S2. In total, 20 coupling topologies for each 
network size N were randomly created, where all cross-link coefficients are fixed while the variables have different autocorrelations. An example network for N = 10 with 
node colors denoting autocorrelation strength is shown, and the arrow colors denote the (positive or negative) coefficient strength. The arrow width illustrates the 
detection rate of a particular method. As indicated here, the boxplots in the figures below show the distribution of detection rates across individual links with the left 
(right) boxplot depicting links between weakly (strongly) autocorrelated variable pairs, defined by the average autocorrelation of both variables being smaller or larger 
than 0.7. (B) Example time series realization of a model depicting partially highly autocorrelated variables. Each method’s performance was assessed on 100 such 
realizations for each random network model. (C) Performance of different methods for models with linear relationships with time series length T = 150. Table S3 provides 
implementation details. The bottom row shows boxplot pairs (for weakly and strongly autocorrelated variables) of the distributions of false positives, and the top row 
shows the distributions of true positives for different network sizes N along the x axis in each plot. Average runtime and its SD are given on top. (D) Numerical experiments 
for nonlinear GPDC implementation with T = 250, where dCor denotes distance correlation. (E) Results for CMI implementation with T = 500, where MI denotes mutual 
information. In both panels, we differentiate between linear and two types of nonlinear links (top three rows). See table S2 for model setups and section S4 and table S1 for 
a description of the nonlinear conditional independence tests.
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Correlation is obviously inadequate for causal discovery with 
very high false-positive rates (first column in Fig. 5C). However, 
even detection rates for true links vary widely with some links with 
under 20% true positives despite the equal coefficient strength for 
all causal links. This counterintuitive result is further investigated in 
Fig. 6. In contrast, all causal methods control false positives well 
around or below the chosen 5% significance level with Lasso and the 
PC algorithm overcontrolling at lower than expected rates. An 
exception here are some highly autocorrelated links that are not 
correctly controlled with the PC algorithm (whiskers extending to 
25% false positives in Fig. 5C) since it does not appropriately deal 
with the time series case.

While FullCI has a detection power of around 80% for N = 5, this 
rate drops to 40% for N = 20, and FullCI cannot be applied anymore 
for larger N when the dimensionality is larger than the sample size 
(Nmax > T = 150). However, for N = 5 as well, some links between 
strongly autocorrelated variables have a detection rate of just 60%. 
Lasso has higher detection power than FullCI on average and can be 
applied also to the high-dimensional Nmax > T case. The PC algorithm 
displays not much difference in detection power between N = 5 and 
N = 100, but the rates are lower than for Lasso on average, and higher 
autocorrelation also here has a detrimental effect. Note that it is 
difficult to compare power levels here since Lasso and PC cannot be 
easily calibrated to have an expected significance level.

PCMCI robustly shows high detection power even for network 
sizes with dimensions exceeding the sample size and displays almost 
the same power for links with the same causal effect, regardless of 
whether autocorrelations are weak or strong, up to N = 20.

An analysis of covariance (ANCOVA) was performed to more 
quantitatively investigate the dependence of detection power and 
false positives on the number of variables N and the sample size T 
(see section S6, fig. S17, and tables S9 to S12). It reveals that FullCI 
has indeed the strongest decrease, and PCMCI and Lasso have 
similar decreases in detection power for higher numbers of vari-
ables N, with PCMCI slightly outperforming Lasso for smaller N. 
Similarly, PCMCI benefits slightly more than Lasso from larger 
sample sizes. ANCOVA interaction effects regarding detection 
rates between different levels of N and T are present for both FullCI 
and PCMCI where power decreases less strongly with N for larger 
sample sizes. Lasso and the PC algorithm have no interaction effects 
in detection power. For false positives, we did not observe a relevant 
dependence of FullCI and PCMCI on either N or T, while PC and 
Lasso have decreasing levels for larger N as noted above and not 
much change for different T.

Runtime depends on implementation details, but all methods 
are in the same order of magnitude, except for FullCI, which was 
estimated with an efficient solver in this linear case. For nonlinear 
implementations, it can be much slower than PCMCI or PC (see the 
next section). PCMCI efficiently exploits sparsity. Our numerical 
experiments show that for smaller networks, PCMCI is faster than 
Lasso and vice versa for larger networks, but both have similar run-
times for larger T (fig. S16 and tables S4 to S7). Most of the time of 
PCMCI is spent on the condition selection stage, mainly because of 
the hyperparameter optimization of PC via AIC in the implemen-
tation shown. Fixing PC is much faster and still gives good results 
(figs. S4 and S16) but may not control false positives as well. The 
runtime of the standalone PC algorithm strongly depends on the 
number of conditioning sets tested. In theory, all combinations of 
conditioning sets are tested, which results, next to low power, in a 

slow and highly varying runtime especially for nonlinear imple-
mentations (fig. S16), but here, we limited the number of combina-
tions (see section S2). In these linear numerical experiments, PC is 
still faster than PCMCI since no hyperparameter optimization was 
conducted, while for nonlinear implementations, it is often slower 
(see the next section).

In summary, our key result here is that PCMCI has high power 
even for network sizes with dimensions, given by Nmax, exceeding 
the sample size. Average power levels (marked by “x” in Fig. 5C) are 
higher than FullCI (or Granger causality) and PC for all considered 
network sizes. PCMCI has similar or larger average power levels 
compared to Lasso, but an important difference is the worst-case 
performance: Even for small networks (N = 10), a significant part of 
the links is constantly overlooked with Lasso, while for PCMCI, 
99% of the links have a detection power greater than 70%.

High dimensionality with nonlinear relationships
Figure 5 (D and E) displays results for nonlinear models where we 
differentiate between linear and two types of nonlinear links [upper 
three rows, T = 250 (D) and T = 500 (E)]. In essence, here, we find 
that PCMCI’s ability to avoid high dimensionality is even more 
crucial not only for detection power but also to correctly control 
false positives.

In Fig. 5D, FullCI, PC, and PCMCI are all implemented with the 
GPDC conditional independence test, and dCor denotes the distance 
correlation as the nonlinear analog to correlation (see section S4 
and table S1). Distance correlation alone detects nonlinear links but 
does not account for indirect or common driver effects, leading to 
high false positives, especially for strong autocorrelation. FullCI here 
works well only up to N = 5 but cannot control false positives any-
more for N ≥ 10 since the GPDC test does not work well in these 
high dimensions [see also analysis of variance (ANOVA) analyses 
in tables S6 and S7]. PC overcontrols false positives again (except 
for strong autocorrelation) and has the lowest power levels among 
all methods. PCMCI has the highest power levels, which only slightly 
decrease for larger networks. Here, we find for nonlinear dependencies 
that weakly and strongly autocorrelated links also result in different 
power levels, unlike for linear links (see section S5.5). False positives 
are mostly controlled correctly, but there is a slight inflation of false 
positives for larger networks, again, because even with condition 
selection, the dimensionality increases for larger networks, and 
GPDC does not work well in high dimensions. For GPDC, runtime 
for PC and PCMCI is larger than for FullCI.

Figure 5E depicts results for the fully nonparametric implemen-
tation with CMI. Then, FullCI has the slowest runtime and almost 
no power, especially for nonlinear links, while PCMCI correctly 
controls false positives and has, on average, higher power than 
PC. Nevertheless, strong nonlinearities are difficult to detect for 
the relatively high-dimensional cases studied here and with T = 500 
samples.

Further experiments
In the Supplementary Materials, we investigate some further method-
ological variants (see sections S2 and S3) and show that our results 
are robust also for larger sample sizes (figs. S4, S5, S9, S11, and S13 
and tables S4, S6, and S7) and higher network coupling densities 
(figs. S6 and S7, and table S5). Further, we investigate the effect of 
violations of underlying theoretical assumptions, in particular, 
observational noise, nonstationarity, and nonfaithful processes, 
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the latter represented by strongly nonlinear, purely deterministic 
dependencies.

All methods display a similar sensitivity to observational noise 
with PCMCI and Lasso being slightly more affected than FullCI 
according to an ANOVA analysis (fig. S14 and table S8) with levels 
up to 25% of the dynamical noise SD having only minor effects. For 
levels of the same order as the dynamical noise, we observe a stronger 
degradation with also the false positives not being correctly con-
trolled, except for FullCI, since common drivers are no longer well 
detected anymore. See (34) for a discussion on observational noise.

In fig. S15 and table S8, we investigate the effect of a nonstationary 
trend, here modeled by an added sinusoidal signal with different 
amplitudes. Lasso is especially sensitive here and has both a lower 
detection power and an inflated rate of false positives, while PCMCI 
is robust even for high trend amplitudes.

Last, in fig. S18, we study the effect of strong common drivers for 
low-dimensional deterministic chaotic systems. Purely deterministic 
systems may violate Faithfulness since they can render variables 
connected by a true causal link as independent conditionally on 
another variable that fully determines either of them. A nonlinear 
dynamics-inspired method (15, 53) that is adapted to these systems 
is convergent cross mapping (CCM; see section S2.4) (14), which 
we here compare with PCMCI in the CMI implementation. We find 
that for purely deterministic dependencies (fig. S18, A and C), CCM 
has higher detection rates that only degrade for very strong coupling 
strengths. PCMCI is not well suited for highly deterministic systems 
since it strongly conditions on the past of the driver system and, 
hence, removes most of the information that could be measured in 
the response system. If we study the same system driven by dynamical 
noise, the PCMCI detection rates strongly increase and outperform 
CCM (fig. S18, B and D). An advantage of PCMCI here is that it 

better controls false positives than CCM, which can have very high 
and uncontrolled false-positive levels. Note that, to test a causal link 
X → Y, CCM only uses the time series of X and Y with the underlying 
assumption that the dynamics of a common driver can be reconstructed 
using delay embedding. See (34) for a more in-depth study.

Estimating causal effects
In this section, we show how our proposed method can be used to 
more precisely quantify causal effects assuming linear dependencies. 
In Discussion, we elaborate on different ways to more generally 
quantify causal strength. But first, we briefly discuss the different, 
but equivalent (41), theoretical frameworks to causal effect infer-
ence. In the graphical causal model framework (4), a causal effect 
of a link   X t−  

i   →  X t  
j    is based on the interventional distribution  

P( X t  
j  ∣do( X t−  

i   = x)) , which is the probability distribution of   X t  
j    at 

time t if   X t−  
i    was forced exogenously to have a value x. Causal ef-

fects can also be studied using the framework of potential outcomes 
(3), which mainly targets the social sciences and medicine. In this 
framework, causal effects can be defined as the difference between 
two potential outcomes, one where a subject u has received a treatment, 
denoted Yu(X = 1), and one where no treatment was given, denoted 
Yu(X = 0). In observational causal inference, Yu(X = 1) and Yu(X = 0) 
are never measured simultaneously (one subject cannot be treated 
and untreated at the same time), requiring an assumption called strong 
ignorability to identify causal effects. In our case, one could write   X t  

j    
as   X t  

j  ( X t  
− ) , where time t replaces unit u and where we are interested 

in testing whether or not an entry   X t−  
i    in   X t  

−   appears in the treatment 
function determining the causal influence from the past.

Both in Pearl’s causal effect framework and in the potential outcome 
framework (3), one typically assumes that the causal interdependency 

Fig. 6. Numerical experiments for causal effect estimation. Shown is detection power (top row) and causal effect size (bottom row) as given by univariate linear re-
gression (CE-Corr), multivariate regression on the whole past of the multivariate process (CE-Full), and multivariate regression on just the parents obtained with PCMCI 
(CE-PCMCI) for different link coefficient strengths c along the x axis in each plot. The last column denotes the regression on the true parents (CE-True). In the bottom row, 
the orange shades give the 1, 25, 75, and 99% quantiles and the median of the respective causal effects of all links (mean over 100 realizations for each link), and the black 
line denotes the true causal effect strength |c|, which is the same for all links in a model.
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structure is known qualitatively (existence and absence of links), and 
the interest lies more in quantifying causal effects. In the case of 
linear continuous variables, the average causal effect and equivalently 
the potential outcome for   X t−  

i   →  X t  
j    can be estimated from observa-

tional data with linear regression using a suitable adjustment set of 
regressors. In the following, we assume Causal Sufficiency and 
compare three approaches to estimate the linear causal effect when 
the true causal interdependency structure is unknown. CE-Corr 
simply is a univariate linear regression of   X t  

j    on   X t−  
i   , CE-Full is a 

multivariate regression of   X t  
j    on the whole past of the multivariate 

process   X t  
−   up to a maximum time lag max = 5 and, finally, CE-PCMCI 

is a multivariate regression of   X t  
j    on just the parents  P( X t  

j  )  obtained 
with PCMCI.

In Fig. 6, we investigate these approaches numerically. Different 
from the model setup before, we now fix a network size of N = 20 
time series variables (T = 150) and consider models with different 
link coefficients c (x axis in Fig. 6). The bottom panels show the 
distribution of causal effects. The absolute value of the true causal 
effect is ∣c∣ (black lines). The top panels show the distribution of 
true-positive rates (across all links in the model) for an F-test under 
the null hypothesis that the effect is zero at a significance level of 
5%. The rightmost panels show the results for a regression on the 
true parents (CE-True).

CE-Corr values for links with the same causal effect span the 
whole range from zero to high effect values, indicating that CE-
Corr is rather unrelated to the causal effect strength. Some CE-Corr 
values are much smaller and even tend to zero, which provides 
evidence for the observation in Fig. 5 that the detection power of 
correlation (or the other unconditional measures dCor and MI) 
can, counterintuitively, even be lower than that of FullCI or PCMCI. 
The distribution of CE-Full values is centered around the true causal 
effect as expected since   X t  

−   includes the true parents as a sufficient 
adjustment set. However, the high dimensionality of this adjust-
ment set leads to a large estimation variance that, in particular, 
implies that causal effects are less reliably estimated as evidenced by 
the low true-positive rates in the top panel. Last, CE-PCMCI better 
estimates causal effects and even comes close to the detection rate for 
CE-True based on the true parents. While the parents are a sufficient 
adjustment set to estimate causal effects, other adjustment sets may 
yield even better estimates, but in any case, knowledge of the depen-
dency structure as estimated with PCMCI is beneficial (54).

DISCUSSION AND CONCLUSION
Causal discovery on large-scale time series datasets is plagued by a 
dilemma: Including more variables makes an analysis more credible 
regarding a causal interpretation, but if the added variables are 
irrelevant, that is, not explanatory for causal relationships, they not 
only increase dimensionality but may also lead to smaller effect sizes, 
in particular, if they are caused by the considered driver variable. Both 
of these factors result in lower power and increase the risk that important 
true causal links are overlooked. Furthermore, some nonlinear tests 
do not even control false positives anymore in high dimensions.

Our method alleviates this problem by a condition selection stage 
to remove irrelevant variables and a conditional independence test 
designed for highly interdependent time series. The former im-
proves power levels for large-scale causal discovery analyses, while 
the latter also yields more power than classical techniques in analyses 

involving only few variables, implying an improved “causal signal-
to-noise ratio.” At the same time, the MCI test demonstrates correctly 
controlled false-positive rates even for highly autocorrelated time 
series data. Our numerical experiments show that PCMCI has sig-
nificantly higher detection power than established methods such as 
Lasso, the PC algorithm, or Granger causality and its nonlinear 
extensions for time series datasets on the order of dozens to hundreds 
of variables. Further experiments indicate that PCMCI is robust to 
nonstationary trends, and all methods have a similar sensitivity to 
observational noise. PCMCI is not well suited for highly deterministic 
systems where not much new information is generated at each time 
step. In these cases, a state-space method gave higher detection power; 
however, we also found that it did not control false positives well. 
PCMCI allows accommodating a large variety of conditional inde-
pendence tests adapted to different types of data (see section S4), for 
example, discrete or continuous time series.

Our causal effects analysis has demonstrated that a more reliable 
knowledge of the causal network also facilitates more precise 
estimates of the strength of causal links. There are different approaches 
to quantify causal strength from information-theoretic (39, 55–58) 
to model-based measures such as the linear regression coefficients 
(21, 38), as shown in the causal effect analysis. The MCI test statistic 
itself can be interpreted as a measure of causal strength (39, 55), 
allowing us to directly rank causal links in exploratory PCMCI 
studies on large datasets with many time series in a meaningful way. 
These rankings can help to identify the strongest inferred causal 
links, which may be of main interest in some domain contexts. Next 
to assessing the causal strength of individual links, the estimated 
causal network can also be used to identify causal mediation path-
ways and estimate aggregate measures of the causal influence of 
individual variables (38, 39, 58).

Currently, our method focuses on time-lagged dependencies 
and assumes stationary data, and a causal interpretation rests, most 
importantly, on the assumption of Causal Sufficiency. This has several 
important implications for the practical use of PCMCI: For time-
lagged dependencies, there is no ambiguity in terms of cause-effect 
directionality, that is, the orientation of causal edges. Recently, a 
growing body of literature addresses the inference of causality with-
out relying on time lags (59, 60), which could help to determine 
causal directionality for contemporaneous links.

The assumption of stationarity may be violated in real time 
series, for example, because of obvious confounders such as the 
seasonal cycle or different dynamical regimes underlying climate 
time series. In practice, time series can often be made stationary by 
removing or filtering these influences or by restricting the analysis 
to the part of the time series where stationarity can be assumed. In 
essence, these two approaches exploit some background knowledge on 
the cause of the nonstationarity. If, however, the causal dependency 
on a common nonstationarity is unknown, the resulting causal 
networks can contain spurious links (34). Our numerical results 
indicate that PCMCI is, however, more robust to nonstationarity 
than Lasso and PC.

As for any causal discovery method on observational data (4, 5), 
Causal Sufficiency is probably the strongest assumption. Nonincluded 
or unobserved variables can still be the cause of a link in any non-
experimental analysis, which has to be taken into account for any 
scientific conclusions drawn. Potential causal links inferred from the 
available observational data can yield new hypotheses to be rejected 
or confirmed by further data analyses involving more variables (as 
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illustrated in our climate example) or guide the design of numerical 
and real experiments. However, the finding of noncausality, that is, 
the absence of a causal link, relies on weaker assumptions (34): Given 
that the observed data faithfully represents the underlying process 
and that dependencies are powerfully enough captured by the test 
statistic, the absence of evidence for a statistical relationship makes 
it unlikely that a linking physical mechanism, in fact, exists. These 
findings of noncausality are, in that sense, more robust.

Growing data availability promises an unprecedented opportunity 
for novel insight through causal discovery across many disciplines 
of science—if the underlying assumptions are carefully taken into 
consideration and the methodological challenges are met (2). PCMCI 
addresses the challenges of large-scale multivariate, autocorrelated, 
linear, and nonlinear time series datasets opening up new opportunities 
to more credibly discover causal networks and estimate causal effects 
in many areas of science.

MATERIALS AND METHODS
In this section, we explain the proposed causal discovery method 
in more detail and provide a description of real-world data. The 
Supplementary Materials contain implementation details of the 
alternative methods used in this work, details on the conditional 
independence tests, further theoretical discussions, a description of 
the numerical experiments setup, and pseudo-codes of algorithms, 
tables, and further figures.

PCMCI is implemented in the Tigramite open-source software 
package for Python, available from https://github.com/jakobrunge/
tigramite. Tigramite contains classes for PCMCI and the different 
conditional independence tests, as well as a module that contains 
several plotting functions to generate high-quality plots of time 
series, lag functions, and causal graphs, as shown in Fig. 4. Tigramite 
also contains modules to estimate causal effects and analyze media-
tion pathways (38), as well as for selecting optimal predictors (61). 
Documentation can be found on the repository site.

Detailed description of PCMCI
In our framework, the dependency structure of a set of time series vari-
ables is represented in a graphical model (62). While the process graph 
depicted in Fig. 1B is easier to visualize, it does not fully represent the 
spatiotemporal dependency structure underlying complex dynamical 
systems. Time series graphs (32–34) provide a more comprehensive 
view, as shown in Fig. 3. If, for example, graphical models are estimated 
without taking lagged variables into account, then associations can 
easily be confounded by the influence of common drivers at past times. 
For a formal definition of time series graphs, see section S1.

Our causal discovery technique to estimate the time series graph 
  ̂  G   is based on a two-stage procedure:

1. Condition selection via PC1: Obtain an estimate   ̂  P ( X t  
j  )  of 

(a superset of) the parents  P( X t  
j  )  for all variables   X t  

j   ∈  X  t   =  
( X t  

1 ,  X t  
2 , … ,  X t  

N )  with algorithm S1.
2. Use these parents as conditions in the MCI causal discovery 

stage (algorithm S2), which tests all variable pairs  ( X t−  
i  ,  X t  

j  )  with 
i, j ∈ {1, …, N} and time delays  ∈ {1, …, max} and establishes a 
link, that is,   X t−  

i   →  X t  
j   ∈  ̂  G  , if and only if

   MCI :   X t−τ  i    ⫫   X t  
j   ∣ ̂  P  (    X t  

j   )   ∖  {    X t−τ  i   }  ,   ̂  P    p  X     (    X t−τ  i   )     (3)

where    ̂  P    p  X    ( X t−  
i   ) ⊆  ̂  P ( X t−  

i  )  denotes the pX strongest parents according 
to the sorting in algorithm S1. This parameter is just an optional 
choice. One can also restrict the maximum number of parents used for 
  ̂  P ( X t  

j  ) , but here, we impose no restrictions. For  = 0, one can also 
consider undirected contemporaneous links (39).

Both stages, condition selection and MCI, consist of conditional 
independence tests. These tests can be implemented with different 
test statistics. Here, we used the tests ParCorr, GPDC, and CMI as 
detailed in section S4 and table S1.

PC1 in the first stage is a variant of the skeleton-discovery part of 
the PC algorithm (25) in its more robust modification called PC- 
stable (36) and adapted to time series. The algorithm is briefly dis-
cussed in the main text, more formally (pseudo-code in algorithm S1): 
For every variable,   X t  

j   ∈  X  t   , first the preliminary parents    ̂  P  (    X t  
j   )   =  (    X  t−1  ,  

X  t−2  , … ,  X  t− τ  max     )   are initialized  . Starting with p = 0, iteratively p → 
p + 1 is increased in an outer loop and, in an inner loop, it is tested 
for all variables   X t−  

i    from   ̂  P ( X t  
j  )  whether the null hypothesis

  PC :  X t−τ  i    ⫫   X t  
j  ∣S for any S with∣S∣= p  (4)

can be rejected at a significance threshold PC. For the PC algorithm 
implemented here, S iterates through different combinations of sub-
sets of   ̂  P ( X t  

j   ) ∖ { X t−  
i  }  with cardinality p, up to a maximum number of 

combinations qmax. Our fast variant PC1 is obtained by only testing 
the p parents with strongest dependency, that is, restricting the max-
imum number of combinations qmax per iteration to qmax = 1. In the 
first iteration (p = 0), S is empty and, thus, unconditional dependencies 
are tested. In each next iteration, the cardinality is increased p → p + 1, 
and Eq. 4 is tested again. If the null hypothesis cannot be rejected, 
then the link is removed from   ̂  P ( X t  

j  )  at the end of each p iteration. The 
algorithm converges for a link   X t−  

i   →  X t  
j    once  S =  ̂  P ( X t  

j   )∖{ X t−  
i  } , 

and the null hypothesis   X t−  
i   ⫫  X t  

j   ∣   ̂  P ( X t  
j   )∖{ X t−  

i  }  is rejected (if 
the null hypothesis cannot be rejected, then the link is removed). 
  ̂  P ( X t  

j  )   is sorted after every iteration according to the absolute 
test statistic value (ParCorr, GPDC, or CMI) and S is picked in 
lexicographic order (only relevant for qmax > 1). Other causal variable 
selection algorithms use similar heuristics (35, 63). The MCI stage 
is inspired by the information-theoretic measure momentary infor-
mation transfer introduced in different variants in (55, 64).

The free parameters of PCMCI (in addition to free parameters of 
the conditional independence test statistic) are the maximum time 
delay max, the significance threshold PC, and the maximum number 
pX of conditions of the driver variable in Eq. 3. We abbreviate different 
parameter choices by   PC 1    +MCIpX, if not clear from the context.
Choice of max
The maximum time delay depends on the application and should be 
chosen according to the maximum physical time lag expected in the 
complex system. If a relevant time lag, which may explain a depen-
dency between two other variables, is not included, then the Causal 
Sufficiency assumption would be violated. In practice, we recommend 
a rather large choice, e.g., the last lag with significant unconditional 
dependency, because a too large choice of max merely leads to longer 
runtimes of PCMCI but not so much to an increased estimation 
dimension as for FullCI.
Choice of PC
PC should not be seen as a significance test level in PC1 since the 
iterative hypothesis tests do not allow for a precise assessment of 

https://github.com/jakobrunge/tigramite
https://github.com/jakobrunge/tigramite
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uncertainties in this stage. PC here rather takes the role of a regu-
larization parameter as in model selection techniques. The condi-
tioning sets   ̂  P   estimated with PC1 should include the true parents 
and, at the same time, be small in cardinality to reduce the estima-
tion dimension of the MCI test and improve its power. However, 
the first demand is typically more important (see section S5.3). In 
fig. S8, we investigated the performance of PCMCI implemented 
with ParCorr, GPDC, and CMI for different PC. Too small values 
of PC result in many true links not being included in the condition 
set for the MCI tests and, hence, increase false positives. Too high 
levels of PC lead to high dimensionality of the condition set, which 
reduces detection power and increases the runtime. Note that for a 
threshold PC = 1 in PC1, no parents are removed and all Nmax 
variables would be selected as conditions. Then, the MCI test becomes 
a FullCI test. As in any variable selection method (35), PC can be 
optimized using cross-validation or based on scores such as Bayesian 
Information Criterion (BIC) or AIC. For all ParCorr experiments 
(except for the ones labeled with   PC 1    +MCIpX), we optimized PC 
with AIC as a selection criterion. More precisely, for each   X t  

j   , we ran 
PC1 separately for each PC ∈ {0.1, 0.2, 0.3, 0.4}, yielding different 
conditioning sets    ̂  P    


 ( X t  

j  ) . Then, we fit a linear model for each PC

   X t  
j   =   ̂  P    


 ( X t  

j   )    (5)

yielding the residual sum of squares (RSS), and selected PC accord-
ing to AIC (modulo constants)

    PC  *   =  argmin     PC     nlog ( RSS     ) + 2∣  ̂  P    

 ( X t  

j   )∣   (6)

where n is the sample size (typically the time series length T minus 
a cutoff due to max) and ∣ · ∣ denotes cardinality. For GPDC, one 
can similarly select PC based on the log marginal likelihood of the 
fitted Gaussian process, while for CMI, one can use cross-validation 
based on nearest-neighbor predictions for different    ̂  P    


 ( X t  

j  ) . But 
since GPDC and CMI are already quite computationally demand-
ing, we picked PC = 0.2 in all experiments, based on our findings in 
fig. S8. In the bottom panels of figs. S4 to S7, we analyzed PC = 0.2 
also for ParCorr for all numerical experiments and found that this 
option also gave good results for sparse networks and runs even faster 
than Lasso. However, there is potentially a higher risk of inflated 
false positives. Unfortunately, we have no finite sample consistency 
results for choosing PC.
Choice of pX
While the parents   ̂  P ( X t  

j  )  are sufficient to assess conditional inde-
pendence, the additional conditions    ̂  P    p  X    ( X t−  

i   ) ⊆  ̂  P ( X t−  
i  )  are used 

to account for autocorrelation and make the MCI test statistic a 
measure of causal strength as analyzed in section S5.5. To limit high 
dimensionality, one can strongly restrict the number of conditions 
   ̂  P    p  X    ( X t−  

i  )  with the free parameter pX. To avoid having another free 
parameter, we kept pX unrestricted in most experiments. In some 
experiments (see figs. S4, S5, S6, S7, S10, and S12), we found that a 
small value pX = 3 already suffices to reduce inflated false positives 
due to strong autocorrelation and estimate causal strength. The reason 
is that, typically, the largest driver will be the autodependency, and 
conditioning out its influence already diminishes the effect of 
strong autocorrelations. In theory, a too small pX should lead to a 

less well-calibrated test (see section S5.3), but in practice, it seems 
like a sensible trade-off. In section S3, we describe a PCMCI variant 
for pX = 0 and a bivariate variant that does not condition on external 
variables. Both of these cannot guarantee consistent causal graph 
estimates and likely feature inflated false positives especially for 
strong autocorrelation.
False discovery rate control
PCMCI can also be combined with false discovery rate controls, 
e.g., using the Hochberg-Benjamini approach (37). This approach 
controls the expected number of false discoveries by adjusting the P 
values resulting from the MCI stage for the whole time series graph. 
More precisely, we obtain the q values as

   q = min  (  P   m ─ r  , 1 )      (7)

where P is the original P value, r is the rank of the original P value 
when P values are sorted in ascending order, and m is the number 
of computed P values in total, that is, m = N2max to adjust only 
directed links for  > 0 and correspondingly if also contemporaneous 
links for  = 0 are taken into account. In our numerical experiments, 
we did not control the false discovery rate since we were interested 
in the individual link performances.

Real-world applications
The climate time series are regional averages (see boxes in Fig. 4) 
from the reanalysis (65) for the period 1948–2012 with 780 months. 
WPAC denotes monthly surface pressure anomalies in the West Pa-
cific, CPAC and EPAC surface air temperature anomalies in the Cen-
tral and East Pacific, respectively, and ATL surface air temperature 
anomalies in the tropical Atlantic. Anomalies are taken with respect 
to the whole period. The data are freely available from www.esrl.
noaa.gov.

The cardiovascular analysis is based on an ensemble of 13 data-
sets of healthy pregnant women as studied in (50), where the data 
are described in detail. The study was approved by the local ethics 
committee, and it obtained the informed consent of all of the sub-
jects. The time series contain 600 samples (cutting of a transient of 
300) and are sampled at heart beats. B denotes the time series of 
intervals between successive heart beats, and D the diastolic and S 
the systolic blood pressure.

Further information in the Supplementary Materials
A more detailed definition of time series graphs is given in section 
S1. Section S2 details the alternative methods FullCI, Lasso, PC 
algorithm, CCM, and the unconditional correlation, distance correla-
tion, and MI. Section S3 discusses further variants of PCMCI, one 
variant that excludes the conditioning on the parents of the driver 
variable, i.e., pX = 0, and another variant that excludes conditioning 
on external variables. The conditional independence tests used here 
(ParCorr, GPDC, and CMI), which form the basis of PCMCI, the PC 
algorithm, and FullCI, are in detail explained in section S4. Theoretical 
properties of PCMCI are discussed in section S5. In particular, the 
polynomial computational complexity is derived in section S5.1, 
consistency is proven in section S5.2, and section S5.3 expands on 
the correct control of false positives at the specified significance level, 
also in the presence of strong autocorrelation. Section S5.4 proves 
that MCI is larger than or equal to FullCI and explains how con-
ditioning on irrelevant variables reduces effect size for FullCI. 
The interpretation of MCI as a notion of causal strength is given in 

http://www.esrl.noaa.gov
http://www.esrl.noaa.gov
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section S5.5. The detailed setup of numerical experiments is laid 
out in section S6, including AN(C)OVA analyses and performance 
metrics. The remaining part of the Supplementary Materials provides 
pseudo-codes of algorithms and tables and further figures as refer-
enced in the main text.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/11/eaau4996/DC1
Section S1. Time series graphs
Section S2. Alternative methods
Section S3. Further PCMCI variants
Section S4. Conditional independence tests
Section S5. Theoretical properties of PCMCI
Section S6. Numerical experiments
Algorithm S1. Pseudo-code for condition selection algorithm.
Algorithm S2. Pseudo-code for MCI causal discovery stage.
Algorithm S3. Pseudo-code for adaptive Lasso regression.
Table S1. Overview of conditional independence tests.
Table S2. Model configurations for different experiments.
Table S3. Overview of methods compared in numerical experiments.
Table S4. Summarized ANOVA results for high-dimensionality ParCorr experiments.
Table S5. Summarized ANOVA results for high-density ParCorr experiments.
Table S6. Summarized ANOVA results for high-dimensionality GPDC and CMI experiments.
Table S7. Summarized ANOVA results for sample size experiments.
Table S8. Summarized ANOVA results for noise and nonstationarity experiments.
Table S9. ANCOVA results for FullCI.
Table S10. ANCOVA results for Lasso.
Table S11. ANCOVA results for PC.
Table S12. ANCOVA results for FullCI.
Fig. S1. Illustration of notation.
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