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The balance between NRF2/GSH 
antioxidant mediated pathway and 
DNA repair modulates cisplatin 
resistance in lung cancer cells
Matheus Molina Silva   1, Clarissa Ribeiro Reily Rocha1,2, Gabriela Sarti Kinker3, 
Alessandra Luiza Pelegrini1 & Carlos Frederico Martins Menck   1*

Lung cancer patients face a dismal prognosis mainly due to the low efficacy of current available 
treatments. Cisplatin is the first-line chemotherapy treatment for those patients, however, resistance 
to this drug is a common and yet not fully understood phenomenon. Aiming to shed new light into this 
puzzle, we used established normal and malignant lung cell lines displaying different sensitivity towards 
cisplatin treatment. We observed a negative correlation between cell viability and DNA damage 
induction upon cisplatin treatment. Interestingly, drug sensitivity in those cell lines was not due to 
either difference on DNA repair capacity, or in the amount of membrane ion channel commonly used 
for cisplatin uptake. Also, we noted that glutathione intracellular levels, and expression and activity of 
the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) were determinant for cisplatin 
cytotoxicity. Remarkably, analysis of gene expression in non-small cell lung cancer patients of the TCGA 
data bank revealed that there is a significant lower overall survival rate in the subset of patients bearing 
tumors with unbalanced levels of NRF2/KEAP1 and, as consequence, increased expression of NRF2 
target genes. Thus, the results indicate that NRF2 and glutathione levels figure as important cisplatin 
resistance biomarkers in lung cancer.

Cancer is one of the main causes of morbidity and mortality worldwide, with a total annual economic costs of 
approximately US$ 1.16 trillion, and the number of cases are expected to rise 70% over the next two decades1. In 
2018, it is estimated that different types of cancer will cause 610 thousand deaths in the United States alone, and 
the most common cause will be cancers of the lung, with 84 thousand deaths. Lung cancer can be divided in two 
main types – non-small-cell lung carcinoma (NSCLC) and small-cell-lung carcinoma (SCLC) – with the former 
accounting for 85% of the cases and being relatively insensitive to chemotherapy, and the latter being highly 
aggressive and invasive through the metastasis process. As a consequence, lung tumor patients face a very poor 
prognosis. For instance, in the U.S., only approximately 18% of patients diagnosed with lung cancer survive more 
than five years2.

Commonly, chemotherapy for lung cancer patients uses platinum-based compounds, especially cisplatin, 
which is also used for ovarian, testicle, and head and neck tumors3. Cisplatin is an alkylating agent that reacts with 
water when inside cells, replacing its chloride atoms with water molecules. This process results in highly reactive 
molecules that can covalently bind to DNA to form cisplatin-DNA adducts – including monoadducts, intrastrand 
crosslinks and interstrand crosslinks (ICL). ICLs are the most toxic DNA lesions caused by cisplatin, due to severe 
distortions in the DNA double helix that blocks replication and transcription, and, as a consequence, inducing 
cell death4. Another mechanism that has been described as responsible for cisplatin cytotoxicity is the induction 
of reactive oxygen species (ROS), compounds that interact with macromolecular components, such as lipids, 
proteins and DNA, generating lesions5.

Several mechanisms have been reported as responsible for cisplatin resistance, such as reduced drug uptake 
by a decrease in CTR1 expression, increased efflux by ABC transporters, augmented induction of stress response 
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chaperones, induction of autophagy, inactivation of apoptosis pathway signaling, inactivation by thiol-containing 
proteins, and functional changes in DNA repair pathways6–11.

Since cisplatin cytotoxicity is mainly due to its ability to cause DNA damage, DNA repair capacity is expected 
to be one of most important, and therefore studied cisplatin-resistance mechanisms. The most relevant DNA 
repair pathways responsible for repair cisplatin-induced DNA damage are nucleotide excision repair (NER) and 
homologous recombination (HR). Importantly, ERCC1 (Excision Repair Cross-Complementing group 1) and 
XPF (Xeroderma Pigmentosum complementation group F) are essential proteins for both the NER and HR path-
way. ERCC1 forms a heterodimer with the endonuclease XPF, and this protein complex is responsible for the 
incision of the DNA strand processing the damage. Not surprisingly, several reports described an association 
between ERCC1/XPF increased expression and activity with resistance to platinum compounds in many types 
of tumors12. The mismatch repair pathway (MMR) is also involved in cisplatin resistance, mainly as it recognizes 
post-replicative G/T mismatches induced by cisplatin adducts. MMR removes the base opposite to the adduct, 
which may cause a new mismatch, starting the pathway again and leading to the so-called futile cycle, generating 
double stranded breaks. Moreover, this process can inhibit the removal of cisplatin lesions by NER and ultimately 
leading to cell death. Thus, contrary to what is seen in NER, patients with tumors deficient in MMR show resist-
ance to cisplatin13.

Other important resistance mechanisms prevent the drug from reaching the DNA and causing lesions. 
One of these mechanisms is the reduction in the intracellular accumulation of cisplatin due to an increase 
in the thiol-containing protein-mediated inactivation, such as glutathione (GSH), a highly abundant and 
low-molecular-weight tripeptide (Glu-Cys-Gly), well known antioxidant in cells. GSH can bind to and inactivate 
cisplatin through its highly reactive thiol group, preventing the drug from binding to DNA and cause damage14,15. 
The enzymes responsible for GSH synthesis, such as glutamate-cysteine ligase modifier subunit (GCLM) and 
the glutamate-cysteine catalytic subunit (GCLC), and enzymes related to GSH utilization, such as glutathione 
reductase, glutathione peroxidase and glutathione S transferase (GST), have their transcription regulated by the 
transcription factor NRF2 (nuclear factor, erythroid-derived 2-like 2 factor), known as the master regulator of 
antioxidant response16. Normally, NRF2 is attached to KEAP1 (Kelch-like ECH associated protein 1), promoting 
NRF2 proteasomal degradation. During oxidative stress situations, KEAP1 is oxidized and then NRF2 goes to 
the nucleus, promoting the transcription of many genes. The importance of NRF2 to cisplatin resistance has been 
demonstrated recently, and its overexpression has been correlated with higher resistance to several chemothera-
peutic drugs in different types of cancer17.

The aryl hydrocarbon receptor (AhR) signaling pathway, activated by polycyclic aromatic hydrocarbons 
(PAHs) present in tobacco, is another important important mechanism, particularly in cigarette smoke induced 
lung cancer. This pathway is involved in xenobiotic metabolism, inducing the expression of several detoxification 
enzymes by binding in xenobiotic response elements (XRE) containing promoters18. There is a cross-talk between 
AhR and the NRF2 pathways, with NRF2 being capable of inducing AhR transcription, and also with the AhR 
pathway inducing NRF2 activation by ROS generation, highlighting the importance of NRF2 in lung cancer19–21.

In this work, the molecular mechanisms of resistance to cisplatin were investigated, focusing on DNA repair 
and NRF2/GSH pathways. Using either cisplatin sensitive or resistant established lung cancer cell lines, we 
showed that cisplatin induced cell death correlated with increased DNA damage induction, and although DNA 
repair shows important contributions to cellular resistance, it can not explain the cell viability differences among 
these cell lines. On the other hand, increased NRF2 induction and GSH levels were shown to correspond to 
increased tumor cell resistance to cisplatin. Thus, this work clearly indicates that NRF2/GSH pathway plays a 
primary role in cisplatin resistance in lung cancer cells.

Results
Increased cell death after cisplatin treatment is related to higher DNA damage induction.  The 
cell sensitivity to cisplatin treatment was evaluated in one normal lung fibroblast cell line (IMR-90) and two 
NSCLC cell lines (A549 and NCI H23). The cells were incubated with increasing doses of cisplatin, and after 72 h 
of treatment, the cellular viability was measured. As showed in Fig. 1A, A549 cells were more resistant to cisplatin 
treatment, whereas the NCI H23 cell line was the most sensitive, with IMR-90 cells showing an intermediary 
phenotype. In agreement, NCI H23 cells displayed higher levels of apoptosis induction when compared to A549 
cells, as indicated by increased sub-G1 population (Fig. 1B), and caspase-3 activation (Fig. 1C).

DNA damage caused by cisplatin treatment can induce double-strand breaks (DSBs) on the DNA during its 
replication or repair process. In turn, DSBs lead to phosphorylation of the histone H2AX (γH2AX), which is 
widely used as a marker for genotoxic stress. Analysis of γH2AX-positive cells after cisplatin treatment showed 
that A549 cells had a low induction of DNA damage, while the NCI H23 lineage had a high induction at 6 h of 
treatment and displayed a threefold increase after 24 h. Again, the IMR-90 cell line showed an intermediary phe-
notype, with a significant increase in γH2AX staining only after 24 h (Fig. 1D, and Supplementary Fig. S1, where 
representative plots of flow cytometry are shown). In situ immunofluorescence for γH2AX was also performed 
for.cisplatin treated A549 and NCI H23 cells, with a clear increase of γH2AX foci in the damaged cells, particu-
larly in NCI H23 cells (Supplementary Fig. S2). These data suggest that the increased resistance to cisplatin in 
tumors could be related to a lower induction of DNA damage.

XPF silencing increases cisplatin induced cell death.  Since a higher amount of DNA damage, as 
shown by the γH2AX analysis, correlated with increased cell death, we aimed to explore whether increased DNA 
repair capacity is responsible for A549 cisplatin resistance phenotype. Thus, NER endonuclease protein XPF 
was silenced in A549 cells (A549 shXPF) using shRNA lentiviral system. The silencing resulted in a substantial 
decrease in XPF protein levels, and, interestingly, also in the protein levels of its heterodimer partner ERCC1, 
suggesting that XPF is needed to maintain the stability of ERCC1 and prevent its degradation (Fig. 2A). These 
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results are in agreement with observations that when XPF is not present, ERCC1 accumulates in the cytosol and 
does not translocate to the nucleus22. To gain further insights concerning the role of DNA repair as a resistance 
factor to cisplatin the host-cell reactivation (HCR) assay was performed. In this assay a damaged plasmid express-
ing a fluorescent protein reporter gene is transfected into the cells and the recovery of fluorescence detected by 
flow cytometry. The levels of fluorescence are directly affected by the DNA repair capacity of the cells. HCR 
analysis showed that A549 shXPF cells lose their capacity to remove UV (Fig. 2B) and cisplatin induced lesions 
(Fig. 2C). Notably, XPF-silenced cells displayed greater sensitivity to cisplatin treatment, similar to the cell via-
bility observed for the normal cell line, IMR-90, as shown by the XTT cell viability assay and caspase-3 activation 
(Fig. 2D and Supplementary Fig. S3).

DNA repair alone is not sufficient to determine cisplatin resistance in lung cancer cell 
lines.  One mechanism that could be responsible for the differential amount of DNA damage among the 
cell lines is cisplatin intracellular accumulation. Cooper transport channel (CTR1) is one of main mechanisms 
involved cisplatin cellular uptake. It has been observed that lower CTR1 expression leads to a decreased accumu-
lation of intracellular cisplatin decreasing the amount of DNA lesions and conferring resistance to treatment6. 
As noticed on Fig. 3A, protein expression levels detected by western blot showed that there are no difference in 
the amount of the CTR1 protein among the three cell lines investigated, and therefore the DNA damage amount 
and sensitivity differences among them can not be explained by differential intracellular cisplatin accumulation.

With the possibility of each cell line receiving different amounts of the drug being discarded, we focused in 
understanding if the DNA repair capacity, as showed by the XPF knockdown in the most resistant lineage, could 
explain the different sensitivity to cisplatin among them. To address that, the protein levels of the heterodimer 
partners XPF and ERCC1 (Fig. 3B) were investigated. IMR-90 cell line displayed a decreased expression of both 
proteins, with levels similar to A549 shXPF cells, which could explain its reduced cell viability. However, surpris-
ingly, the NCI H23 cell line, the most sensitive to cisplatin, showed the highest expression levels of these DNA 
repair proteins. To understand if, despite the high levels of XPF and ERCC1 proteins in these cells, the DNA repair 
capacity was reduced due to mutations in these or another proteins of the NER pathway, rendering it nonfunc-
tional, the HCR assay was performed. Notably, it was observed that there are no differences between the repair 
capacity of both UV and cisplatin induced lesions in A549 and NCI H23 cells, the most and least resistant cells, 

Figure 1.  Cell death and DNA damage induction in normal and cancer lung cells after exposure to cisplatin. 
(A) A dose-response curve of three lung cell lines treated with increasing concentrations of cisplatin and 
analyzed after 72 h using the XTT assay. (B,C) The apoptotic fraction of lung cells treated with cisplatin for 
72 h, analyzed as the sub-G1 population levels using flow cytometry of PI-stained nuclei or the fold increase 
of cells with active caspase-3 relative to control. (D) Flow cytometry analysis of γH2AX positive staining in 
lung cells upon treatment with cisplatin (5 μM) for 6 h and 24 h. Values are mean ± SEM of three independent 
experiments, *P < 0.05, **P < 0.01, ***P < 0.001.
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respectively (Fig. 3C,D). Therefore, these results indicate that, although DNA repair is an important mechanism, 
other mechanisms may play a primary role in determining resistance to cisplatin, especially in NCI H23 cell line.

NRF2/glutathione-mediated antioxidant defense pathway influences cisplatin resist-
ance.  Another factor that could explain the different sensitivity between A549 and NCI H23 cell lines is an 
increased cisplatin detoxification, which can reduce cisplatin DNA damage, and as consequence, lower drug 
cytotoxicity. It is well established that one of the main factors that promote intracellular cisplatin detoxification is 
GSH, since it can bind covalently to the drug and prevent it to reach the DNA. Indeed, quantification of the intra-
cellular ratio between reduced and oxidized GSH, an index of the intracellular amount of useful GSH, showed 
that A549 exhibited a higher ratio, indicating higher levels of reduced GSH and therefore showing an inverse cor-
relation with the amount of DNA damage induced by cisplatin in both cell lines (Fig. 4A). To confirm that GSH 
levels may modulate cisplatin sensitivity, the A549 cell line was incubated with BSO (buthionine sulfoximine) – a 
well-known inhibitor of y-glutamylcysteine synthetase, an essential enzyme for the synthesis of GSH – and then 
treated with cisplatin. BSO alone did not result in decreased cell viability, however, when used in combination 
with cisplatin, it sensitized the cell line, resulting in a significant decrease in cell viability when compared to cis-
platin alone (Fig. 4B and Supplementary Fig. S3).

Aiming to investigate the source of the difference in GSH levels between both lung cancer cell lines, the 
expression of GCLM (an enzyme responsible for GSH synthesis) and xCT (a subunit of an antiporter that exports 
glutamate while importing cysteine for glutathione synthesis) was assessed through real time PCR (RT-PCR). 
The results show that the mRNA levels of both genes are significantly decreased in the NCI H23 cell line, which 
may explain the reduced GSH levels observed in this cell line (Fig. 4C). Importantly, the expression of these 
genes is controlled by the transcription factor NRF2, and, in fact, the level of this protein was highly reduced 
in the most sensitive cell line, NCI H23, explaining the reduced expression of genes involved in GSH synthesis 
(Fig. 4D). In situ immunofluorescence of NRF2 also indicated this protein is highly expressed and present in 
the nucleus of A549 cells, with lesser expression in the nucleus of H23 cells (representative results shown in 

Figure 2.  Knockdown of XPF and its effect on cell viability after exposure to cisplatin. (A) XPF and ERCC1 
detection and relative quantification by western blot in A549 cells wild type or transduced with shXPF 
lentivirus. Full-lenght membranes are shown on Supplementary Fig. S6. (B,C) HCR assay with a luciferase 
plasmid irradiated with 600 J/m2 of UVC or treated with 750 nM of cisplatin, respectively. (D) A dose-response 
viability curve of A549 or A549 shXPF cell lines treated with increasing concentrations of cisplatin and analyzed 
after 72 h of treatment by XTT assay. Values are mean ± SEM of three independent experiments (two for the 
western blot experiments), *P < 0.05, **P < 0.01, ***P < 0.001.
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Supplementary Fig. S4). Other classical NRF2 target genes mRNA expression were also investigated by RT-PCR: 
Heme Oxygenase 1 (HO1) and NAD(P)H Quinone Dehydrogenase 1 (NQO1), and enzymes related to glu-
tathione utilization, such as the Glutathione Peroxidases 1, 2 and 3 (GPx1, GPx2 and GPx3), with all of them 
having reduced expression in the NCI H23 compared to A549 cells (Supplementary Fig. S5).

NRF2 overexpression induces cisplatin resistance.  Based on these results, we hypothesized that lev-
els of the transcription factor NRF2 may determine cisplatin sensitivity in lung cancer cell lines by regulating 
GSH production. In order to test this hypothesis A549 NRF2 knockdown (A549 shNRF2), and NCI H23 NRF2 
overexpressing (H23 NRF2) cell lines were established. As shown in Fig. 5A, there was a substantial decrease in 
NRF2 protein levels in the A549 shNRF2 cell line, while the overexpression was capable of raising the amount 
of the transcription factor in H23 NRF2 cells to levels comparable to the A549 cells. Importantly, a significant 
reduction and increase on GSH reduced levels were observed in NRF2 knockdown and overexpression cell lines, 
respectively (Fig. 5B).

Notably, and confirming our hypothesis, A549 shNRF2 showed a higher sensitivity to cisplatin treatment, as 
shown by the XTT cell viability assay (Fig. 5C). In contrast, the overexpression of NRF2 in NCI H23 cells greatly 
induced resistance to cisplatin treatment, with almost 3-fold higher cell viability at low doses (Fig. 5D). Caspase 
activation was also performed and the data totally confirmed these observations, with higher sensitivity for A549 
shNRF2 and increased resistant for H23 NRF2 cell lines (Supplementary Fig. S3).

NRF2-KEAP1 expression balance changes the prognostic of lung cancer patients.  Based on 
the evidence that NRF2 and GSH are determinants for cisplatin resistance in cell culture of lung cancer lines, we 
aimed to investigate if this is reflected in the prognostic of patients diagnosed with non-small cell lung cancer. For 
this purpose, we analyzed the gene expression data from TCGA for NRF2 and its inhibitor, KEAP1, observing 
that there is a strong positive correlation between them (Fig. 6A). However, there is a small subset of patients 
that does not obey this pattern, displaying median expression of NRF2 and low expression of KEAP1 − red dots 
(NRF2-KEAP1 alteration) − indicating a higher activity of the transcription factor in those tumors. Interestingly, 
the overall survival of this subset of patients compared with the remaining ones indicates that they have a sig-
nificantly shorter survival rate (Fig. 6B). Importantly, in the patients bearing tumors with NRF2-KEAP1 altera-
tion a significantly increase in expression of NRF2 target genes was observed, such as NQO1, and the enzymes 
responsible for GSH synthesis, GCLC and GCLM, which indicates that GSH levels are also higher (Fig. 6C). This 

Figure 3.  CTR1 status and DNA repair capacity in normal and cancer lung cells. (A,B) Human lung cancer 
whole-cell lysates analysis of CTR1, XPF and ERCC1 protein levels, respectively, by western blot. Full-lenght 
membranes are shown on Supplementary Fig. S6. (C,D) HCR assay of lung cancer cell lines transfected with a 
luciferase plasmid irradiated with 600 J/m2 of UVC or treated with 750 nM of cisplatin, respectively. Values are 
mean ± SEM of three independent experiments (two for the western blot experiments), *P < 0.05, **P < 0.01, 
***P < 0.001.
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data corroborates our in vitro analysis, since as we have shown, higher amount of NRF2 and GSH mediate tumor 
resistance to cisplatin treatment, ultimately leading to a worse prognosis for lung cancer patients.

Discussion
Cisplatin, the main chemotherapeutic drug used to treat lung cancer, was the first FDA-approved platinum com-
pound for cancer treatment, in 1978. It is clinically proven to combat different types of cancer, such as testicular, 
ovarian, cervical and head and neck, included on the World Health Organization’s list of essential medicines. 
Since its approval, 13 analogs have been evaluated in clinical trials, but only one, carboplatin, has achieved world-
wide acceptance, due to its reduced side-effects, although being less effective, with the clinical standard dosage of 
carboplatin being a 4:1 ratio compared to cisplatin23.

DNA is considered the critical target for cisplatin’s cytotoxicity. Upon entering the cytoplasm, the chloride 
atoms on the drug are displaced by water molecule, resulting in a compound that binds to the N7 reactive center 
on purines and causes DNA damage. This process blocks cell division and results in apoptotic cell death13. Indeed, 
herein, the results show that lung cancer cell lines that are more sensitive to cisplatin treatment, as determined 
by XTT cell viability assays, presents higher levels of DNA damage, represented by increased phosphorylation 
of the H2AX histone, an important genotoxic stress marker24. Additionally, the DNA damage induction results 
in increased apoptosis, as indicated by a higher number of cells with degraded nuclei (sub-G1 population) and 
increased activation of Caspase-3.

However, the drug resistance of tumor cells limits the clinical use of cisplatin, which can be intrinsic or 
acquired. DNA repair activities of cancer cells clearly participate as a mechanism for cisplatin resistance. 
Particularly the heterodimer XPF-ERCC1, a rate-limiting factor for the NER pathway, that has single-strand DNA 
endonuclease activity and incises DNA on the 5’ side of cisplatin adducts, and also participate in the repair of 
double-strand breaks induced by ICLs11. Some studies show a correlation between the increase in the expression 
of these proteins and the repair of ICLs25. Cisplatin is highly effective in the treatment of testicular cancer, mainly 
due to the low levels of both proteins, and therefore ICL repair, in these tumors26. Also, patients with non-small 
cell lung carcinomas (NSCLC) with low levels of these proteins are more benefited by cisplatin chemotherapy. In 
melanomas and ovarian carcinomas, high levels of ERCC1 mRNA were observed after treatment with cisplatin27. 
Several inhibitors of XPF-ERCC1 have been shown to reduce NER activity and sensitize different types of cancer 
cells to cisplatin13. Furthermore, ERCC1 expression has been negatively correlated with survival after cisplatin 

Figure 4.  Glutathione production profile and NRF2 expression in lung cancer cells and effects in resistance to 
cisplatin. (A) Quantification of basal intracellular GSH/GSSG ratio in the lung cancer cell lines. (B) Cellular 
viability, as determined by XTT assay, in A549 cells treated with cisplatin (5 μM) and BSO (500 μM) for 72 h. 
(C) Quantification of GCLM and xCT mRNAs expression in lung cancer cells at basal levels, by real time PCR, 
normalized by GAPDH expression. (D) NRF2 protein level detection and relative quantification by western blot 
in lung cancer cells. Full-lenght membranes are shown on Supplementary Fig. S7. Values are mean ± SEM of 
three independent experiments (two for the western blot experiments), *P < 0.05, **P < 0.01, ***P < 0.001.
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chemotherapy in patients with non-small cell lung cancer (NSCLC) and is being exploited as a prognostic fac-
tor in the clinic25. In this study, a significant decrease in cell viability after XPF knockdown, which also reduces 
ERCC1 levels, was observed in the most resistant tumor cell line, confirming that DNA repair has a fundamental 
role in cisplatin resistance and variation in the protein levels of XPF and ERCC1 can explain, at least partially, the 
acquired resistance in tumors when compared to a normal fibroblast. Yet, this is not true for all cases, since the 
XPF/ERCC1 heterodimer levels were increased in the most sensitive cell line and no difference in DNA repair 
capacity was detected comparing the resistant and sensitive tumor cell lines.

Increased inactivation of cisplatin by thiol-containing proteins is an important mechanism for tumor resist-
ance, as showed for cervical cancers, osteosarcoma and glioblastoma cells4,14,15,28. One of these nucleophilic 
species is glutathione, a tripeptide that is synthesized in the cytosol from glutamic acid, cysteine and glycine, 
that exists in thiol-reduced (GSH) and disulfide-oxidized (GSSG) forms, with the former representing around 
98% of intracellular glutathione under physiological conditions29. GSH can bind to cisplatin through its reactive 
thiol group and prevent the drug from reacting with the DNA, thus, preventing damage induction. Indeed, the 
GSH/GSSG ratio is greatly reduced in NCI H23 cell line, explaining the higher DNA damage induction in these 
cells causing higher cell sensitivity to cisplatin. Furthermore, by using BSO − a chemical inhibitor of glutamate 
cysteine ligase (GCL), an enzyme responsible for glutathione synthesis − we depleted glutathione levels in A549 
cells and observed significant increase in sensitivity to cisplatin, confirming the importance of glutathione in 
determining cisplatin resistance.

The intracellular glutathione pool is regulated by a series of enzymes involved in its synthesis, utilization and 
recycling, and high expression levels of these genes have been seen to promote cisplatin resistance in lung adeno-
carcinoma cell lines, with the glutamate cysteine ligase catalytic subunit (GCLC) expression being proposed as 
a potential predictor of treatment failure30. Importantly, the expression of these genes is controlled by the tran-
scription factor NRF2, and several studies have shown that high amounts of NRF2 can induce cisplatin resistance 
in ovarian, bladder, and head and neck cancers31–33. Under physiological condition, NRF2 is constantly being 
targeted for proteasomal degradation by KEAP1, a process that is interrupted upon oxidation situations. In that 

Figure 5.  Cellular response of NRF2 silenced or overexpressed cells to cisplatin treatment. (A) NRF2 protein 
level detection and relative quantification by western blot in A549 cells parent or transduced with shNRF2 
lentivirus recombinant vector (A549 shNRF2), and H23 cells parent or transduced with NRF2 overexpression 
lentivirus recombinant vector (H23 NRF2). Full-length membranes are shown on Supplementary Fig. S7. (B) 
Quantification of basal intracellular reduced glutathione in the different cell lines (C,D) Dose-response curves 
of A549 and A549 shNRF2 (C) and H23 and H23 NRF2 (D) cell lines treated with increasing concentrations 
of cisplatin and analyzed after 72 h of treatment by XTT assay. Values are mean ± SEM of three independent 
experiments (two for the western blot experiments), *P < 0.05, **P < 0.01, ***P < 0.001.

https://doi.org/10.1038/s41598-019-54065-6


8Scientific Reports |         (2019) 9:17639  | https://doi.org/10.1038/s41598-019-54065-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

sense, loss-of-function mutations in KEAP1 gene – leading to higher NRF2 activation – have been identified in 
several human adenocarcinoma, with lung cancer being the type where this gene is most mutated34. These muta-
tions changed KEAP1 residues necessary for binding NRF2, reducing its affinity and promoting NRF2 nuclear 
accumulation. The A549 cell line, resistant to cisplatin treatment, shows a somatic mutation at the first Kelch 
domain of KEAP1, necessary for its interaction with NRF2, and also methylated promoter, both features that 
could explain the high levels of NRF2 protein in this cell line35. On the other hand, the NCI H23 cell line, sensitive 
to cisplatin, shows a mutation at the IVR (intervining-region) domain of KEAP1. This domain is necessary for 
the interaction with Cullin 3 (Cul3), a subunit of the E3 ligase complex, that promotes ubiquitination of NRF236. 
We hypothesize that this mutation could promote a more stable interaction of KEAP1 with Cul3, increasing 
NRF2 degradation and explaining the lower levels in this cell line. In this work, both enzymes responsible for 
glutathione synthesis and NRF2 protein levels were highly reduced in a cisplatin sensitive cell line and, moreover, 
overexpression of this transcription factor induces an increase in GSH levels and resistance to the treatment. In 
agreement, knockdown of NRF2 in a cisplatin resistant cell line depleted GSH and sensitized the cells to cisplatin. 
Also, the analysis of non-small cell lung carcinomas in the TCGA data bank showed that, although there is a 
strong correlation between NRF2 and KEAP1 gene expression, there is a subset of patients with median expres-
sion of NRF2 and very low expression of KEAP1. As expected, these tumors have in fact increased expression of 
NRF2 target genes, including enzymes necessary for GSH synthesis. Interestingly, the patients with this NRF2/
KEAP1 unbalanced expression show a worse prognosis when considering their overall survival.

Together, these results strongly indicate that the NRF2/GSH antioxidant defense pathway plays an important 
role in conferring cisplatin resistance in lung cancer cell lines. Although DNA repair is an important marker for 
cisplatin resistance, we have shown that neither repair proteins expression nor DNA repair capacity analysis alone 
can predict patient response to the treatment. On the other hand, analysis of NRF2 and GSH amounts showed 
to be a valid and potent parameter to presume the lung cancer sensitivity to cisplatin treatment. These observa-
tions are in line with the fact that tumors of the lung are highly mutated in KEAP1, the inhibitor of this pathway. 
Altogether, these findings support the evidence that NRF2 is a relevant prognostic factor for lung cancer patients, 

Figure 6.  NRF2-KEAP1 expression balance impacts the overall survival in non-small cell lung carcinoma 
patients. (A) RNAseq analysis of NRF2 and KEAP1 expression in 1017 TCGA non-small cell lung carcinomas 
samples. Expression values were estimated using RSEM, upper quartile normalized, log2(x + 1) transformed 
and z-normalized. Expression correlation was calculated using the Pearson’s method. (B) Kaplan-Meier survival 
curves of patients divided according to the NRF2-KEAP1 expression balance. Comparisons were performed 
using the log-rank test. (C) Expression of NRF2 target genes in samples divided according to the NRF2-
KEAP1 expression balance. The boxes extend from the 25th to the 75th percentile, the central bold line shows 
the median, and whiskers are drawn from minimum to maximum values within the 1.5 interquartile range. 
Comparisons were performed using the Student’s t-test. ***p < 0.001 and **p < 0.01 compared to the normal 
group.
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since its activity status can predict the treatment outcome. Finally, we propose the use of BSO plus cisplatin 
combinatory therapy as a potential alternative treatment regimen that may overcome cisplatin resistance in lung 
cancer patients.

Materials and Methods
Cell lines and culture conditions.  Human lung carcinoma cell lines A549 and NCI H23, and human nor-
mal lung cell line IMR-90 were kindly provided by Prof. Mari Sogayar (University of São Paulo, Brazil). A549 and 
IMR-90 cell lines were cultivated in DMEM (Invitrogen, Life Technologies, Carlsbad, CA, USA), and NCI H23 
cell line was grown in RPMI medium (Invitrogen), at 37 °C in a humidified, 5% CO2 atmosphere. The culture 
media were supplemented with 1% antibiotic-antimycotic and 10% FCS (fetal calf serum; Cultilab, Campinas, 
SP, Brazil). The A549 and NCI H23 cell lines have missense substitutions (p.G333C and p.Q193H, respectively) 
in the KEAP1 gene.

Cell survival measurement.  2 × 104 cells were plated in a 12 multi-well plate and incubated with dif-
ferent doses of cisplatin (Sigma-Aldrich, St. Louis, MO, USA) for 72 h. In some experiments cells were 
pre-treated, for 16 h, with 500 μM BSO (Sigma-Aldrich, St. Louis, MO, USA). After that, cells were washed with 
phosphate-buffered saline (PBS) and incubated with XTT reagent kit as recommended by the manufacturer´s 
instructions (Roche, Basel, Switzerland).

Flow cytometry for sub-G1, active caspase-3 and γH2AX analysis.  1.5 × 105 cells were plated in 
a 12 multi-well plate and incubated with 3 μM cisplatin for 6, 24 and 72 h. Supernatant and attached cells were 
collected, fixed with 1% formaldehyde and then with 70% ethanol. Afterwards, cells were blocked, permeabi-
lized and incubated with a primary mouse monoclonal antibody to γH2AX (Ser-139) (Upstate Biotechnology, 
Lake Placid, NY, USA) diluted 1:500 for 16 h at 4 °C, followed by incubation with anti-mouse FITC secondary 
antibody (Sigma-Aldrich) diluted 1:200 for 2 h at room temperature, or with a mouse anti-active caspase 3 (BD, 
Pharmigen, San Diego, CA, USA) diluted 1:50 for 16 h at 4 °C. In both cases, cells were then stained with propid-
ium iodide (PI) at room temperature for 1 h, in PBS containing 20 μg/mL PI (Sigma-Aldrich), 200 μg/mL RNase 
A and 0.1% Triton X-100.

Western blot.  Cells were lysed and the protein concentration was quantified using the Pierce BCA 
Protein Assay kit (Thermo Scientific, Rockford, IL, EUA). Proteins were separated by electrophoresis on a 
SDS-polyacrylamide gel and transferred to a nitrocellulose membrane (GE Healthcare, Waukesha, WI, USA). 
Membranes were blocked with 5% (w/v) milk powder in PBS for 1 h and incubated for 16 h at 4 °C with one of 
the following primary antibodies: rabbit anti-SLC31A1/CTR1 (Abcam, Cambridge, UK), mouse anti-GAPDH 
(Santa Cruz Biotechnology, Dallas, TX, USA), mouse anti-XPF (Thermo Fisher, Waltham, MA, USA), mouse 
anti-ERCC1 (Santa Cruz Biotechnology), mouse anti-Tubulin (Abcam), rabbit anti-NRF2 (Abcam). Afterwards, 
the membranes were incubated with the correspondent secondary antibody and a chemiluminescent HRP sub-
strate (Merck Millipore. Burlington, MA, USA) was used to develop the membranes. Each blot was performed 
twice, and quantification of protein levels was done with the ImageJ software37.

Host cell reactivation assay.  The experiments of host cell reactivation assay were performed as previously 
described38,39. Briefly, pHIV-dTomato (Addgene #21374, Cambridge, MA, USA) plasmid was irradiated with 
600 J/m2 of UVC light or incubated with 750 nM cisplatin for 3 h at 37 °C to induce DNA damage. In a 6 multi-well 
plate, 1.5 × 105 cells were plated and transfected with 900 ng of pHIV-dTomato and 100 ng of pIRES2-EGFP 
(Clontech #6029-1, Mountain View, CA, USA), a transfection efficiency control, using Lipofectamine 3000 
Transfection Reagent (Invitrogen, Life Technologies). One day after plasmid transfection, cells were collected and 
red and green fluorescence were measured by flow cytometry.

Real-time PCR.  RNA from cells was extracted using PureLink RNA Mini kit (Invitrogen) and cDNA was pre-
pared using a High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Life Technologies). Afterwards, 
3 μL of diluted cDNA, 6 μL of SYBR green master mix, 0.5 μL of 10 mM reverse and forward primers and 2.5 μL 
of nuclease-free water were combined for each reaction to determine gene expression by quantitative PCR 
(Q-PCR), which was carried out using the 7500 Real-Time PCR System (Applied Biosystems). Relative expres-
sion of GCLM (Fwd: 5′-CCACCAGATTTGACTGCATTTG-3′/Rev: 5′-GCTTCTTGGAAACTTGCTTCAG-3′), 
GPx1 (Fwd: 5′-GACTACACCCAGATGAACGAG-3′/Rev: 5′-TCGAAGAGCATGAAGTTGGG-3′), GPx2 (Fwd: 
5′-GCTTCCCTTGCAACCAATTTG-3′/Rev: 5′-TTCTGCCCATTCACCTCAC-3′), GPx3 (Fwd: 5′-CTGC 
TTTCCCTGCTCCTG-3′/Rev: 5′-GCTCCGTACTCGTAAATGGTG-3′), HO1 (Fwd: 5′-AACTTTCAGAA 
GGGCCAGGT-3′/Rev: 5′-GTAGACAGGGGCGAAGACTG-3′), NQO1 (Fwd: 5′-CAGCGGCTTTGAAG 
AAGAAAG-3′/Rev: 5′-GGTCCTTCAGTTTACCTGTGAT-3′) and xCT (Fwd: 5′-CCTGGCATTTGGAC 
GCTACAT-3′/Rev: 5′-TCAGAATTGCTGTGAGCTTGCA-3′) was calculated using the relative standard curve 
method, and normalized against GAPDH (Fwd: 5′-ACCCACTCCTCCACCTTTGA-3′/Rev: 5′-CTGTTGCT 
GTAGCCAAATTCGT-3′) as the housekeeping gene.

Glutathione quantification.  Reduced and oxidized glutathione levels were quantified using the GSH/
GSSG-Glo Assay (Promega, Madison, WI, USA), following the manufacturer’s instructions. Briefly, 1 × 104 cells 
were plated in white, opaque, 96 multi-well plates and, after 24 h, they were lysed by using either a total glu-
tathione lysis reagent or an oxidized glutathione lysis reagent. Then, luciferin generation reagent was added to 
the wells and the plate was incubated 30 min at room temperature, followed by addition of a luciferin detection 
solution and incubation of 15 min at room temperature. Luminescence was measured using a Glomax-Multi+ 
Luminometer (Promega), and serial dilutions of a GSH standard solution was used to generate a standard curve.
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The cancer genome atlas (TCGA) data analysis.  TCGA gene expression and clinical data from 1017 
non-small lung carcinomas were downloaded from the UCSC XENA Browser (http://xena.ucsc.edu) in July, 
2018. Gene expression data were generated using the Illumina HiSeq. 2000 RNA sequencing platform, quantified 
using RSEM, upper quartile normalized, log2(x + 1) transformed, and z-normalized. Analysis of survival was 
performed using Kaplan-Meier curves and the log-rank test. We used the two-sided Student’s t-test to perform 
two-group comparisons and the Pearson’s method to calculate correlations.

Statistical analysis.  Data is presented as the mean plus standard error of the mean (SEM) of at least two 
independent experiments and statistical significance among data sets were accessed by applying two-way ANOVA 
followed by Bonferoni post-testing, always in comparison to the resistant cell line (A549), using Prism 6 software 
(GraphPad Software Inc., CA, USA). Differences were considered significant for p-values lower than 0.5.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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