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Abstract

5-methylcytosine (mC) is an epigenetic mark that is written by methyltransferases, erased through 

passive and active mechanisms, and impacts transcription, development, diseases including cancer, 

and aging. Active DNA demethylation involves TET-mediated stepwise oxidation of mC to 5-

hydroxymethylcytosine, 5-formylcytosine (fC), or 5-carboxylcytosine (caC), excision of fC or caC 

by thymine DNA glycosylase (TDG), and subsequent base excision repair. Many elements of this 

essential process are poorly defined, including TDG excision of caC. To address this problem, we 

solved high-resolution structures of human TDG bound to DNA with cadC (5-carboxyl-2′-

deoxycytidine) flipped into its active site. The structures unveil detailed enzyme-substrate 

interactions that mediate recognition and removal of caC, many involving water molecules. 

Importantly, two water molecules contact a carboxylate oxygen of caC and are poised to facilitate 

acid-catalyzed caC excision. Moreover, a substrate-dependent conformational change in TDG 

modulates the hydrogen bond interactions for one of these waters, enabling productive interaction 

with caC. An Asn residue (N191) that is critical for caC excision is found to contact N3 and N4 of 

caC, suggesting a mechanism for acid-catalyzed base excision that features an N3-protonated form 

of caC but would be ineffective for C, mC, or hmC. We also investigated another Asn residue 

(N140) that is catalytically essential and strictly conserved in the TDG-MUG enzyme family. A 

structure of N140A-TDG bound to cadC DNA provides the first high-resolution insight into how 

enzyme-substrate interactions, including water molecules, are impacted by depleting the conserved 

Asn, informing its role in binding and addition of the nucleophilic water molecule.
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INTRODUCTION

Methylation of cytosine by DNA methyltransferases (DNMT) produces 5-methylcytosine 

(mC), a prevalent mark for epigenetic regulation that is erased through passive and active 

mechanisms.1 An essential pathway for active DNA demethylation in vertebrates includes 

mC oxidation by a TET (ten-eleven translocation) enzyme, excision of oxidized mC by 

thymine DNA glycosylase (TDG) and base excision repair (BER) (Figure 1).2 TET enzymes 

oxidize mC to give 5-hydroxymethyl-C (hmC) and catalyze additional oxidation reactions to 

yield 5-formyl-C (fC) or 5-carboxyl-C (caC).3-6 While mC and hmC are not excised by a 

DNA glycosylase, TDG removes fC and caC and subsequent BER steps yield unmodified 

cytosine.7-10 DNA demethylation is required for regulating cell differentiation during 

vertebrate development, for transcriptional regulation in post-mitotic cells including 

neurons, and for suppressing tumor development,11 but many aspects of this key epigenetic 

process are poorly defined.

In particular, our understanding of how TDG recognizes and excises fC and caC, but not 

their precursors (C, mC, hmC), remains poor. TDG was discovered as an enzyme that 

excises thymine from G·T mispairs, which can arise via mC deamination and cause C→T 

mutations.12-13 Depletion of TDG in mice causes embryonic lethality,14-15 a phenotype that 

likely reflects the inability of other mammalian glycosylases to excise fC or caC, an 

essential step of active DNA demethylation. Chromatin structure appears to have a role in 

regulating TDG activity, at least for G·T and G·fC pairs.16-17 Like other monofunctional 

glycosylases, TDG excises nucleobases from DNA by hydrolyzing the N-glycosyl bond of a 

deoxynucleotide flipped into its active site.18-19 TDG employs acid catalysis to activate the 

nucleobase leaving group (LG) for excision of caC but not for fC or other target bases (U, 

T).20-21 Acid catalysis is effective for caC because it exists as a monoanion at physiological 

pH,22 and N-glycosyl bond cleavage is hindered by the poor LG quality of a departing caC 

dianion (Figure 2).21 Protonation yields a neutral form of caC (amino, zwitterion, or imino) 

and provides catalysis because a neutral base will depart as a monoanion.21 However, the 

mechanism of acid-catalyzed caC excision remains obscure, due in part to insufficient 

structural information.
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The mechanism for addition of the nucleophilic water molecule in the hydrolytic reaction 

also remains unclear, for TDG and the related bacterial MUG (mismatch uracil glycosylase) 

enzymes. Previous studies indicate that nucleophile addition requires an Asn residue that is 

strictly conserved in the large TDG-MUG enzyme family (Asn140 in human TDG).23-26 

Stepping back, we note that the overall reaction for these enzymes could involve a stepwise 

mechanism, where LG departure gives a discrete (short-lived) oxacarbenium ion 

intermediate followed by nucleophile addition.18-19, 27 A stepwise mechanism, with rate-

limiting LG departure, is indicated for UNG (uracil DNA glycosylase),28-29 which is of the 

same superfamily as TDG-MUG enzymes. Alternatively, the TDG-MUG reaction could 

follow a concerted mechanism with a single oxacarbenium ion-like transition state (TS) in 

which LG departure is greatly advanced over nucleophile addition (a “loose” or “highly 

dissociative” TS). Such a mechanism was indicated by a QM/MM study of the TDG reaction 

(for fC excision).30 Previous structures of TDG reveal that the side chain (carboxamide) 

oxygen of the conserved Asn contacts the nucleophile,31-32 suggesting a key role in 

positioning the nucleophile. Our understanding of how the conserved Asn promotes 

nucleophile addition for TDG-MUG enzymes could be advanced by structures for wild-type 

enzyme and a variant that lacks the conserved Asn, bound to a common substrate and solved 

at sufficient resolution to observe water molecules in the active site, but such structures have 

not been reported to date.

To address these problems, we solved high resolution structures of TDG and N140A-TDG 

bound to DNA with cadC (5-carboxyl-2′-deoxycytidine) flipped into the active site. The 

structures redefine the molecular basis for recognition and hydrolytic excision of caC by 

TDG, including key roles for water molecules that were not observed in previous structures.
33 Our new structures also reveal a substrate-dependent conformational switch that alters the 

hydrogen bonding properties for one of these water molecules, enabling it to interact 

productively with the carboxylate group of caC. The results suggest a new mechanism for 

acid-catalyzed base excision that is consistent with previous experimental findings and 

would be specific for caC and ineffective for C, mC, or hmC. Our results also reveal, for the 

first time, the structural effects of depleting the carboxamide group of the conserved Asn 

residue for TDG-MUG enzymes, including the effect on active-site water molecules, 

informing the role of the Asn in mediating nucleophile addition during N-glycosyl bond 

hydrolysis.

RESULTS

High-resolution structures of TDG bound to cadC DNA.

Determining the structure of an enzyme-substrate complex requires an approach to halt 

catalytic activity while minimally perturbing substrate interactions, which typically involves 

a nonreactive substrate analogue or a catalytically inactive enzyme variant. We used both 

approaches to solve high-resolution structures of TDG bound to DNA with cadC flipped into 

its active site (Table S1). One structure, solved at 1.55 Å resolution, includes wild-type 

TDG82-308 and DNA containing 2′-fluoroarabino-cadC (cadCF) (Figure 3a; PDB ID: 6U17). 

The subtle 2′-F substitution fully precludes TDG cleavage of the N-glycosyl bond for cadC 

and other substrates (dT, dU, fdC), likely by destabilizing the putative oxacarbenium ion-like 
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transition state in the reaction for N-glycosyl bond cleavage.18, 24, 30, 32-35 We also 

determined a high-quality structure of N140A-TDG82-308 bound to DNA with cadC in its 

active site (1.60 Å resolution; PDB ID: 6U16). The N140A substitution halts catalytic 

activity of TDG while not diminishing its binding affinity for many substrates.24-25, 36 The 

mutation prevents cadC cleavage in our crystallization conditions, consistent with single 

turnover kinetics experiments showing that N140A-TDG82-308 lacks significant caC excision 

activity in solution (reaction half-life 70 days; Figure S1A).36

Our results provide a new structural paradigm for how TDG recognizes and excises caC 

from DNA. Previous structures of TDG bound to cadCF DNA, and of N140A-TDG bound to 

cadC DNA, were solved at moderate resolution (3.0 Å), lack water molecules, and were 

obtained from crystals produced with DNA that yields 2:1 binding (TDG:DNA), with one 

TDG subunit bound at a specific site (G·caC) and the other at a nonspecific site (Figure 3b).
33, 35, 37 The 2:1 complex has an interface between TDG subunits that disrupts or alters their 

DNA interactions when compared to structures of TDG-DNA complexes that feature 1:1 

binding,31-32, 38 the stoichiometry that is likely to be physiologically relevant.37, 39-40 Our 

new structures were generated using DNA that gives 1:1 binding and under conditions that 

yield high resolution and feature hundreds of ordered water molecules, including some that 

mediate key enzyme-substrate interactions, as detailed below. In addition, the structures 

were produced using TDG82-308, a construct that fully recapitulates the substrate binding 

affinity and glycosylase activity of full length TDG (410 residues),31-32 unlike the smaller 

construct (TDG111-308) used for the previous structures.

Owing to the use of improved constructs for both TDG and the DNA, our new structures 

feature 16 N-terminal residues (107-122) that were absent in the original structures, due 

likely to disorder associated with 2:1 binding (Figure 3b). These N-terminal residues, which 

include an alpha helix (α0), interact with DNA and with other regions of TDG, including a 

loop (β2-α4) that contains an important catalytic residue (Thr197) and a helix (α1) that 

contains residues which contact the flipped base. A comparison of protein backbone 

conformation in the new and the previous structure of TDG bound to cadCF DNA reveals 

substantial variation, as indicated by a percentile-based spread (pbs) of 0.51 Å.41 The 

variance is most pronounced in two helices (α3, α6), one strand (β4), and two loops (α1-

α2, β2-α4) and is likely attributable to differences in structural resolution as wells as 

binding stoichiometry.31 Indeed, smaller variances are observed when comparing our new 

structure to structures of TDG82-308 bound to other substrates or to product DNA, including 

G·U (pbs 0.14 Å; PDB ID 5HF7), G·fC (pbs 0.23 Å; PDB ID 5T2W), or G·AP (pbs 0.14 Å; 

PDB ID 5FF8), which all feature 1:1 binding and resolution of 1.54 Å to 2.2 Å.31-32

TDG interactions with the caC base.

Our structures reveal detailed interactions with the caC base, including contacts involving 

water molecules that have not been previously observed (Figure 4). As such, our results 

provide a robust structural accounting for findings that TDG binds tightly to G·caC DNA, 

with a dissociation constant (Kd = 2.3 nM) that is about 100-fold greater than that for 

nonspecific DNA.39 It is important to note that while the discussion below focuses largely 

on wild-type TDG82-308 bound to cadCF DNA, the same suite of interactions with the caC 
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base, including water-mediated contacts, are observed for N140A-TDG82-308 bound to cadC 

DNA (Figure S2a). Notably, these structural observations account for findings that the 

N140A mutation has little effect on the binding affinity of TDG for G·caC and other 

substrates.24, 36

Our structures reveal that the caC O2 oxygen is contacted by two backbone amides (139, 

140) and a water molecule that is tightly bound by the hydroxyl of S271 and a backbone 

oxygen. Together, these contacts could promote catalysis by stabilizing negative charge 

developing on the O2 carbonyl oxygen, helping to activate the substrate in the ground state 

or stabilize the departing caC base in the transition-state of the reaction.

The structures also show that the N191 carboxamide oxygen is within hydrogen-bonding 

distance to the N3 and exocyclic N4 of caC. Notably, the N191 carboxamide nitrogen 

interacts with the carboxylate of D126 through two ordered water molecules, a hydrogen 

bond network that could contribute to activating the caC leaving group, as discussed below. 

Both of these residues are conserved in TDG from vertebrates. Previous studies indicate that 

N191 could be essential for caC excision, possibly by facilitating the formation of a neutral 

form of the caC base that is protonated at N3, such as the zwitterion or the imino species 

(Figure 2).21 Thus, N191A-TDG was shown to lack substantial caC excision activity (in a 3 

h reaction) while its binding affinity for G·caC substrate and its fC excision activity were 

equivalent to that of wild-type TDG.21 To advance these findings we quantified the caC 

excision activity of N191A-TDG82-308 using single-turnover kinetics, finding a rate constant 

of kmax = (3.7 ± 0.3) × 10−5 min−1 (Figure S1b). This large 3750-fold reduction in activity, 

relative to wild-type TDG, indicates a critical catalytic role for the N191 carboxamide, one 

that is unique to caC excision.

A striking observation in the new structures is that two water molecules contact a 

carboxylate oxygen of caC (Figures 4, 5, S2). The waters are each coordinated by contacts 

with the 5′ phosphate of the flipped cadC nucleotide and a backbone amide nitrogen of 

TDG, such that each water can donate a hydrogen bond to the carboxylate of caC. As such, 

these waters likely contribute to substrate binding by stabilizing the flipped conformation of 

cadC. Moreover, they are poised to facilitate acid-catalysis by helping to transfer a proton to 

the carboxylate of the anionic caC base. Importantly, the structures also reveal a channel 

from the TDG surface to its active site that contains many ordered water molecules and a 

hydrogen bonding network that could potentially shuttle a proton from solvent to the 

carboxylate of caC. Notably, the water molecules revealed here to interact with the caC 

carboxylate have been observed in previous structures of TDG82-308 bound to other DNA 

substrates (dU, fdC),31-32, 38 but they do not contact U or fC and are thus unlikely to mediate 

excision of these bases, which are removed without acid catalysis.

Our structures also provide new definition regarding the role of other TDG residues that 

interact with the caC base. We confirm the previous finding that a backbone nitrogen (Y152) 

forms a relatively short contact with a caC carboxylate oxygen,33 which could contribute 

substantially to substrate binding and caC excision. By contrast, our structures do not 

support previous proposals that the caC carboxylate is contacted by the side chain of either 

N157 or N230.33, 42 Notably, the pocket surrounding the caC carboxylate includes 
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hydrophobic moieties of several residues (L124, A145, H151, Y152, P153) (Figure 5a). 

Such an environment could favor a neutral relative to an ionized group and could thereby 

elevate the pKa of the caC carboxylate, which could facilitate acid-catalyzed caC excision.

A substrate-dependent conformational switch.

The new structures also reveal a remarkable substrate-dependent conformational switch 

involving a TDG loop (α1-α2), which modulates the hydrogen bond interactions of a water 

molecule and thus its capacity to promote caC binding and excision (Figure 6a, water “a”; 

shown also in Figures 4, 5). The conformational change involves residues 153-156, as 

revealed by comparing structures of TDG82-308 bound to DNA containing cadCF or fdCF, 

and its magnitude is remarkably large given that cadC and fdC differ by a single atom. For 

cadC DNA, the water molecule donates a hydrogen bond to the 5′ phosphate and receives a 

hydrogen bond from a backbone nitrogen (G154), such that it can donate a hydrogen bond to 

the caC carboxylate (Figure 6). By contrast, for fdC DNA, the water molecule donates a 

hydrogen bond to the 5′ phosphate and to a backbone oxygen. If the loop conformation 

observed for fdC DNA were adopted for cadC DNA, the water molecule would likely 

present a lone pair to the carboxylate of caC, which would be unfavorable for binding or 

excision of caC. Importantly, the conformation of this loop is identical in the high-resolution 

structures reported here for wild-type- and N140A-TDG82-308 bound to cadC DNA (not 

shown).

The switch involves cis-trans isomerization for P155 and large conformational changes for 

the flanking Gly residues (G154, G156). The trans isomer of P155 is seen for TDG bound to 

cadC DNA, and the cis isomer is adopted for fdC DNA. Notably, both P155 isomers are 

populated in a 1.54 Å structure of TDG82-308 bound to DNA with dU in its active site, but 

the α1-α2 loop conformation is otherwise quite similar to fdC DNA (Figure S3). As such, 

the hydrogen bond interactions involving the water molecule (“a”) are identical for dU and 

fdC DNA (Figures 6, S3). It is also notable that the conformational switch enlarges the 

solvent-filled channel from the TDG surface to its active site, for cadC DNA (Figure 5b) 

relative to fdC DNA (not shown). Several high-resolution structures TDG bound to abasic 

DNA product reveal an α1-α2 loop conformation identical to that for G·caC DNA (not 

shown), which could potentially facilitate departure of the excised base, a possibility that 

warrants additional studies.

Nucleophile binding and addition.

A critical element of N-glycosyl bond hydrolysis is coordination and addition of the 

nucleophilic water molecule. Previous studies indicate that this step requires an Asn that is 

strictly conserved in TDG-MUG enzymes (Asn140 in human TDG),24-26 but its role in TDG 

hydrolysis of cadC remains unclear, due in part to insufficient structural information. We 

addressed this problem using structural and biochemical approaches. Single turnover 

kinetics experiments show that N140A-TDG82-308 has exceedingly low caC excision 

activity; kmax = (6.8 ± 0.7) × 10−6 min−1 (Figure S1A).36 Thus, depleting the carboxamide 

of N140 causes a 20500-fold loss in caC activity, similar to the massive effects observed for 

other substrates (G·fC, G·T, G·U).24, 32 The structure of TDG82-308 bound to caCF DNA 

reveals that the putative nucleophilic water molecule is coordinated by the carboxamide 
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oxygen of N140 and the backbone oxygen of T197 (Figure 7). Assignment of this water as 

the nucleophile is supported by the effect of removing the N140 carboxamide on caC 

activity and findings of an identical nucleophile binding mechanism in structures of 

TDG82-308 bound to DNA with dUF or fdCF DNA.31-32 In addition, the position of the 

nucleophile and its distance from the electrophile (C1′) are similar in all three structures 

(with caCF, fdCF, dUF). Notably, the N140 carboxamide group is positioned by close 

contacts from its nitrogen to the hydroxyl of T197 and a backbone oxygen (195). The 

catalytic importance of T197 is indicated by previous findings that the T197A mutation 

causes a 32-fold loss in glycosylase activity for a G·T substrate, and its strict conservation in 

TDG-MUG enzymes.35 Importantly, the new structure reveals a second water molecule that 

contacts the N140 carboxamide oxygen, in addition to contacts with the nucleophile and the 

3′ oxygen of cadC (“W2”, Figure 7). This second N140-interacting water molecule, not 

seen in previous structures, could potentially contribute to nucleophile addition, as discussed 

below.

Effect of removing the carboxamide of N140.

The mechanism of nucleophile binding and addition for TDG-MUG enzymes is also 

informed by our structure of N140A-TDG82-308 bound to cadC DNA (Figure 8). 

Importantly, this is the first high-resolution structure of any TDG-MUG enzyme that reveals 

the effect of depleting the carboxamide group of the essential Asn, including effects on 

water molecules. Remarkably, N140A-TDG binds a water molecule (“*”, Figure 8) using 

two of the three contacts observed for the nucleophilic water of wild-type TDG (197 

backbone oxygen, water W2). The third contact, to the N410 carboxamide oxygen for wild-

type TDG, is replaced by a contact to the A140 backbone oxygen for N140A-TDG. While 

the water molecule for N140A-TDG exhibits a similar displacement (3.6 Å) from the 

electrophile (C1′ of cadC), its relative position in the active site is altered by about 1 Å (for 

aligned structures). The absence of significant caC excision activity for N140A-TDG 

indicates that this water molecule (*) cannot serve as the nucleophile, due likely to improper 

positioning and possibly additional factors, as discussed below. Our structure also reveals 

that the N140A substitution does not alter the binding of the second water molecule (W2) 

that contacts the N140 carboxamide oxygen in wild-type TDG; its position and two of its 

interactions are retained for N140A-TDG (Figure 8). This observation supports the 

conclusion that, although this water molecule contacts the N140 carboxamide, it is not the 

nucleophile.

Removing the N140 carboxamide also exerts effects beyond coordination of the nucleophile. 

The effects on TDG backbone conformation are relatively small at the substitution site but 

more pronounced for a loop (β2-α4; 192-204) that includes T197, due to loss of two 

contacts between the loop and the N140 carboxamide nitrogen. In turn, this alters a contact 

involving a backbone oxygen (198) and R275, the “plug” residue that fills the DNA void 

generated by nucleotide flipping (Figure 8).35, 37 R275 contacts the phosphate of nucleotides 

adjacent to the flipped nucleotide (cadC) and likely stabilizes the flipped conformation. 

N140A-TDG exhibits a second conformation for R275, which does not contact the DNA 

backbone and would likely not hinder retrograde flipping of cadC, raising the possibility that 

the N140A mutation could impact nucleotide flipping. However, findings that the N140A 
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mutation has little effect on substrate binding affinity suggest a relatively small effect on 

flipping.24, 36

Minimal effects of 2′-F on enzyme-substrate interactions.

2′-F-substituted deoxynucleotides have long been used to generate a stable enzyme-

substrate (E-S) complex for structural, biophysical, and biochemical studies of many DNA 

glycosylases.24, 26, 32, 34, 40, 43-45 The 2′-F substitution is subtle and is thought to not 

dramatically alter the conformation of a nucleotide flipped into a glycosylase active site or 

perturb enzyme interactions. However, this has not been directly investigated by structural 

methods (to our knowledge), due perhaps to experimental impediments. Such studies require 

an enzyme mutation that halts base excision activity but does not perturb interactions with 

the flipped nucleotide, and structures of that variant enzyme bound to two DNA duplexes, 

with and without a 2′-F in the flipped nucleotide. Our structures show that the N140A 

mutation satisfies the first requirement, as it does not substantially perturb interactions with 

the flipped nucleotide (Figures 4, S2). To address the second requirement, we solved a 

structure of N140A-TDG82-308 bound to cadCF DNA at 2.40 Å resolution (PDB ID: 6U15). 

Comparing our structures of N140A-TDG82-308 bound to DNA with either cadC or cadCF 

indicates that TDG interactions with the caC base, including water-mediated contacts to O2 

and the carboxyl group, are not substantially altered by the 2′-F substitution, aside from 

minor differences that could be attributed to the large difference in structural resolution (1.60 

Å, 2.40 Å). In addition, the conformation of the flipped nucleotides in the active site are 

remarkably similar (Figure 9). One minor difference is that a water molecule seen in the 

structure of N140A-TDG82-308 bound to cadC DNA is missing in the corresponding 

structure with cadCF, due likely to steric clash with the 2′-F substituent, but the water seems 

unlikely to contribute substantially to substrate binding or catalysis. These structural 

observations are consistent with findings that the affinity of N140A-TDG for binding G·U or 

G·T DNA is not substantially altered by a 2′-F substitution in the target nucleotide (dU or 

dT).24 More broadly, our results provide the first direct structural evidence that a 2′-F-

arabino substitution does not substantially alter the conformation of a nucleotide flipped into 

a DNA glycosylase active site or perturb enzyme-substrate interactions.

DISCUSSION

Optimal approach for studying an E-S complex.

Our results provide new information that could help guide decisions regarding the optimal 

approach for studying the enzyme-substrate complex of a DNA glycosylase, where the goal 

is to halt catalysis in a manner that minimally perturbs substrate interactions. We took two 

common approaches, using wild-type enzyme with a nonreactive substrate analogue (2′-F-

cadC) and mutant enzyme with natural substrate (cadC). Regarding the second approach, our 

results provide the first robust structural evidence that removing the carboxamide of the 

catalytic Asn in TDG-MUG enzymes hinders productive binding of the essential 

nucleophilic water molecule while preserving interactions with the flipped nucleotide. 

Indeed, we show that this approach can be highly informative for studying the E-S complex 

for TDG and we suspect it could be similarly productive for bacterial MUG enzymes. 

However, the approach does have some drawbacks. Removing the N140 carboxamide causes 
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structural changes in TDG that are unrelated to nucleophile binding, as detailed above. Also, 

N140A-TDG exhibits some residual activity, depending on the substrate (e.g., G·U DNA) 

such that base excision might occur during crystal growth.24 As noted above, this is not a 

problem for G·caC DNA under our crystallization conditions. By contrast, the other 

approach for studying an E-S complex, using wild-type enzyme and DNA containing a 2′-F-

substituted substrate analogue, has no major shortcomings. Indeed, our structures indicate 

that the 2′-F substitution has little effect on the structure of the flipped nucleotide or its 

enzyme interactions. Thus, our results show that for TDG, and perhaps most other DNA 

glycosylases, using wild-type enzyme and DNA with a 2′-F-substituted nucleotide is the 

most robust approach for studying the E-S complex. Previous structural studies of MutY led 

to a similar conclusion.46 Notably, the 2′-F substitution fully precludes base excision 

activity for most DNA glycosylases, which is important for crystallography given the 

incubation time needed for crystal growth. Availability of the phosphoramidite form of the 

2′-F deoxynucleotide can be an issue, as they can be challenging to produce, though some 

are commercially available.

Mechanism of acid-catalyzed caC excision.

Previous studies show that TDG employs acid catalysis to activate the nucleobase leaving 

group (LG) for excision of caC but not for excision of fC or other substrate bases (U, T).21 

The unique need of caC for LG activation is explained by its anionic ionization state at 

physiological pH, which likely hinders N-glycosyl bond cleavage due to the poor LG quality 

of a departing caC dianion (Figure 2). Protonation of the caC anion yields a neutral form of 

caC, including the amino, zwitterion, or imino species, which are all predicted to have 

dramatically enhanced LG quality when compared to the caC anion, as judged by N1 acidity 

(Figure 2).21 Previous findings that candidate general acid residues (His151, Tyr152) do not 

contribute to caC excision indicate that acid-catalyzed excision does not involve direct 

protonation of caC by a general acid.21 Thus, the mechanism of acid-catalyzed caC excision 

by TDG has remained unknown.

Our discovery here that two ordered water molecules contact a caC carboxylate oxygen 

suggests a mechanism for transfer of a proton to the carboxylate group of the caC anion to 

yield the neutral amino form of caC, a much better leaving group relative to the caC anion 

(Figure 10a). Notably, our structures also reveal a channel from the protein surface to the 

active site which contains ordered water molecules and a network of hydrogen bonds that 

could potentially shuttle a proton from solvent to one of the two waters that contacts the caC 

carboxylate (Figure 5b). Together, these findings suggest one potential mechanism for acid-

catalyzed activation of the caC anion (Figure 10a).

However, such a mechanism does not account for biochemical and structural findings that 

point to an essential role for N191 in acid catalysis of caC excision. Depleting the 

carboxamide of N191 (via N191A mutation) reduces the caC excision activity of TDG by 

3750-fold (Figure S1b) but does not alter its binding affinity for a G·caC substrate.21 The 

N191A mutation does not alter TDG activity for G·fC substrates and only modestly reduces 

activity for G·U and G·T substrates (by 5- and 13-fold), and these three substrates are 

processed without acid-catalysis.21, 24, 35 These observations, together with structural 
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findings that the N191 carboxamide oxygen contacts N3 and N4 of caC, suggest that N191 

could mediate the formation of an N3-protonated form of caC in the active site, thereby 

activating the caC anion for excision.

Notably, direct protonation of the caC anion at N3 yields a zwitterion, which is predicted to 

be a good leaving group and could be another potential mechanism for acid-catalyzed 

activation of caC excision (Figure 10b).21 However, our high-resolution structures, which 

include hundreds of ordered water molecules, do not reveal a water molecule that contacts 

N3 or N4 of caC or the carboxamide oxygen of N191. As such, the source of the proton that 

would be needed for direct protonation at N3 is unclear. Given the low pKa of 4.2 for 

converting the anionic caC base to a neutral species,21, 47 it seems unlikely that the N3-

protonated form of caC is substantially populated in the TDG-DNA complex prior to 

nucleotide flipping, but this possibility cannot be excluded. Another concern regarding a 

mechanism involving activation of the caC anion by direct protonation at N3 has to do with 

specificity. TDG does not excise C, mC, or hmC from DNA, yet the N3 acidity for these 

bases is similar to that for the caC anion (assuming a mechanism that protonates exclusively 

at N3 to give a zwitterion).21 Thus, if TDG were to catalyze caC excision through direct 

protonation at N3, how would it avoid acid-catalyzed excision of the other three bases? One 

potential answer is that the corresponding nucleotides (dC, dmC, dhmC) do not flip 

productively into the active site, which is consistent with findings that TDG binds with 

reduced affinity to DNA containing these nucleotides relative to DNA containing fdC and 

cadC.33, 36, 39 Still, this seems unlikely to fully account for the absence of TDG activity for 

these nucleotides.

We propose a new mechanism for acid-catalyzed caC excision that would be specific for caC 

and is consistent with previous findings and the results reported here (Figure 10c). It begins 

with protonation of the caC anion at a carboxylate oxygen to give the neutral amino form of 

caC, through a proton transfer mechanism as described above. Accounting for its essential 

role, the next step involves N191-mediated conversion of the caC amino to its imino form, 

facilitated by ordered water molecules and the carboxylate of D126, a residue that is 

conserved in vertebrate TDG. As noted above, leaving group quality is expected to be 

substantially improved for the imino relative to the amino of caC (Figure 2).21 The amino to 

imino conversion would begin with abstraction of a proton from N4 of caC by the N191 

carboxamide, facilitated by proton shuttling to a general base, D126, through hydrogen 

bonds involving two ordered water molecules (Figure 4). The resulting negative charge on 

the caC base could be accommodated through delocalization to the O2 oxygen, stabilized by 

hydrogen bonds from two backbone amides and an ordered water. Subsequent transfer of a 

proton back through the D126-water-N191 network to N3 of caC would yield the imino 

species. Notably, abstraction of the caC N4 proton would likely be enabled by the initial 

protonation step, which converts the carboxylate, an electron-donating group, to carboxylic 

acid, a strongly electron-withdrawing substituent (σm is −0.10 and 0.37 for -COO− and -

COOH, respectively).48 Because this mechanism begins with protonation at the carboxylate 

group to give an electron-withdrawing substituent, it would not likely be effective for acid-

catalyzed excision of C, mC, or hmC. Additional studies will be needed to test this and other 

potential mechanisms for acid-catalyzed caC excision by TDG.
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Nucleophile binding and addition.

Together, our biochemical and structural results inform the mechanism of nucleophile 

binding and addition in the hydrolytic reaction catalyzed by TDG enzymes, and by 

extension, the related bacterial MUG enzymes. This central catalytic function requires an 

Asn that is strictly conserved in the TDG-MUG family (N140 for human TDG).24-26 Our 

structure of TDG82-308 bound to cadCF DNA reveals an ordered water molecule that 

contacts the N140 carboxamide oxygen and a backbone oxygen (197) and likely represents 

the nucleophile for cadC hydrolysis. Importantly, the same interactions and relative position 

are observed for the putative nucleophile in high-resolution structures of TDG82-308 bound 

to DNA with fdCF or dUF flipped into the active site.31-32 Our structures also provide the 

first robust structural information regarding the effects of depleting the carboxamide of the 

conserved Asn for any enzyme in the TDG-MUG family. As noted above, the structures 

reveal that the nucleophile for wild-type TDG, and a corresponding water molecule for 

N140A-TDG, are each coordinated by three hydrogen bonds, two of which are conserved. 

However, the water molecules occupy different relative positions in the active site and are 

separated by 1 Å (in aligned structures). These observations provide a structural context for 

findings that the N140A mutation reduces caC activity by 20500-fold (Figure S1a) and 

causes similar activity reductions for other substrates.24, 32

The massive effect of the N140A mutation could reflect a critical role for the conserved Asn 

in nucleophile positioning, as suggested by the perturbed nucleophile location revealed here 

for N140A-TDG. It seems unlikely that the activity loss caused by the N140A mutation 

reflects a major role for the conserved Asn in nucleophile activation, given that the N140D 

mutation, which introduces a potential general base, also reduces TDG activity dramatically, 

albeit to a far smaller extent than the N140A mutation.25, 49 While N140D-TDG could 

potentially bind the nucleophile using a carboxylate oxygen in a manner analogous to that 

for the carboxamide oxygen of TDG, the carboxylate would likely disrupt contacts with 

T197 and the 195 backbone oxygen that are formed by the carboxamide nitrogen of wild-

type TDG, which could perturb nucleophile positioning. Moreover, it seems unlikely that 

strong nucleophile activation would be needed for a reaction that is likely to be either 

stepwise, with a highly electrophilic oxacarbenium ion intermediate, or concerted with a 

loose transition state in which LG departure is greatly advanced over nucleophile approach.
18-19, 27, 30

Nevertheless, along with a key role in nucleophile positioning, the conserved Asn could 

potentially stabilize positive charge associated with nucleophile addition and facilitate 

transfer of the released proton to a water molecule (Figure 11). As shown by our structures, 

the other active-site water (W2) contacts the N140 carboxamide, the nucleophilic water, and 

the 3′-oxygen of the flipped cadC nucleotide (Figure 7). Stabilization of positive charge by 

N140 could involve a hydrogen bond that is strengthened by delocalization of negative 

charge to its carboxamide oxygen, stabilized by hydrogen bonds from its nitrogen to T197 

and a backbone oxygen (105). A recent QM/MM study of the TDG reaction suggests the 

positive charge could be delocalized to the side chains of N140 and T197 through relatively 

strong hydrogen bonds.30 A key catalytic role for T197 is indicated by findings that the 

T197A mutation causes a 32-fold loss in G·T activity,35 though this could also reflect 
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impaired nucleophile positioning. Our structures suggest the positive charge arising upon 

nucleophile addition could also be stabilized by the second water molecule. Moreover, this 

water is poised to be the initial recipient of the proton that is released by the nucleophile. It 

is assumed the proton would then be transferred to solvent or possibly to the excised anionic 

base, depending on conformational changes and interactions that arise in the product 

complex. Additional studies will be needed to test this and other possible mechanisms for 

nucleophile addition during N-glycosyl bond hydrolysis by enzymes in the TDG-MUG 

family.

MATERIALS AND METHODS

Materials.

We expressed and purified TDG82-308, comprising residues 82-308 of human TDG (410 

total residues), as described.31 Expression vectors for N140A- and N191A variants were 

generated by site-directed mutagenesis24 and the vector for the C276A variant was obtained 

from DNA 2.0 (Newark, CA). The variants were purified using the same methods as for 

wild-type TDG82-308. Enzyme preparations were >99% pure, as judged by SDS-PAGE 

(Coomassie-stained gel) and concentration was determined by absorbance at 280 nm,39, 50 

using ε280 = 17.4 mM−1cm−1 for TDG82-308 (and the variants). Standard 

oligodeoxynucleotides (ODNs) were obtained from IDT and those containing 5-carboxyl-dC 

(cadC) were synthesized by the Keck Foundation Biotechnology Research Laboratory at 

Yale University. Also produced at Yale were ODNs containing 2′-fluoroarabino-substituted 

cadC (cadCF), using a phosphoramidite that was synthesized as described.33, 51 ODNs were 

purified by reverse phase HPLC,38, 45 exchanged into 0.02 M Tris-HCl pH 7.5, 0.04 M 

NaCl, and quantified by absorbance.52 The DNA included a 28mer target strand, 5′-AGC 

TGT CCA TCG CTC AxG TAC AGA GCT G, where x is cadC or cadCF, and the 

complementary strand, 5′-CAG CTC TGT ACG TGA GCG ATG GAC AGC T, such that 

cadCF is paired with dG and located in a CpG dinucleotide context.52-53

X-ray Crystallography.

Samples used for crystallization contained 0.35 mM TDG82-308 (or N140A-TDG82-308) and 

0.42 mM DNA in a buffer of 5 mM Tris-HCl pH 7.5, 0.13 M NaCl, 0.2 mM DTT, 0.2 mM 

EDTA. Crystals were grown at room temperature (~22 °C) by sitting drop vapor diffusion, 

using 1 μl of the TDG-DNA sample and 1 or 2 ul of mother liquor, which was 30% (w/v) 

PEG 4000, 0.2 M ammonium acetate, 0.1 M sodium acetate, pH 6.0. Crystals were 

cryoprotected using mother liquor supplemented with 18% ethylene glycol and flash cooled 

in liquid nitrogen. X-ray diffraction data were collected at the Stanford Synchrotron 

Radiation Lightsource (SSRL beamlines 12-2). Images were processed using XDS and 

MOSFLM and scaled with Aimless from the CCP4 program suite,54-57 assisted by autoxds 

(http://smb.slac.stanford.edu/facilities/software/xds). Resolution cutoff was determined 

based on CC1/2 values.58 Structures were solved by molecular replacement using Phaser,59 

and a prior structure of DNA-bound TDG82-308 as the search model (PDB ID: 5T2W). 

Refinement was performed using BUSTER-TNT,60 and model building was performed 

using Coot.61 TLS refinement utilized the TLSMD server,62-63 as described.38 The data 
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collection and refinement statistics are provided in Supplementary Table S1. Structural 

figures were made with PyMOL (http://www.pymol.org).

Enzyme activity assays.

Glycosylase activity was determined for TDG82-308 variants acting on DNA containing a 

G·caC pair using single turnover kinetics experiments performed under saturating enzyme 

conditions.31, 64 Detailed methods are given in the Supporting Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Methylation of cytosine and active demethylation by the TET-TDG-BER pathway in 

vertebrates.
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Figure 2. 
The caC base is a monoanion at physiological pH and N-glycosyl bond hydrolysis is likely 

precluded by the poor leaving-group (LG) quality of a departing caC dianion. For clarity, the 

focus is on LG departure in a stepwise mechanism (oxacarbenium ion intermediate), without 

showing details for nucleophile addition (see text). Leaving group quality is improved by 

protonation of the caC anion to give a neutral species (amine, zwitterion, or imino), as 

shown by previously calculated N1 acidities, where the free energy of deprotonation (kcal 

mol−1) in water is 27.7 for the caC anion and 20.5, 13.3, and 16.0 for the amino, zwitterion, 

and imino forms of neutral caC, respectively.21
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Figure 3. 
High-resolution structure of TDG bound to G·caC DNA. (a) Crystal structure of TDG82-308 

bound to DNA with cadCF in its active site (1.55 Å; PDB ID 6U17). TDG82-308 is cyan, 

water molecules are red spheres, the target DNA strand (with cadCF) is yellow and the 

complementary strand green (with N, blue; O, red; P, orange). The 2Fo–Fc electron density 

map, contoured at 1.0σ, is shown for DNA. (b) Alignment of our new structure and a 

previous structure of TDG111-308 bound to cadCF DNA (3.01 Å; PDB ID 3UOB). Coloring 

for the new structure is the same except that residues 107-122 are dark blue. The previous 

structure exhibited 2:1 binding, one TDG subunit (pink) bound at a G·caC site and the 

adjacent subunit (dirty violet) at a nonspecific site.
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Figure 4. 
Structure of TDG82-308 bound to DNA with cadCF flipped into the active site. The 2Fo–Fc 

electron density map, contoured at 1.0σ, is shown for cadCF DNA and water molecules. 

Dashed lines represent hydrogen bonds, with interatomic distances (Å) shown. Water 

molecules contacting the carboxylate of cadC are labeled (a, b). The 2′-F substituent, 

colored cyan, is partially obscured by C2′, though its electron density is visible.
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Figure 5. 
Binding pocket for the caC carboxylate and water molecules that contact this group and 

populate a channel to the surface. (a) Binding pocket for carboxyl of caC as seen in the 

structure of TDG82-308 bound to cadCF DNA. Select residues of TDG are shown in surface 

and stick format, with formatting otherwise similar to that in Figure 4. The 2′-F substituent 

is not shown (for clarity). (b) Water-filled channel from the TDG active site to its surface. 

The hydrogen bonding network (dashed lines) could facilitate transfer of a solvent proton to 

caC. Water molecules that contact the carboxylate of cadC are labeled (a, b).
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Figure 6. 
Substrate dependent conformational switch. (a) The new structure of TDG82-308 (cyan) 

bound to cadCF DNA (yellow) superimposed with the previous structure of TDG82-308 

bound to fdCF DNA (pink) (PDB ID 5T2W). Red (or pink) spheres represent water 

molecules. For cadC DNA, the water molecule of interest receives a hydrogen bond from a 

backbone nitrogen (G154), while for fdC DNA, the corresponding water (pink) donates a 

hydrogen bond to a backbone oxygen (P153). Cis-trans isomerization is shown for P155 (b) 

Effect of the conformational switch on hydrogen bond interactions of the ordered water 

molecule and its capacity to provide a hydrogen bond to the carboxylate of caC.
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Figure 7. 
Coordination of the nucleophilic water molecule for TDG82-308 bound to cadCF DNA (PDB 

ID: 6U17). The 2Fo–Fc electron density map, contoured at 1.0σ, is shown for water 

molecules only (some omitted for clarity). Dashed lines represent hydrogen bonds with 

interatomic distances (in Å) shown (otherwise ≤3.3 Å). The nucleophile (magenta sphere) 

and electrophile (C1′) are separated by 3.8 Å (thin dotted line).
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Figure 8. 
Effects of removing the N140 carboxamide. Structure of N140A-TDG82-308 (wheat) bound 

to DNA (light green) with cadC flipped into its active site (PDB ID: 6U16). Aligned to this 

is the structure of TDG82-308 (white) bound to cadCF DNA (PDB ID: 6U17). Water 

molecules are red spheres for N140A-TDG82-308 and magenta for TDG82-308. The putative 

nucleophile for TDG82-308 is labeled “n”; a corresponding water displaced by 1 Å for 

N140A-TDG82-308 is labeled “*” and its distance from the electrophile (C1′) is 3.6 Å (thin 

dotted line). The second water that contacts N140 of TDG82-308 is labeled “W2”.
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Figure 9. 
Effect of 2′-F substituent on the conformation of cadC flipped into the active site of N140A-

TDG82-308. (a) Alignment of structures of N140A-TDG82-308 bound to DNA containing 

cadC (lime) or cadCF (yellow) reveals little difference in cadC conformation. Water 

molecules are red spheres for cadC and magenta for cadCF; one water is seen for cadC but 

not cadCF, due likely to steric hindrance with 2′-F (red dotted line). Dashed lines represent 

hydrogen bonds with interatomic distances (Å). (b, c) Close-up view of cadC and cadCF 

nucleotides, flipped into the N140A-TDG82-308 active site, indicate that 2′-F has a minor 

effect on sugar pucker (C1′-exo, slight O4′-exo). View is along a C4′-C2′ axis with C4′ in 

foreground. 2Fo–FC electron density maps are contoured at 1.0σ.
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Figure 10. 
Potential mechanisms for acid-catalyzed excision of caC by TDG, with a focus on steps 

leading to N-glycosyl bond cleavage. We note that subsequent steps, including potential 

mechanisms for nucleophile addition and product release, are not shown. (a) Activation of 

the caC anion through protonation at its carboxylate to give the neutral caC amino; the 

mechanism involves proton shuttling through one of the two water molecules shown here to 

contact the caC carboxylate. (b) Activation of the caC anion through protonation at N3 to 

give the neutral zwitterion; the “?” indicates that the source of the requisite proton is unclear. 

(c) A new mechanism for activation of the caC anion involves water-mediated protonation of 

the carboxylate to give the neutral caC amino and its conversion to the caC imino, mediated 

by N191 and its interaction (through water molecules) with a general base, D126. For all 

three mechanisms, some interactions with water molecules or TDG groups are shown only 

in the most relevant steps or not at all (for clarity).
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Figure 11. 
Potential role for the conserved Asn and Thr residues of TDG-MUG enzymes in positioning 

the nucleophilic water molecule, stabilizing positive charge upon nucleophile addition, and 

facilitating proton transfer to another water molecule. The structural interactions are shown 

in Figure 7. Labels denote residues in human TDG.
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