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ABSTRACT Escherichia coli is a leading contributor to infectious diarrhea and child
mortality worldwide, but it remains unknown how alterations in the gut microbiome
vary for distinct E. coli pathotype infections and whether these signatures can be used
for diagnostic purposes. Further, the majority of enteric diarrheal infections are not diag-
nosed with respect to their etiological agent(s) due to technical challenges. To address
these issues, we devised a novel approach that combined traditional, isolate-based and
molecular-biology techniques with metagenomics analysis of stool samples and epide-
miological data. Application of this pipeline to children enrolled in a case-control study
of diarrhea in Ecuador showed that, in about half of the cases where an E. coli patho-
type was detected by culture and PCR, E. coli was likely not the causative agent based
on the metagenome-derived low relative abundance, the level of clonality, and/or the
virulence gene content. Our results also showed that diffuse adherent E. coli (DAEC), a
pathotype that is generally underrepresented in previous studies of diarrhea and thus,
thought not to be highly virulent, caused several small-scale diarrheal outbreaks across a
rural to urban gradient in Ecuador. DAEC infections were uniquely accompanied by coe-
lution of large amounts of human DNA and conferred significant shifts in the gut micro-
biome composition relative to controls or infections caused by other E. coli pathotypes.
Our study shows that diarrheal infections can be efficiently diagnosed for their etiologi-
cal agent and categorized based on their effects on the gut microbiome using meta-
genomic tools, which opens new possibilities for diagnostics and treatment.

IMPORTANCE E. coli infectious diarrhea is an important contributor to child mortality
worldwide. However, diagnosing and thus treating E. coli infections remain challenging
due to technical and other reasons associated with the limitations of the traditional
culture-based techniques and the requirement to apply Koch’s postulates. In this study,
we integrated traditional microbiology techniques with metagenomics and epidemiolo-
gical data in order to identify cases of diarrhea where E. coli was most likely the caus-
ative disease agent and evaluate specific signatures in the disease-state gut microbiome
that distinguish between diffuse adherent, enterotoxigenic, and enteropathogenic E. coli
pathotypes. Therefore, our methodology and results should be highly relevant for diagnosing
and treating diarrheal infections and have important applications in public health.

KEYWORDS Escherichia coli, infectious diarrhea, gut microbiome, metagenomics, 16S
rRNA, pathotypes, Ecuador, clinical metagenomics

Diarrheal diseases remain a major public health issue worldwide, especially in
developing countries where poor sanitary conditions and limited access to clean

water exacerbate the burden (1). Although most diarrheal cases self-resolve relatively
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quickly (2, 3) and hence the causative agent(s) is never identified, there are instances
where acute diarrheal infections lead to death, making detailed investigations of the
causative agents and their signatures necessary. Such cases include not only acute child
diarrhea in the developing world but also foodborne outbreaks linked to contaminated
food and other causes in developed countries (2–4).

Diagnostic testing for enteric pathogens has historically relied on culture-based
techniques or culture-independent molecular assays such as PCR that are based on
cultured material. Accordingly, reference (cultured) isolates are the foundation for
public health surveillance (5–7). It is important to realize, however, that culture-based
techniques are typically time-consuming and costly and require significant expertise,
while they frequently miss moderately or distantly related relatives of the reference
isolates, since many bacterial microorganisms are difficult to growth or are even
nonculturable, although still viable. For example, some pathogens, including Esche-
richia coli, can quickly lose the ability to be cultured upon exposure to laboratory
conditions (8). In addition, culture-based techniques may detect transient pathogens
that are not related to the current diarrheal episode. Several of these limitations also
apply to (culture-derived) culture-independent methods: in cases where PCR detection
is applied for example, there is still a high risk of detecting traces of asymptomatic
carriage or residual DNA from previous infections or missing divergent (target) se-
quence of close or distant relatives to the reference isolate (9, 10). Further, and perhaps
more importantly, culture does not provide quantitative estimates of a pathogen’s
abundance, virulence potential, and diversity, and it does not allow the characterization
of the gut microbiome response, which could be important for diagnosis.

In the United States, a total of 38.4 million cases of foodborne illness per year cannot
be attributed to specific causes, and the proportion caused by yet-to-be-described
microbial agents is unknown (9, 11, 12). In developing country settings, even using
highly sensitive methods such as qPCR to detect a broad array of pathogens, �10% of
moderate-to-severe diarrhea cases cannot be traced to an etiologic agent, and the
fraction of false-positive signal for cases with detected pathogens, due to transient
pathogens for instance, remains essentially speculative (12). Culture-independent met-
agenomic approaches can be used to robustly assess diarrheal infections.

E. coli is a gut commensal of vertebrates, including humans (13); it can nevertheless
cause a broad range of diseases, including intestinal and extraintestinal infections,
through the acquisition of accessory genes. The relevance of this species in diarrheal
disease has been extensively illustrated. For example, the Global Enteric Multicenter
Study (GEMS) demonstrated that Shigella (a distinct lineage within the E. coli phyloge-
netic clade) and enterotoxigenic E. coli (ETEC) producing heat-stable toxin (ST), either
alone or in combination with heat-labile toxin (LT), are among the most important
pathogens associated with moderate-to-severe diarrhea in children younger than 5
years old in developing countries (11, 12). ETEC, enteropathogenic E. coli (EPEC), and
Shigella are responsible for an estimated 18% of diarrhea deaths in children �5 years
old globally (12). Despite the relevance of E. coli as a diarrheagenic pathogen, little is
known about the effect(s) of pathogenic E. coli infections on the gut microbiome, such
as how the structure and diversity of the community changes during active infections.

Although commensal E. coli is typically a relatively minor component of the colonic
gut microbiome in humans, where it represents �0.1% of the total bacterial cells
(estimated at �108 cells/g) (13, 14), during infection with an invading pathogenic E. coli
strain or another enteric pathogen, the overall signal of E. coli in the gut microbiome
can increase substantially (15, 16), allowing the detection and recovery of genomes
based on culture-independent metagenomic techniques. In addition, quantifiable shifts
in the proportion and diversity of the entire gut microbial community in response to
the enteric infection disturbance have been observed (17–20). However, the number of
samples analyzed in these previous studies were limited, and the methodological
approaches employed were based almost exclusively on taxonomic marker genes such
as 16S rRNA that have limited resolution. Furthermore, and perhaps more importantly,
in all previous studies the etiological agent of infection was inferred by DNA sequenc-
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ing and was not validated by an independent approach. Accordingly, it remains unclear
whether different pathogens such as different E. coli pathotypes produce distinct
alterations in the indigenous microbiome due to their characteristic mechanism of
infection and virulence factors they excrete and employ during infection. Alterations of
the gut microbiome composition upon infection have been shown to take place
quickly, within 1 to 2 days or a few hours in some cases (16, 20). Thus, metagenomic
sampling following the onset of diarrhea, even in a cross-sectional sampling strategy,
could potentially provide insights into pathotype-specific signatures and quick results
for diagnostics.

During the interaction with the intestinal epithelial cells, in the phase of attach-
ment and colonization, distinctive machineries of pathogenicity are known to be
used by each of the six known E. coli pathotypes, depending on whether the
pathogen invades the cell, produces biofilms, or secretes toxins (21). For example,
ETEC is thought to adhere to the small bowel mucosa and deliver secretory
enterotoxins (22). Enterohemorrhagic E. coli (EHEC) adheres to the colonic mucosa
and transduces a signal, resulting in secretory diarrhea. Concurrently, the organism
releases Shiga toxin, resulting in local and systemic effects (21). Enteroaggregative
E. coli (EAEC) adheres to intestinal epithelial cells and produces a thick mucous gel
(biofilm) and causes intestinal secretion and damage (23). Diffusely adherent E. coli
(DAEC) has been shown to elicit elongation of microvilli in vitro, although this effect
has not been demonstrated in vivo, and has been considered not as virulent as
other pathotypes (24). EPEC elicits the attaching and effacing lesion in the small
bowel, resulting in intestinal secretion (25) and enteroinvasive E. coli (EIEC) invades
the colonic mucosa, giving rise to inflammatory enteritis (26). Among the six
pathotypes, EPEC and ETEC have received special attention in developing countries
because they are believed to be major pathogens causing diarrhea in children 5
years old and younger (1, 14). It remains to be elucidated whether these biological
differences in infectious mechanisms disturb the gut microbial community in
different, distinguishable ways.

We devised a novel bioinformatic approach that combined traditional, isolate-
based, and PCR techniques with metagenomic and epidemiological data to identify
diarrheal cases where E. coli was most likely the causative agent and evaluate
whether pathotype-specific signatures in the disease-state gut microbiome exist
that distinguish among different E. coli infections. For this purpose, we took
advantage of a large epidemiological, case-control study of diarrhea that was
carried out over a period of 18 months in Northern coastal Ecuador (named EcoZUR
for “E. coli en Zonas Urbanas y Rurales”). The study was uniquely suited to address
these questions as it included data on diarrheal disease outcome, a large collection
of pathogenic E. coli isolates from diarrheal and nondiarrheal (control) samples, and
other sociodemographic and clinical data from study subjects. Most genetic studies
of pathotypes have been carried out using collections of isolates unrelated in time
and space. Our study circumvents these previous limitations and allowed us to also
observe E. coli strain relatedness.

We previously reported on risk factors for diarrhea and pathotype distribution (27)
in the EcoZUR study. Here, we report on a subset of the EcoZUR samples that comprised
cases of infected children with three major E. coli pathotypes (DAEC, ETEC, and EPEC)
and their age-matched controls (no diarrhea). Our study addressed three main objec-
tives: (i) to describe and compare the overall gut microbiome diversity between cases
of diarrhea and controls using both 16S rRNA marker genes and whole shotgun
metagenomic data; (ii) to identify cases of diarrhea where E. coli was presumably the
etiological agent based on a combination of metagenomics, isolate genome sequenc-
ing, and epidemiological data; and (iii) to determine whether pathogen-specific signa-
tures in the disease gut microbiome exist that distinguish between DAEC, EPEC, and
ETEC infections.
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RESULTS
Study design and demographics of the study population. We analyzed samples

collected in the EcoZUR study, a case-control study of diarrhea carried out in four sites
across a rural-urban gradient in northern Ecuador between April 2014 and September
2015. Participants were recruited from Ecuadorian Ministry of Health hospitals and/or
clinics in Quito, Ecuador’s capital, with approximately 1.6 million inhabitants; Esmeral-
das, a coastal city in the northwest of Ecuador with �160,000 inhabitants; Borbón, a
town in Esmeraldas Province with �7,000 inhabitants; and rural villages located in the
Borbón region with �800 inhabitants each. Cases comprised individuals who presented
with diarrhea, defined as three or more loose stools in a 24-h period, and controls
comprised age- and site-matched individuals for any other complaint, with no record
of diarrhea or vomiting for the previous 7 days. Both cases and controls were excluded
if they reported antibiotic usage in the prior week or if they had not lived in the study
location for at least 6 months. Data on demographics, medical history, water, sanitation,
hygiene (WASH) practices, animal contacts, and recent travel history were collected
from all participants.

Cases and controls were similar on key demographic variables (e.g., age and race),
indicating that the case-control matching was robust (27). Sociodemographic and
WASH conditions varied as expected across the rural-urban gradient, with urban sites
reporting higher levels of improved sanitation and improved drinking water and rural
sites reporting a higher proportion of individuals receiving government assistance, and
a lower proportion of individuals with fixed employment and higher education levels.
Additional information and previous results from the EcoZUR study can be found
elsewhere (Smith et al. [27]). Briefly, we found that travel to urban destinations was
associated with higher risk of diarrhea and diarrheagenic E. coli infections.

Fresh stool samples were incubated in E. coli-specific media (MacConkey agar
media) and tested for different pathotypes based on the presence of specific virulence
genes determined by PCR (Table 1; see additional details in Materials and Methods). All
diarrhea samples that resulted in a PCR-positive signal for the presence of any marker
gene characterizing DAEC, ETEC, or EPEC pathotypes and obtained from young children
between 1 and 6 years old were selected for further analysis. These samples were
matched with randomly selected control samples within the same age and location
categories, without any diarrheagenic E. coli infection detected through PCR. This
strategy resulted in a total of 80 samples that were taxonomically screened by amplicon
sequencing of the 16S rRNA gene (38 diarrhea and 42 control samples). All diarrhea
samples and a randomly selected subset of 23 control samples were subjected to whole
shotgun metagenomic sequencing (see Fig. S1 and Table S1 in the supplemental

TABLE 1 Primers used for PCR to detect diarrheagenic E. coli virulence genes

E. coli pathotype Gene Primer sequence (5=–3=) Size (bp) Reference

Enteroaggregative E. coli (EAEC) aggR GTATACACAAAAGAAGGAAGC 254 71
ACAGAATCGTCAGCATCAGC

Enterotoxigenic E. coli (ETEC) lt GCGACAAATTATACCGTGCT 708 72
CCGAATTCTGTTATATATGT

sta CTGTATTGTCTTTTTCACCT 182 72
GCACCCGGTACAAGCAGGAT

Typical enteropathogenic E. coli (EPECt) bfp CAATGGTGCTTGCGCTTGCT 324 72
GCCGCTTTATCCAACCTGGT

Atypical enteropathogenic E. coli (EPECa) eaeA GACCCGGCACAAGCATAAGC 384 73
CCACCTGCAGCAACAAGAGG

Typical enteroinvasive E. coli (EIEC) ipaH GCTGGAAAAACTCAGTGCCT 424 72
CCAGTCCGTAAATTCATTCT

Diffusely adherent E. coli (DAEC) afaB GCTGGGCAGCAAACTGATAACTCTC 750 74
CATCAAGCTCTTTGTTCGTCCGCCG

Shiga-toxin-producing E. coli (STEC) stx1 ATAAATCGCCATTCGTTGACTAC 180 73
AGAACGCCCACTGAGATCATC

stx2 GGCACTGTCTGAAACTGCTCC 255 73
TCGCCAGTTATCTGACATTCTG
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material). The diarrheal samples included 16 samples that were PCR positive for afaB,
the virulence marker of DAEC; 10 samples that were positive for bfpA, the marker gene
for typical EPEC; and 12 samples that were positive for eltA and/or sta, marker genes for
ETEC. All E. coli isolates recovered from the selected diarrheal samples were also
sequenced for genomic characterization and comparison (see Table S3 in the supple-
mental material).

High frequency of coeluting human DNA in diarrhea samples. Analysis of the
composition of metagenomic reads showed that specimens collected in this study
differed in the proportional amount of microbial and human DNA sequenced. The
average percentage of human reads detected in the diarrhea group was 17.8%, while
in the control group it was only 0.07%. Samples with a large fraction of detected human
contamination belonged mostly to DAEC-positive (as determined by culture and PCR
test for pathotype-specific genes) and EPEC-positive groups (Fig. 1A). Our analysis also
revealed no correlation between the fraction of human reads detected in our libraries
and the severity of the disease, measured as the number of days with diarrhea previous
to the sampling day or the detection of blood in the specimen. However, we did
observe a significant increase in the fraction of human reads with detection of mucus

FIG 1 Abundance of human reads and estimated coverage of the metagenomic data sets obtained in this study. (A) Assignment of recovered metagenomic
raw reads to three groups: human (purple), discarded due to low quality (orange), and fraction passing quality control and not being of human origin (green).
(B) Fitted Nonpareil curves and estimated average coverage for each metagenome after human and low-quality reads where removed from each data set. The
horizontal dashed lines indicate 100% (upper red line) and 95% (bottom red line) coverage. Empty circles indicate the size (x axis) and estimated average
coverage (y axis) of the data sets, and the lines after that point are projections of the fitted model. The inset plot shows the distribution of estimated coverage
values in randomly drawn subsets of 1,000 reads per library for each pathotype and control group. Note that samples where DAEC was isolated showed less
diverse communities (higher coverage) than other groups, including control samples.
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in stool specimens versus those with no mucus detected (Welch’s two-sample test, P �

0.004).
After removal of the human reads, between 221 Mbp and 3.2 Gbp of reads per

metagenome remained for analysis (average � 1.78 Gbp) (Table S2). One ETEC sample
(Q53) had only �1,200 reads after quality control and was therefore removed from
further analysis. To evaluate the fraction of the total extracted DNA from the stool
sample that was sequenced (i.e., determine the coverage of the microbial community
by sequencing), we estimated the sequencing coverage using Nonpareil 3, a read
redundancy-based algorithm (28). Although the sequencing coverage varied among
samples and pathotype groups, generally �80% of the microbial community was
covered in the majority of samples, except for one EPEC sample (R126) that had very
low coverage and was therefore discarded from further analysis (Fig. 1B; Table S2). The
coverage estimates also reflected differences in the complexity of the microbial com-
munities among pathotypes, showing that the DAEC group (defined by the recovery of
a DAEC isolate) contained, in general, metagenomes with simpler microbial commu-
nities compared to the two other pathotypes (Kruskal-Wallis rank sum test, �2 � 9.07,
df � 3, P � 0.02), whereas control samples had more complex (diverse) gut microbial
communities compared to all diarrheal samples (Wilcoxon rank sum test, W � 278, P �

0.03). Overall, our community coverage results suggested that despite the high fre-
quency of coeluting host DNA in some disease samples, our metagenomic sequencing
effort was adequate to assess the microbial community disturbance during diarrhea
and to detect and recover abundant microbial community members and the putative
pathogen.

Differences in microbial community composition and diversity between diar-
rhea and control samples. The overall microbial community compositions and diver-

sities in diarrhea and control groups were assessed based on 16S rRNA gene amplicon
sequencing. Comparison of the normalized relative abundance at the phylum level
indicated that three major phyla dominated the gut microbial communities in both
diarrheal and control individuals, namely, Bacteroidetes, Firmicutes, and Proteobacteria.
In general, Bacteroidia and Clostridia were the two most abundant classes in all samples.
In contrast to the control group, the majority of samples in the diarrhea group also
exhibited a large proportion of sequences belonging to Gammaproteobacteria, a bac-
terial group comprising several enteric pathogens (Wilcoxon rank sum test, W � 1,231,
P � 1.733e– 05), which indicated a possible underlying bacterial infection in individuals
with diarrhea (Fig. S2A). Alpha-diversity analysis based on Faith’s phylogenetic diversity
revealed significant differences between case and control data sets. Consistent with
several other recent studies (see, for example, references 15, 16, 17, 18, 19, and 29),
control stool samples showed, in general, a significantly higher microbial diversity
than the cases (Kruskal-Wallis test, H � 15.9, P � 6.06e– 05) (Fig. S2B). Analysis of the
overall community dissimilarity at the genus level also revealed significant differences
between diarrhea and control groups (permutational multivariate analysis of variance
[PERMANOVA], pseudo-F � 2.47, P � 0.002). Diarrhea samples clustered more closely
together compared to control samples, although some overlap between several sam-
ples of the two groups was also observed (Fig. S2C).

Differences in the overall relative abundance of the OTU taxonomically assigned to
E. coli in diarrhea compared to control samples, by about 1 order of magnitude (mean
of 6.39% of total reads in cases versus 0.81% in control, Welch’s two-sample test, P �

0.009), were also detected. Few samples had as much as 30% of their 16S rRNA
gene-containing read sequences assigned to E. coli, although other diarrheal samples
had very low E. coli abundances, comparable to those in control samples (Fig. S2D).
Conversely, three samples from the control group had as much as a 3 to 5% relative
abundance of E. coli, which might indicate an asymptomatic E. coli infection and/or
higher abundance of commensal E. coli. Therefore, we next sought to identify samples
where pathogenic E. coli was most likely the causative agent of diarrhea by examining
the companion shotgun metagenomic and epidemiological data.
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Identification of disease samples where E. coli was most likely the causative
agent of diarrhea. Our observations of the overall community composition, diversity,
and estimated taxon abundance in the diarrheal samples based on 16S rRNA gene
amplicon data (see, e.g., Fig. S2D) indicated that E. coli was likely not the causative
agent of disease in all diarrhea samples, even though an E. coli pathotype isolate was
cultured from all diarrhea samples and at least one virulence marker gene was detected
by PCR. In other words, isolation and PCR detection of E. coli pathotypes in stool
samples from individuals with diarrhea might have reflected the recovery of a rare
isolate in situ that was not involved in infection, or a stage of infection with E. coli but
not necessarily diarrhea caused by E. coli. Therefore, we next aimed to determine the
diarrheal cases that were most likely attributable to pathogenic E. coli. For this purpose,
we assessed the metagenomic data sets, recovered metagenome-assembled popula-
tion genomes (MAGs) from the metagenomes, and the genomes of isolates for five
main lines of evidence.

(i) Metagenomic abundance. We estimated the in situ metagenomic abundance of
the E. coli pathotype isolate (or the MAG that originated from the same sample as the
isolate) and a reference commensal E. coli strain HS (NC_009800.1), using the diarrhea
metagenomic data set from which the isolate was recovered. We expected that the
estimated abundance of the pathogenic isolate would be higher than the commensal
strain in the diarrhea metagenome, as well as in control metagenomes in a competitive,
read-based search. Competitive mapping, e.g., mapping reads against a single com-
bined data set containing both commensal and pathogenic genomes, was preferred
over regular mapping to avoid double counting reads that map to very conserved
regions that could potentially lead to overestimation of the calculated abundance.

(ii) Virulence factors. We evaluated the presence or absence of a large array of E.
coli virulence factors, including pathotype-specific marker genes and enterotoxins in
the metagenomic data sets of diarrhea and control samples, based on the sequencing
coverage of the genes shown by metagenomic reads relative to the coverage of the
rest of the genome (e.g., these factors sometimes did not assemble as part of the
corresponding MAG; hence, a read-based approach was used; see Materials and
Methods for details). We expected that the abundance of virulence factors would be
higher in the diarrhea metagenomes than in the control metagenomes.

(iii) Intrapopulation diversity. We estimated the degree of E. coli intrapopulation
diversity by calculating the average nucleotide identity of the metagenomic reads
(defined as ANIr) mapping to the reference genome (pathotype isolate or reference
commensal in competitive blast searches) with a percent identity between 90 and
100%, i.e., reads representing the total E. coli population in a sample. We expected that
the degree of intrapopulation diversity (or clonality) of the pathogenic E. coli popula-
tion would be lower (more clonal) compared to the E. coli population in control
samples, as is often the case for active infection-associated pathogens (30).

(iv) Membership in disease-associated clonal complexes. We examined the
phylogenetic clonal complex that the pathotype isolate was assigned to (or the MAG
that originated from the same sample as the isolate). For the isolate of interest, we
expected that other isolates within the same clonal complex would be more frequently
associated with disease than control samples. For this purpose, we built a core-genome
phylogeny based on �1,200 orthologous genes for a total of 263 E. coli isolates
obtained from the EcoZUR project. Clonal complexes within the phylogenetic tree were
identified based on their ANI values (31) using the PAM algorithm (partitioning around
the medoids) with k medoids, where k was determined by the local gain in the average
Silhouette width for each level of clustering (see Fig. S3) (32). Clonal complexes
corresponded to sets of strains clustered together in the core genome phylogeny,
typically with �99% ANI among them (versus �99% ANI between clonal complexes).

(v) Virulent E. coli MAGs. Finally, we performed binning of the assembled metag-
enomic contigs in order to recover high-quality E. coli MAGs (Table S2). In addition, we
assessed the presence of virulence genes and enterotoxins in the recovered MAGs and
built a phylogenetic tree using isolates and MAGs derived from the same sample to
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evaluate whether the isolates obtained in culture were good representatives of the
indigenous population(s). We expected to recover complete, high-quality E. coli MAGs
carrying canonical virulence genes.

Taking these five lines of evidence together, our expectation was that the putative
E. coli pathogen (isolate and/or MAG) was likely the causative agent of disease in the
sample that it was recovered from when (i) the E. coli population presented a higher
estimated metagenomic abundance compared to the commensal E. coli strain HS; (ii)
the E. coli population had more virulence genes than its counterparts from control
samples, including the detection of key enterotoxins and pathotype-specific marker
genes; (iii) the corresponding diarrheal metagenome harbored a more clonal popula-
tion of E. coli compared to control metagenomes; (iv) the isolates were assigned to a
clonal complex in the core genome phylogenetic tree that was enriched in isolates from
other disease (as opposed to control) samples; and (v) we were able to recover E. coli
MAGs harboring the typical pathotype-specific virulence genes. We tested these ex-
pectations for the three pathotype groups with the highest numbers of diarrhea cases
in our data set: DAEC, ETEC, and EPEC.

DAEC as the causative agent of diarrhea. Our results indicated that approximately
50% of the samples from which DAEC isolates were obtained (i.e., 8 samples of 16 total),
showed metagenomic signatures consistent with the isolate being the causative agent
(Fig. 2). These samples (Q51, Q196, E158, Q56, Q65, E230, E124, and E27) exhibited the
following signatures: (i) higher abundance of the pathogenic isolate compared to the
reference commensal strain or the total E. coli population in the control samples, i.e.,
27.81% versus 0.6%, on average (Fig. 2A); (ii) detection of 40 or more virulence factors

FIG 2 Characteristics of samples where DAEC was most likely the causative agent. (A) Estimated metagenomic abundance of the reference commensal E. coli
(strain HS, in light red) and the DAEC isolate (in red) recovered from the sample, along with the ELISA-based detection of rotavirus and bioinformatic detection
of Adenovirus_F for each sample analyzed (rows). Samples where high-quality E. coli MAGs were recovered from the corresponding metagenome are denoted
by a star. (B) Presence (detection) of four hallmark virulence factors in the metagenome, including the DAEC marker gene (afaB) and three enterotoxins, i.e.,
the hemolysin subunit B (hlyB), the heat-labile enterotoxin (eltA), and the secreted autotransporter toxin (sat). (C) Estimated E. coli intrapopulation diversity
measured by ANIr of reads against the reference commensal strain HS (light orange) and the isolate obtained from the sample (dark brown). To avoid any
potential bias by low in situ abundance, only samples where the average sequence depth of the reference genome was �1� were evaluated for ANIr. (D)
Number of isolates that originated from cases of diarrhea (in red) versus control samples (in green) and were assigned in the same core-genome-based clonal
complex as the isolate (epidemiology).
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that were present in metagenomic contigs or were binned into MAGs at similar or
higher sequence coverage than the MAG (Fig. 2B); (iii) reduced intrapopulation se-
quence diversity with ANIr values of �99% for the isolate and typically ANIr values of
�99% for the reference commensal genome (Fig. 2C); (iv) the recovered pathotype
isolate(s) was generally grouped in 11 phylogenetic clonal complexes composed of
more isolates originating from cases of diarrhea than control samples (Fig. 2D); and
finally, (v) the recovery of seven high-quality E. coli MAGs that encoded the pathotype
(afaB) and other E. coli virulence factors. We also observed that the isolates within these
clonal complexes were evenly distributed between rural and urban settings, which
suggested that distinct DAEC genotypes were each associated with small-scale diar-
rheal outbreaks in northern Ecuador (see Fig. S3 in the supplemental material).

Although two DAEC-positive diarrhea samples showed ANIr values of �99% and the
presence of the afaB gene (e.g., Q310 and Q49), they presented lower metagenomic
abundances of the isolate compared to the control samples and/or other positive
samples and relatively lower numbers or the absence of virulence genes. In addition, for
these samples, no MAGs were recovered, a finding consistent with the relatively low
abundance of E. coli. Therefore, these samples were not as conclusive with respect to
whether the isolate was the etiological agent. Of particular interest was the observation
that two of these samples (E27 and B89) were also positive for rotavirus and two (B274
and Q310) had a substantial number of reads mapping to adenovirus, a nonenveloped,
double-stranded DNA virus causing acute gastroenteritis primarily in children (33).
These results indicated that despite the PCR detection of a DAEC marker gene in these
individuals, other viral pathogens, rather than E. coli, might have been responsible for
the diarrhea phenotype.

To evaluate whether or not the DAEC MAGs were representative of the DAEC
isolates recovered from the same samples, as well as the diversity of the population(s)
present in the disease samples, we performed a phylogenetic reconstruction with
MAGs and isolates. Core-gene phylogeny revealed that MAGs and isolate genomes
clustered together in the majority of samples (Fig. 3A), with the average ANI between
the pair of MAG and isolate genome originating from the same sample being 99.92%,
except for sample Q196, where the estimated ANI was 97.29%. Further evaluation
showed that the recovered MAG from sample Q196 was a high-quality genome, with
97.1% completeness, 1.85% contamination, and a 43.45 estimated index of strain
heterogeneity (SH; scale between 0 and 100). This finding suggests that the isolate
represented a minor member of the total E. coli population in sample Q196.

Next, we evaluated whether any correlation existed between the percentage of
human reads detected in the DAEC metagenomes and the estimated metagenomic
abundance of the isolate for the set of eight samples that had strong evidence of
DAEC-caused diarrhea. Our results showed a relatively strong positive linear correlation
between the two variables (Pearson’s R � 0.65, P � 0.08) (Fig. 4). This observation
indicated that the fraction of human reads observed in the metagenome might be
directly related to the infection by pathogenic DAEC strains.

ETEC and EPEC as causative agents of diarrhea. A similar approach was applied

to the samples that were positive for ETEC and EPEC by isolation and PCR to identify
representative cases of infection (see Fig. S4 and S5 in the supplemental material). The
signal of E. coli infection was, in general, more clear in ETEC (compared to DAEC) but
much less clear in EPEC. Seven of ten samples (70%) had strong evidence of infection
caused by the ETEC isolate (E184, Q294, B295, B45, B62, B244, and B255). In these seven
metagenomic samples, at least one of the two ETEC marker genes, i.e., heat-labile (eltA)
and/or heat-stable (sta) enterotoxins, was detected. The remaining three samples (i.e.,
B109, B68, and B200) did not show strong evidence of E. coli being the infectious agent
(Fig. S4), since they presented a very low abundance of E. coli and/or the absence of at
least one ETEC marker gene and/or relatively low clonality (ANIr � 99%). The recovery
of high-quality ETEC MAGs was possible for six samples. All ETEC isolates and MAGs
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cluster together in the core genome phylogeny in only three clonal complexes,
independent of the geographic origin of the genomes (Fig. S3 and Fig. 3B).

For EPEC-positive samples, the diagnostic marker gene (eaeA) was recovered in only
two of the eight samples (E187 and E162). However, even for the latter two samples, the
analysis in intrapopulation diversity revealed no clonal population. Recovery of high-

FIG 3 Core genome-based phylogenetic and ANI relatedness among DAEC (A) and ETEC (B) isolates and MAGs recovered from the same
sample of infectious diarrhea. Annotations in blue denote pairs of genomes (isolates and MAGs) that clustered closely in the phylogenetic
reconstruction, while annotations in red denote more divergent pairs of genomes. The environmental E. coli strain TW158338 was used
an outgroup.

FIG 4 Correlation between recovered fraction of human metagenomic reads and DAEC pathogen
abundance. The bar plot shows the observed percentage of the total metagenomic reads assigned to
human (purple) and the estimated metagenomic abundance of the E. coli genome for the samples with
strong evidence of DAEC infection. The inset plot shows the Pearson correlation analysis of the two
variables, revealing a positive linear correlation.
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quality E. coli MAGs was possible in only one sample (R135), but �50% of the total EPEC
hallmark or other virulence genes were detected in the metagenomes or the MAG (Fig.
S5). Given that no strong metagenomic signature of pathogenicity was observed in the
majority of EPEC samples, we excluded this pathogroup from further analysis that
focused on the detection of further pathotype-specific gut microbiome signatures.

Gut microbiome signatures of DAEC and ETEC infections. The identified samples
with strong evidence of DAEC or ETEC infection were analyzed further in order to
elucidate differences between diarrhea and control groups on the gut microbiome such
as gene content or microbial community composition alterations. In total, seven
discriminative taxa between diarrhea and control samples were detected: Prevotella
copri (Kruskal-Wallis test, P � 0.05), E. coli (P � 2.26e–5), Alloprevotella tannerae (P �

0.04), Campylobacter concisus (P � 0.01), Haemophilus haemolyticus (P � 0.05), Fuso-
bacterium mortiferum (P � 0.02), and Bifidobacterium longum (P � 0.04) (Fig. S6A). P.
copri was most strongly enriched in the control group, while E. coli was the phylogroup
mostly differentiating the diarrhea group, revealing a negative correlation in the
abundance pattern for these two species (Spearman’s rho � �0.39, P � 0.012) (Fig.
S6C). In addition, a principal-component analysis (PCA) of species abundance indicated
that microbial communities from DAEC versus ETEC infections clustered separately (Fig.
S6B).

To explore whether pathotype-specific alterations (signatures) in the gut micro-
biome exist that discriminate DAEC versus ETEC infections, we evaluated whether or
not differences in gene content and/or composition existed after removing reads
assigned to E. coli from the metagenomic libraries and focusing on the samples with
strong metagenomic evidence for infection identified above. The initial taxonomic
characterization revealed at least four species that were discriminatory of DAEC versus
ETEC infections. Specifically, Fusobacterium mortiferum (P � 0.025) and Campylobacter
concisus (P � 0.011) were significantly more abundant in ETEC infections (Fig. 5A and
B), while Bifidobacterium longum (P � 0.040) and Alloprevotella tannerae (P � 0.046)
were significantly more enriched in DAEC infections (Fig. 5C and D). A PCA based on
taxonomic composition at the species level also revealed that metagenomes associated
with ETEC infections tended to be taxonomically more similar among themselves,
whereas DAEC samples showed more diversity. Notably, one sample positive for DAEC
(E124) also showed the eltA gene in the metagenome, which is associated with ETEC,
and tended to be more dissimilar to any other DAEC or ETEC metagenome, indicating
that this individual could have suffered from a coinfection with DAEC and ETEC strains.
Further within-species diversity analysis based on single nucleotide polymorphism
(SNP) patterns of conserved genes (strain level) suggested that at least two E. coli
strains coexisted in the community rather than one strain harboring DAEC and ETEC
virulence genes. One strain dominated the population with a �94% relative abun-
dance, while the second strain represented �6% of the population. On the other hand,
the metabolic gene profiling of the gut microbiome did not reveal substantial differ-
ences between infections by the two pathotypes. Therefore, our results revealed that
significant, albeit rather narrow, taxonomic but not metabolic signatures might exist in
the gut microbiome that differentiate DAEC from ETEC infections, which warrants
further investigation.

DISCUSSION

Diagnostic testing for diarrheal pathogens has relied for decades on culture-based
techniques that do not provide a quantitative estimate of the pathogen or the response
of the gut microbiome to the infection. Consequently, a significant fraction of diarrhea
episodes remains undiagnosed, and others are spuriously associated with infections of
putative pathogens, due to the challenges associated with the accurate detection of
the etiological agent using traditional techniques. The signatures of pathogen-specific
disturbances in the ecology of the healthy gut microbiome also remain uncharacter-
ized. Here, we provide a novel metagenome-based methodology that employs patho-
gen population in situ abundance, the level of intrapopulation diversity, and virulence

Metagenomic Detection of E. coli Infectious Diarrhea Applied and Environmental Microbiology

December 2019 Volume 85 Issue 24 e01820-19 aem.asm.org 11

https://aem.asm.org


gene content (see, for example, Fig. 2) to study diarrheal cases and to provide
diagnostic resolution that is usually not attainable by traditional methods.

Application of our methodology to child diarrheal samples and age-matched con-
trols collected in northern Ecuador showed that DAEC was likely the causative agent of
several diarrheal cases, and the DAEC isolates recovered from these samples were
assigned to 11 distinct clonal complexes. These complexes were apparently associated
with small-scale diarrheal outbreaks given that the great majority of isolates in the
complexes (�75% of total) were recovered from disease as opposed to control samples
(despite the similar number of case and control samples and isolates in our data set),
and the subjects that provided the disease samples were from both rural and urban
settings.

Even though DAEC is not thought to be a highly virulent E. coli pathotype (24, 34),
DAEC infections were found to be accompanied by coelution of large amounts of
human DNA and conferred small (in terms of number of taxa affected) but significant
shifts in the composition of the gut microbiome relative to the control or infections
caused by other pathotypes (e.g., ETEC) according to our study. These findings echoed
the findings by Huang et al. (16), who applied shotgun metagenomic to stool samples
collected from two geographically isolated foodborne outbreaks in the United States,
where the etiologic agent was identified by culture-dependent methods as distinct
strains of Salmonella enterica subsp. enterica serovar Heidelberg. Similar to our study,
the acute Salmonella infections described by the Huang et al. study were accompanied
by a high frequency of coeluting human DNA sequences, significant shifts in the gut
microbiome composition and diversity relative to healthy control samples, signatures of
high abundance of the pathogen in the metagenomic diarrheal sample, and reduced
intrapopulation diversity. Hence, it appears that the DAEC infections identified by our
metagenomic analysis were likely caused by a DAEC strain.

FIG 5 Differentially abundant (diagnostic) taxa between DAEC and ETEC infections. Differentially abundant species were reported if they had a corrected P value
of �0.05 and an effect size (the magnitude of the difference between groups) of �0.8. (A and B) Proportions of metagenomic sequences assigned to
Fusobacterium mortiferum and Campylobacter concisus, respectively. (C and D) Proportions of sequences assigned to Bifidobacterium longum and Alloprevotella
tannerae, respectively. (E) PCA plot based on the taxonomic composition of each metagenome (annotated at the species level using clade-specific marker genes
with MetaPhlAn2) after removal of human and E. coli reads from the libraries.
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Although the number of samples analyzed here was limited and thus the compo-
sitional shifts identified should be considered preliminary results only, our results do
indicate that there may be consistent signatures in the gut microbiome that could
provide reliable additional diagnostic features to distinguish different etiologic agents
of diarrhea. The negative correlation in abundance between E. coli and P. copri was a
notable such signature that should be explored in future work in order to elucidate the
underlying mechanism(s) for the observed anticorrelation pattern. Of particular interest
also was the observation that, in general, ETEC samples presented lower average
metagenomic abundance of the pathogen (5.1%) than DAEC samples (27.8%) by
�5-fold, on average, for the cases with clear evidence of E. coli pathotype infection. This
observation suggests that ETEC infection may require a lower pathogen load in order
to elicit disease than does DAEC infection, providing potentially an additional diagnos-
tic metagenomic feature of ETEC versus DAEC infections. Consistent with the latter
results, ETEC pathogens are thought to cause infection by the production of entero-
toxins (22, 35) that alter the concentration of important cellular messengers such as
cyclic AMP, cyclic GMP, and Ca2�, while DAEC is strongly attached to the cell surface,
where it induces a cytopathic effect characterized by the development of long cellular
extensions (24). These differences in mechanisms of pathogenicity might explain, at
least in part, the differences in pathogen abundance and associated changes in the gut
microbiome (see, for example, Fig. 5) that were observed in ETEC- and DAEC-dominated
metagenomes.

A critical question in diagnostic testing for enteric pathogens is how often conven-
tional culture-dependent techniques, such as those implemented for isolating E. coli
from stool samples, readily capture the targeted pathogen as opposed to transient or
dormant/inactive populations. Our metagenomic and/or epidemiological data showed
that from the total set of diarrheal DAEC (n � 16) samples analyzed, the isolate was
highly similar to the recovered MAG in only �30% of the cases (n � 5). The same results
for ETEC-positive and EPEC-positive samples (by isolation and PCR) were 70 and 0%,
respectively, for a total average of roughly about 50%. Thus, it appeared that in about
half of the diarrheal samples the isolate likely was not the causative agent. This may
help explain the results of many studies that have observed high rates of enteropatho-
gen infection in individuals without diarrhea symptoms (36).

Beyond pathogen detection, our metagenomic study also generated complete or
nearly complete pathogen MAGs directly from the samples, which allowed a more
comprehensive characterization of the virulence and diversity of the infectious E. coli
population. In addition to application in diagnostic testing, population genome binning
can also be used to recover pathogenic genotypes and, when coupled to epidemio-
logical information, to identify person-to-person transmission events and outbreak
dynamics, which represent important tasks in public health investigations.

Although a small number of samples were excluded from the pathogen-specific
signatures of the infection based on the relatively low coverage observed in compar-
ison to other positive samples or to controls, it is important to highlight that finding a
0.05- to 0.1-fold coverage, i.e., the minimum threshold required for robust detection of
a target genome in a complex gut metagenome (37), still translates to a relatively large
number of cells in situ. The average E. coli genome size is 5 Mbp, and our metagenome
libraries were, on average, �1.78 Gbp in size after removing contaminant host DNA
and low-quality reads. Finding 0.05-fold coverage for an E. coli genome (�5% of the
estimated genome size) would require 0.25 Mbp of E. coli sequenced reads or �0.014%
of the total metagenome size. Our extracted DNA came from an average of 1.26 � 106

cells in total based on the normalization of the average extracted DNA concentrations
(6.45 ng/�l) with the estimated molecular weight of an E. coli bacterium 5.14 � 10�6 ng
(38–40). Therefore, 0.014% of 1.26 � 106 would be 1.77 � 102 in total (i.e., �100 cells),
which is still a large number of cells that could potentially cause a disease. Thus, the
limit of detection of metagenomics, as applied here, was not low enough to detect
relatively low-abundance microorganisms and should be combined with methods that
offer a lower detection limit for this purpose, such as qPCR and isolation, for a more
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comprehensive assessment of enteric infections. Furthermore, sample heterogeneity
could also account for the lack of metagenomic evidence of E. coli infection for the
�50% of disease samples identified above as false-positive calls by isolation and PCR.
Our typical sample size was �0.5 to 0.8 g, which represents a small portion of the total
stool, and we might therefore have undersampled the (potential) E. coli population
present in the gut. Multiple replicate samples and high sampling volumes (i.e., 2 to 5 g
or more) should be used to avoid such sample heterogeneity issues in the future.
Regardless of the potential effects of sample heterogeneity, our findings collectively
highlight the potential of metagenomics as a diagnostic tool for infectious diseases, the
strengths of combining traditional culture-based and PCR techniques with shotgun
metagenomics, and the applicability of our bioinformatic framework to the study of
enteric pathogens.

MATERIALS AND METHODS
EcoZUR study design. Surveys were carried out using Android devices and the Open Data kit

program (http://opendatakit.org). Prior to enrollment, all participants signed a consent document
approved by the Institutional Review Board of Emory University (IRB00065781) and the Universidad San
Francisco de Quito (USFQ 2013-145M). The research protocol was also approved by the Ecuadorian
Ministry of Health (MSP-DIS-2014-0055-O). Further details about the methods employed in the EcoZUR
study can be found in Smith et al. (27).

E. coli isolation, pathotype identification, and rotavirus detection. Fresh stool samples were
incubated in E. coli-specific media and tested for different pathotypes based on the presence of specific
virulence genes determined by PCR. For each stool sample, five lactose-positive colonies were isolated
on MacConkey’s agar media (MKL) and non-lactose-fermenting isolates were further cultured and tested
on Chromocult agar media (Merck, Darmstadt, Germany) for �-glucuronidase activity. We tested five
colonies per stool sample, because this is a standard procedure for detecting the dominant E. coli
population (�97% chance [41]); a higher number of colonies was also not practical for the large number
of samples collected as part of the EcoZUR study (�1,000 samples collected). Colonies unable to ferment
lactose were identified by biochemical tests as Shigella or E. coli using the API 20E test (bioMérieux, Marcy
l’Etoile, France); we focused on E. coli isolates only for this study. The five colonies were pooled,
resuspended in 300 �l of sterile-distilled water, boiled for 10 min to release the DNA. Identification of E.
coli pathotypes was performed by PCR screening for the following target virulence genes (see also Table
1 for primer sequence information): bfp for typical EPEC, lt and sta for ETEC, ipaH for EIEC and shigellae,
aggR for EAEC, eaeA for atypical EPEC, and afaB for DAEC. Positive pools for eaeA were subsequently
tested for stx1 and stx2 genes for the differentiation of potential EHEC infections. If a pooled sample
tested positive for any virulence factor, then each of the five isolates were retested individually to identify
the specific isolate carrying the virulence gene. In addition, fresh stool samples were also tested for
rotavirus antigens using a RIDA Quick Rotavirus test (r-Biopharm, Darmstadt, Germany).

DNA extraction, library preparation, and sequencing. DNA from E. coli isolates was extracted
using the Wizard genomic DNA purification kit (Promega). DNA for stool metagenomes was extracted
from a homogenized stool mix using the Mo Bio PowerSoil DNA isolation kit. In both cases, the purity
and concentration of the DNA was estimated using a NanoDrop spectrophotometer (Thermo Scientific)
and a Qubit 2.0 dsDNA high-sensitivity assay (Invitrogen, Carlsbad, CA). For isolates and metagenome
DNA sequencing, libraries were prepared using an Illumina Nextera XT DNA library preparation kit
according to the manufacturer’s instructions except that the protocol was terminated after isolation of
cleaned double-stranded libraries. After this, libraries were quantified using the Qubit 1X dsDNA HS assay
kit (ThermoFisher) and run on a high-sensitivity DNA chip using a Bioanalyzer 2100 instrument (Agilent)
to determine library insert sizes. An equimolar mixture of the isolates libraries (final loading concentra-
tion of 10 pM) was sequenced on an Illumina MiSeq instrument (School of Biological Sciences, Georgia
Institute of Technology) using a MiSeq reagent v2 kit for 500 cycles (2 � 250-bp paired end run; Illumina,
Inc., San Diego, CA). Metagenomic libraries were sequenced in the Illumina HiSeq 2500 instrument in the
rapid run mode for 300 cycles (150-bp, paired-end mode).

Libraries for 16S rRNA gene amplicon sequencing were amplified and sequenced using 16S rRNA
primers 515F (5=-GTGCCAGCMGCCGCGGTAA-3=) and 806R (5=-GGACTACHVGGGTWTCTAAT-3=), which
target the V4 region of the gene (�254 bp) as previously described (42). PCR amplifications were
performed in duplicates to a final volume of 20 �l containing 0.5 U of AccuPrime Pfx polymerase, 1�
AccuPrime reaction mix, 200 nM concentrations of each primer, and 1 �l of template DNA. Amplification
conditions included an initial denaturation of 2 min at 95°C, followed by 25 cycles of 95°C for 20 s, 55°C
for 30 s, and 72°C for 30 s, and a single final extension step at 72°C for 6 min. Specific amplification was
verified by agarose gel electrophoresis and duplicate samples were pooled and purified using DNA
purification SPRI (solid-phase reversible immobilization) magnetic beads (Applied Biological Materials)
according to the manufacturer’s instructions. Purified amplicons were then pooled in an equimolar
concentration and sequenced on the Illumina MiSeq instrument (2 � 250-bp paired end run) as recom-
mended by the manufacturer for low-diversity sequencing. The resulting sequencing data set supporting
the results reported here were submitted to the National Center for Biotechnology Information (NCBI)
under BioProject PRJNA486009. The metadata associated with the sequencing data generated in this
study is available as supporting information.
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Read quality control, assembly, and taxonomic annotation. Raw FASTQ reads from both E. coli
isolates and stool metagenomes were quality trimmed using the SolexaQA�� package (43). Specifically,
the scripts dynamicTrim.pl and LengthSort.pl were used to trim individual reads to the longest continuous
segment for which phred quality score was �20 (Q � 20, which represents �99% accuracy per
nucleotide position). Reads shorter than 50 bp were discarded. Both isolate and metagenome libraries
were processed using MiGA (Microbial Genomes Atlas), a recently developed system for data manage-
ment and processing of microbial genomes and metagenomes (http://microbial-genomes.org/) (44).
Quality-filtered reads were de novo assembled using IDBA-UD with precorrections (45), and protein-
coding sequences were predicted using MetaGeneMark (46). In addition, MiGA reports the percentage
of contamination and completeness for genome sequences based on recovery of lineage-specific marker
genes, as well as the likely taxonomic origin of windows of 10 genes across the query genome using the
MyTaxa engine (47), which allows the user to manually inspect the genomes for possible contamination
through the so-called “MyTaxaPlots” barplots.

16S rRNA gene amplicon data processing. 16S rRNA gene libraries were processed using the
default parameters in Qiime2 2018.11 pipeline (https://qiime2.org/) (48). In brief, 16S rRNA gene
sequences were first denoised and quality filtered using Dada2, an algorithm that uses a statistical model
for correcting errors introduced in the Illumina amplicon sequencing and infers underlying sample
sequences clustering highly similar amplicon sequence variants (ASVs) (49). After quality control, a
feature table of ASVs that are 100% identical was generated. Taxonomy was assigned to ASVs using the
q2-feature-classifier (50) classify�sklearn naive Bayes taxonomy classifier against the Greengenes 13_8
99% OTU reference sequences (51). Low abundance ASVs (those ASVs with a total count fraction lower
than 0.005% of the total) were removed from the final feature table, as suggested previously (52).
Alpha-diversity estimates were computed in rarefied libraries to avoid bias in the detection of differen-
tially abundant taxa given the underlying differences in library size. ASV richness was estimated using
Faith’s phylogenetic diversity (53). Beta-diversity analyses were performed using different distance
metrics, including Bray-Curtis, Jaccard, and weighted and unweighted UNIFRAC (54). The resulting
distance matrices were visualized through principal coordinate analysis plots. The same distance matrices
were then used to conduct a statistical test of dissimilarities, i.e., a permutational multivariate nonpara-
metric analysis of dissimilarities PERMANOVA (55), performed using the R’s package Vegan (56). Differ-
entially abundant OTUs (or ASVs) between diarrhea and control samples were identified using STAMP,
a data analysis metagenomic software that reports differentially abundant features using effect sizes and
confidence intervals (57).

Population genome binning and in situ metagenome abundance. MaxBin2 (58) was used to bin
previously assembled contigs into metagenome-assembled genomes (MAGs) for the recovery of E. coli
population genome with a minimum contig length threshold of 2,000 bp. Prior to binning, Bowtie 2 (59)
was used to align short-read sequences to assembled contigs, and SAMtools (60) was used to sort and
convert SAM files to the BAM format. Sorted BAM files were then used to calculate the coverage (mean
representation) of each contig in each sample metagenome. The quality of each resulting MAG was
evaluated with MiGA (see above) and CheckM v1.0.3 (61) using taxonomy-specific workflow for “Esche-
richia coli.” Only E. coli MAGs with a higher quality score than 60, calculated as the estimated complete-
ness minus five times the estimated contamination (62), were retained (Table S3). The taxonomic
affiliation of each MAG was then confirmed with MiGA, which uses a combination of the genome-
aggregate average nucleotide identity concept, or ANI, and the average amino acid identity, AAI, to
taxonomically classify a query genomic sequence against its reference genome databases and find the
closest match with P � 0.05.

The in situ abundance of isolates (sequencing depth), MAGs, and reference commensal E. coli strain
HS in a sample was calculated by using the number of metagenomic reads competitively mapping on
each genome above a cutoff nucleotide identity of �95% and a query sequence coverage by the
alignment of �50% using Bowtie and SAMtools normalized by the estimated genome size by the MiGA
analysis (genome completeness). The abundance of RpoB genes (sequencing depth) was calculated by
using the total number of reads identified as RpoB genes by the ROCker pipeline as described previously
(63), normalized by the average length of the RpoB genes. The genome equivalent, that is, the total
number of cells sampled representing the genome of interest (or carrying the gene of interest), was
estimated from the ratio of the abundance of the query genome (or gene) to that of the RpoB genes.

Read-based detection of virulence factors and estimation of E. coli intrapopulation diversity.
Genome and metagenome virulence profiling was examined using the Virulence Factors Database (VFDB;
http://www.mgc.ac.cn/VFs/) (64) filtered for E. coli specifically. Metagenomic reads were mapped against
the VFDB database, and gene presence or absence was determined by the number of reads recruited by
the VF genes (�1�) and the length of the gene that was covered by reads (�70%; lower gene
abundance or coverage was considered gene absence). E. coli intrapopulation diversity was estimated by
calculating the average nucleotide identity of the metagenomic reads (defined as ANIr) mapping to the
reference genome (pathotype isolate or reference commensal) with a percent identity between 90 and
100%, i.e., reads representing the total E. coli population in a sample, based on competitive mapping. For
this task, the function enve.recplot2.ANIr of the R package enveomics.R v1.3 (65) was used as described
previously (https://github.com/lmrodriguezr/enveomics/tree/master/enveomics.R).

Phylogenetic analysis of genomes of isolates and MAGs. Orthologous genes of isolates, MAGs and
reference E. coli strains were identified using reciprocal best matches with protocols detailed as described
previously (66). Sequences of orthologous genes present in all the genomes (core genes) were extracted
and aligned using MUSCLE v3.8.35 (67). The resulting alignment was concatenated and trimmed with
Gblocks 0.91b (68) to remove noisy and/or uninformative regions. Phylogenetic reconstructions were
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estimated using FastTree v2.1.7 (69) with 1,000 bootstrap replicates and the GTR-GAMMA substitution
model for nucleotide sequences and visualized in iTOL (70).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM

.01820-19.
SUPPLEMENTAL FILE 1, PDF file, 3.1 MB.
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