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ABSTRACT The geographic mosaic theory of coevolution (GMC) posits that coevo-
lutionary dynamics go beyond local coevolution and are comprised of the following
three components: geographic selection mosaics, coevolutionary hot spots, and trait
remixing. It is unclear whether the GMC applies to bacteria, as horizontal gene trans-
fer and cosmopolitan dispersal may violate theoretical assumptions. Here, we test
key GMC predictions in an antibiotic-producing bacterial symbiont (genus Pseudono-
cardia) that protects the crops of neotropical fungus-farming ants (Apterostigma den-
tigerum) from a specialized pathogen (genus Escovopsis). We found that Pseudono-
cardia antibiotic inhibition of common Escovopsis pathogens was elevated in A.
dentigerum colonies from Panama compared to those from Costa Rica. Furthermore,
a Panama Canal Zone population of Pseudonocardia on Barro Colorado Island (BCI)
was locally adapted, whereas two neighboring populations were not, consistent with
a GMC-predicted selection mosaic and a hot spot of adaptation surrounded by areas
of maladaptation. Maladaptation was shaped by incongruent Pseudonocardia-
Escovopsis population genetic structure, whereas local adaptation was facilitated by
geographic isolation on BCI after the flooding of the Panama Canal. Genomic assess-
ments of antibiotic potential of 29 Pseudonocardia strains identified diverse and
unique biosynthetic gene clusters in BCI strains despite low genetic diversity in the
core genome. The strength of antibiotic inhibition was not correlated with the pres-
ence/absence of individual biosynthetic gene clusters or with parasite location.
Rather, biosynthetic gene clusters have undergone selective sweeps, suggesting that
the trait remixing dynamics conferring the long-term maintenance of antibiotic po-
tency rely on evolutionary genetic changes within already-present biosynthetic gene
clusters and not simply on the horizontal acquisition of novel genetic elements or
pathways.

IMPORTANCE Recently, coevolutionary theory in macroorganisms has been ad-
vanced by the geographic mosaic theory of coevolution (GMC), which considers how
geography and local adaptation shape coevolutionary dynamics. Here, we test GMC
in an ancient symbiosis in which the ant Apterostigma dentigerum cultivates fungi in
an agricultural system analogous to human farming. The cultivars are parasitized by
the fungus Escovopsis. The ants maintain symbiotic actinobacteria with antibiotic
properties that help combat Escovopsis infection. This antibiotic symbiosis has per-
sisted for tens of millions of years, raising the question of how antibiotic potency is
maintained over these time scales. Our study tests the GMC in a bacterial defensive
symbiosis and in a multipartite symbiosis framework. Our results show that this mul-
tipartite symbiotic system conforms to the GMC and demonstrate that this theory is
applicable in both microbes and indirect symbiont-symbiont interactions.
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The diversity of life is shaped by coevolution; the multitude of species on Earth
engage in complex webs of antagonistic and mutualistic interactions that undergo

reciprocal selection. Coevolution with symbiotic (i.e., “living together”) microorganisms
can result in extraordinary evolutionary innovation, including the origin of eukaryotic
cells (1), chloroplasts (2), fungal agriculture (3), and emergent properties (4, 5). Despite
the ubiquity of microbial symbionts in nature, the coevolutionary and ecological
theory to describe microbial interaction dynamics lags in comparison to the estab-
lished theory surrounding macroorganisms. Indeed, the extent to which established
ecological and evolutionary theory applies to microbes (and the extent to which
microbes violate macroorganism-specific assumptions) remains debated (6). The evo-
lution of local adaptation, for example, requires dispersal limitations because intraspe-
cific gene flow from adjacent populations can disrupt local selection (7). The potential
for microbial cosmopolitan dispersal and promiscuous horizontal gene transfer may
require microbe-specific theories.

Coevolutionary theory has made recent advances through the geographic mosaic
theory of coevolution (GMC) (8), a framework that goes beyond the traditionally
localized view of coevolution. The GMC posits that coevolutionary dynamics are shaped
by the following three geographic-scale components: selection mosaics, coevolutionary
hot spots, and trait remixing (9, 10). GMC has also advanced coevolutionary theory by
abandoning a common view that pairwise interactions are the primary drivers of
reciprocal selection. Rather, it takes the perspective that seemingly “diffuse” multispe-
cies interactions can be partitioned into subsets of fixed species-level interactions or
variable population-level coevolved interactions. Whether the GMC is applicable to
microbial interactions is unknown, as Thompson noted, “We do not know the extent to
which microbes undergo geographic differentiation” (8).

The majority of empirical coevolutionary studies (including those surrounding the
GMC) have focused on predator-prey relationships, host-symbiont interactions, or
herbivory (11–14). However, studies examining the facilitating dynamics of symbiont-
symbiont interactions are lacking despite their widespread ecological importance
across biology (15). Symbiont-symbiont interactions within defensive symbioses are of
particular interest, as the nature of these microbial communities offers a more struc-
tured framework to test local community dynamics (compared to more “open” systems,
where the dispersal, inheritance, and specificity of interactions are often difficult to
elucidate). Moreover, symbiont-symbiont interactions can indirectly impact hosts (e.g.,
by increasing disease virulence or shifting transmission specificity); understanding
these ecological and evolutionary consequences is necessary for determining the forces
shaping broader host-symbiont coevolution (15). The Apterostigma dentigerum fungus-
growing ant–microbe symbiosis provides a unique opportunity to test components of
the GMC among multiple microbial symbionts known to have geographic population
structure (16–18). Ants of the subtribe Attina (including A. dentigerum; Fig. 1A) cultivate
basidiomycetous fungi in an agricultural system that is analogous to human farming
(19–21). Like nearly all human crops, these fungal cultivars have low genetic diversity
(22) and are vulnerable to virulent pathogens (23). Specialized ascomycetous patho-
gens in the genus Escovopsis (Fig. 1C to E) form persistent and chronic infections
throughout most of the life cycle of a given ant colony. If not controlled, the infection
can rapidly overwhelm and consume entire fungal gardens (23, 24). Thus, Escovopsis
parasites impose persistent and strong selection pressure. To combat Escovopsis infec-
tion, the ant host performs generalized defense behaviors, such as fungus garden
weeding and grooming, to physically remove infected portions of the cultivar and/or
Escovopsis spores (25). The ants also employ chemical defense through a symbiotic
association with antibiotic-producing actinobacteria (Fig. 1B) (26–29). Although fungal
cultivars are the primary target of Escovopsis (26), an indirect selection pressure is
imposed on the ant host, which obligately depends on its fungal cultivar, and the
defensive bacterial symbiont, which obligately depends on the ant (20, 30, 31). Inter-
actions are summarized in Table S1.

The fungus gardens of A. dentigerum are host to at least three distinct lineages of the
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Escovopsis parasite, each with a distinct morphology (32, 33). Cultivar-Escovopsis in vitro
inhibition assays indicate that antifungals produced by fungal cultivars are capable of
inhibiting many Escovopsis lineages but are universally poor at the inhibition of the
brown Escovopsis morphotype regardless of geographic location (16, 33, 34). Moreover,
the brown Escovopsis morphotype appears to be one of the more common lineages
found within A. dentigerum colonies. Given that A. dentigerum cultivars are seemingly
ill-equipped to combat brown Escovopsis pathogens, we hypothesize that the symbiotic
actinobacteria (Pseudonocardia) are instead coadapted to this specific parasite lineage.
Our previous finding of congruent population genetic structure between Pseudonocar-
dia symbionts and brown Escovopsis pathogens (17) may impact coevolution in this
interaction by facilitating local adaptation (35, 36). In particular, the Pseudonocardia
populations on Barro Colorado Island (BCI) and Gamboa Forest (GAM) in the Panama
Canal Zone may be good candidates for local adaptation, as they contain high-identity
sequence assemblages (17, 18) thought to be characteristic of recent periodic selection
in bacteria (37).

The antibiotic potential of Pseudonocardia populations is determined by the acqui-
sition and evolution of biosynthetic gene clusters that can reside on plasmids and
therefore may be transiently acquired through horizontal transfer (38). Although the
frequency and impact of these lateral exchanges are unclear in Pseudonocardia, recent
studies of closely related Streptomyces actinobacteria suggest that these events are rare
on evolutionary time scales (39, 40). Most antibiotics that are used clinically are sourced
from actinobacteria that, in their natural contexts, use antibiotics to mediate antago-
nism (40, 41) and are often the connections of complex species-species interaction
networks (40, 42). The biosynthetic gene clusters that assemble antibiotic secondary
metabolites are highly diverse, reflecting the vast diversity of interactions they mediate
(40, 43–45). Within insect-actinobacterium associations, including those involving the
southern pine beetle (46), the solitary digger wasp (47, 48), and fungus-growing ants

FIG 1 The fungus-farming ant Apterostigma dentigerum, seen on top of its fungal garden (A), maintains symbiotic Pseudonocardia actinobacteria, shown here
in axenic culture (B). Secondary metabolites from Pseudonocardia inhibit the growth of Escovopsis pathogens that directly consume the fungal garden. Three
Escovopsis phylotypes, fuzzy brown (C), yellow (D), and brown (E), are known to infect A. dentigerum gardens. Pseudonocardia and Escovopsis were sampled from
Central America (F), with focal populations residing in the Panama Canal Zone (G). Maps created in R using plotly.
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(18, 26, 43), actinobacteria readily associate with insect hosts to provide antibacterial
and antifungal chemical defenses through their antibiotic secondary metabolites (43,
49, 50).

Here, we use antibiotic inhibition assays in combination with population genetic
structure analyses and whole-genome sequencing to examine whether A. dentigerum-
associated Pseudonocardia-Escovopsis interactions conform to a GMC. First, we establish
whether Pseudonocardia-Escovopsis interactions are fixed across the Canal Zone of
Panama (compared to cultivar-Escovopsis interactions) and identify the appropriate
geographic scale of symbiont selection. Second, we describe the broad geographic
differences in Pseudonocardia antibiotic potency across Central America and test for
locally adapted populations. Finally, to shed light on the specific secondary metabolite
pathways and genetic mechanisms conferring antibiosis, we genomically characterized
29 Pseudonocardia strains and examined the role biosynthetic gene clusters play in
Pseudonocardia-Escovopsis coevolution.

RESULTS AND DISCUSSION
Establishing specificity. A matrix bioassay utilizing 2,417 individual inhibition

assays revealed a hierarchical pattern, namely, average inhibition against yellow and
fuzzy brown Escovopsis isolates was significantly lower than that against brown Esco-
vopsis isolates. Moreover, these inhibition averages correlated with the relative abun-
dances of Escovopsis morphotypes in Central America (Fig. 2). Similarly, a test strain
inhibition assay pairing a strain of each of three Escovopsis lineages (brown, yellow, and
fuzzy brown) against 52 Pseudonocardia strains from across Panama and Costa Rica
revealed significant hierarchical inhibition in paired t tests: namely, brown was inhibited
more than yellow, and yellow was inhibited more than fuzzy brown (Fig. S1). Interest-
ingly, while isolating Escovopsis pathogens from Peruvian Apterostigma species that
maintain a different cultivar lineage from that of A. dentigerum, we failed to recover any
brown Escovopsis isolates and obtained only seven fuzzy brown and two yellow
isolates. This observation, in combination with previous cultivar-pathogen studies (32,
33), supports the hypothesis that cultivar antibiosis mediates yellow and fuzzy brown
infection, while Pseudonocardia is specialized to suppress brown Escovopsis. These
results suggest that yellow and fuzzy brown Escovopsis strains are experiencing a type
of “rare morph advantage” (51, 52), whereby, due to lack of exposure, selection is
toward Pseudonocardia inhibiting brown Escovopsis, the more common parasite, rather
than toward evolving antibiotic activity against rarer strains.

GMC assumptions. A 6-by-6 inhibition assay pairing Panama Canal Zone strains of
Pseudonocardia and brown Escovopsis isolated from six mature ant nests found that all
bacterial strains exhibited the ability to inhibit strains of the garden pathogen and that
there is variation in the degree of inhibition (Fig. S2). There was no significant difference
(P � 0.8533) in zone of inhibition distance (or variance, P � 0.393) between within-
colony pairings (mean, 0.882; standard error [SE], 0.209) and among-colony pairings
(mean, 0.847; SE, 0.074). This pattern of bacterial inhibition is important for three
reasons, as follows. (i) It further dispels an already disputed hypothesis in which
free-living Pseudonocardia acquisition and subsequent symbiont selection occur within
ant nests every generation (53, 54)—if ants frequently recruit free-living Pseudonocardia
bacteria for antibiotics effective against pathogens, one would anticipate elevated
parasite inhibition within colonies versus between colonies. In fact, within-colony
versus between-colony average inhibitions and variances were nearly identical. (ii)
Pseudonocardia inhibition contrasts with inhibition assays pairing A. dentigerum fungal
cultivars and brown Escovopsis pathogens over the same geographic scale, in which no
sign of cultivar-pathogen inhibition was observed in 35 of 36 combinations (16),
despite known antibiosis to different sympatric Escovopsis lineages. This further sup-
ports an evolved specificity for Pseudonocardia (not cultivars) to combat the common
brown Escovopsis lineage. (iii) Central to the GMC is the notion that coevolution occurs
at the population scale and that coevolved interactions are variable and rarely fix within
species (8). Our observed variation in Pseudonocardia-Escovopsis (brown) inhibition
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appears consistent with this postulate, whereas the cultivar-Escovopsis (brown) inter-
actions more closely resemble fixed, species-level interactions. Moreover, these results
help identify populations of ant nests (as opposed to individual nests) as the appro-
priate scale of selection.

GMC hypotheses. (i) Selection mosaics and hot/cold spots. Although identifying
appropriate population-level variation meets an important assumption of the GMC, a
thorough demonstration requires the observation of (i) geographic variation in the
structure of selection on interactions (i.e., selection mosaics) and (ii) coevolutionary
hot spots of local reciprocal selection embedded in a broader matrix of coevolutionary
cold spots, where local selection is nonreciprocal (i.e., coevolutionary hot spots and
cold spots) (8, 10, 55). Our matrix bioassay revealed these two components. Average
inhibition by Panamanian Pseudonocardia was highest against Escovopsis from BCI
(zone of inhibition [ZOI] � 1.50) and GAM (ZOI � 1.55), significantly lower against that
from Pipeline Road (PLR) (ZOI � 0.980, P � 0.001), and lower still against that from La
Selva Biological Station (LS), Costa Rica (ZOI � 0.317696176, P � 0.001), which suggests
a geographic selection mosaic (Fig. 3).

FIG 2 (A) Central American Pseudonocardia antibiotic inhibition of three Escovopsis pathogen lineages
(fuzzy brown [FZ], yellow, and brown). Rare Escovopsis pathogen morphotypes experience less inhibition
by Pseudonocardia (center, median; box, upper and lower quantiles; whiskers, 1.5� interquartile range).
(B) Average zone of inhibition (ZOI) corresponds to the relative frequency at which each lineage is
encountered in Central American Apterostigma dentigerum ant cultivars, with common brown Escovopsis
parasites experiencing significantly greater inhibition than the rarer fuzzy brown and yellow parasites.
The strength of inhibition corresponds to parasite morphotype abundance in nature, suggesting that
parasites experience rare morph advantage. Blue indicates linear regression of individual data points
from panel A error bars indicate standard error of the mean.
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Within-population versus across-population comparisons showed that the Pseudono-
cardia population on BCI is locally adapted (Fig. 4A)—the BCI � BCI ZOI (2.65 cm) was
significantly greater than those in cross-population comparisons (BCI � PLR ZOI � 1.93,
P � 0.001; BCI � GAM ZOI � 2.19, P � 0.007). Local adaptation occurs between species
when the following two conditions are met: (i) reciprocal selection is imposed, and (ii)
selection varies over space (9, 56, 57). Thus, local adaptation by one species to another
is often regarded as a demonstration of the reciprocal selection necessary to demon-
strate coevolution (58). While BCI Pseudonocardia isolates were locally adapted, PLR
Pseudonocardia inhibition was similar regardless of parasite population (PLR � PLR
ZOI � 1.539, PLR � BCI ZOI � 1.532, PLR � GAM ZOI � 1.435; Fig. 4B), and GAM
Pseudonocardia isolates were locally adapted only in comparison to PLR (GAM � GAM
ZOI � 2.750, GAM � BCI ZOI � 2.59, GAM � PLR ZOI � 2.23; P � 0.003; Fig. 4C). These
comparisons are consistent with the GMC prediction that coevolutionary hot spots of
reciprocal adaptation (BCI) are embedded within cold spots that lack reciprocal adap-
tation (GAM and PLR) (8).

(ii) Trait remixing. The third component of the GMC is the concept of “trait
remixing,” which posits that genetic structuring across landscapes continuously shapes
the coevolutionary process. Our population genetic analyses and genomic antibiotic
potential characterizations of biosynthetic gene clusters revealed how genetic structure
has shaped local adaptation. Local adaptation on BCI (Fig. 4A) was consistent with
predictions that congruent population structure facilitates reciprocal adaptation
(35, 36). Pseudonocardia and Escovopsis isolates represent distinct genetic popula-
tions on BCI, as they both had an elevated Fk (an Fst analog that estimates the
divergence between each population and a theoretical ancestral population) value
(Fig. 4D), and each symbiont had a large majority of isolates grouping to a single
genetic population as defined using STRUCTURE software (Pseudonocardia, 90%;
Escovopsis, 75%; Fig. 4E). Pseudonocardia isolates on GAM were similarly structured,
with 90% of isolates grouping to a single STRUCTURE-defined population; however,
GAM Escovopsis isolates were evenly distributed across 3 genetic populations (Fig. 4E).
This lack of geographic structuring in GAM pathogens may explain why GAM Pseudono-
cardia isolates appear to be locally adapted to pathogens from PLR but not those from
BCI (Fig. 4C). The PLR data lacked geographic structure for both Pseudonocardia and
Escovopsis isolates (Fig. 4E), and no signal of local adaptation was observed in these
comparisons (Fig. 4B). These results contrast with a seminal study of local adaptation
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FIG 3 A mosaic of antibiotic inhibition by Panamanian Pseudonocardia to Central American populations
of Escovopsis (x axis). The average zone of inhibition distance in petri plate bioassays is presented on the
y axis (center, median; box, upper and lower quantiles; whiskers, 1.5� interquartile range). Letters
indicate significantly different mean zone of inhibition (t test, P � 0.05). LS, La Selva Biological Station;
BCI, Barro Colorado Island; PLR, Pipeline Road; GAM, Gamboa Forest.
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across three lake populations of snails and their trematode parasites, in which local
adaptation was observed in all three populations (35). In that study, lakes acted as
natural barriers to gene flow and likely helped create the congruent host-parasite
genetic structure that facilitated local adaptation. In our study, it appears that the
asymmetries in local adaptation were shaped by the asymmetries in population genetic
structure. Anthropogenic disturbances can also erect genetic barriers that facilitate
local adaptation (59). The flooding of the Panama Canal, which created BCI approxi-
mately one hundred years ago, may have facilitated local adaptation by erecting a
barrier to both ant dispersal and Escovopsis transmission, although periodic migration
events undoubtedly occur (18). Similarly, GAM has an “island nature” that may facilitate
partial local adaptation. GAM is nested within the town of Gamboa, surrounded by
paved streets and homes in addition to being surrounded by water on three sides.
These subtler anthropogenic barriers may be sufficient to restrict ant dispersal, result-
ing in the relatively distinct GAM Pseudonocardia clade, but no distinct clade for
Escovopsis, which contains multiple genetic populations within GAM (Fig. 4E).

Genomic sequencing of 29 Pseudonocardia genomes identified 146 gene cluster
families of secondary metabolite biosynthetic gene clusters. A total of 93 gene cluster

FIG 4 Reciprocal tests for local adaptation using Pseudonocardia from (A) Barro Colorado Island (BCI), (B) Pipeline Road (PLR), and (C) Gamboa Forest (GAM),
with significant local adaptation on BCI indicated by a mean zone of inhibition that was significantly different from the other two pairings in the cross (x axes
indicate Escovopsis location). (A to C) t test versus local pairing. *, P � 2.98E�3; **, P � 6.994E�4; ***, P � 8.668E�10; center, median; box, upper and lower
quantiles; notches, 95% confidence; whiskers, 1.5� interquartile range; points, outliers. Population STRUCTURE analysis demonstrates that Escovopsis and
Pseudonocardia populations on BCI are genetically distinct, having elevated Fk (D) and more than 75% of their isolates assigned to one genetic cluster (E).
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families occurred within a single population, 80 of which were only found in a single
genome (Fig. 5). Of the single-population gene cluster families found in more than one
strain, BCI had ten unique gene cluster families, which included a siderophore, a
nonribosomal peptide synthetase (NRPS), and a type 2 polyketide found in five or more
strains (Fig. 5). PLR had three nonsingleton, population-specific gene cluster families,
which included a nucleoside biosynthetic gene cluster found in four strains (Fig. 5).
GAM- and PLR-specific biosynthetic gene clusters include a lasso peptide found only in
isolates from GAM and the southern part of PLR. Finally, there was no significant
Pearson correlation between biosynthetic gene cluster presence/absence and inhibi-
tion by location (Fig. S3). Tests for selective sweeps identified at least two biosynthetic
gene clusters with significant Fst (fixation index, a measure of population differentiation
due to genetic structure) values in BCI-mainland comparisons. A bacteriocin appears to
have significant Fst values in the following three enzymatic regions: an acetyl-
coenzyme A (CoA) carboxylase, a SufE (cysteine desufuration), and a sulfurtransferase
(Fig. S4). Figure 5C shows an NRPS biosynthetic gene cluster that had an Fst peak in a
thioesterase domain.

BA
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FIG 5 Characterization of biosynthetic gene cluster families in symbiotic Pseudonocardia isolates spanning Panama and Costa Rica. (A) Each node represents
a contiguous set of genes that are part of a secondary metabolite biosynthesis cluster. Edges represent BiG-SCAPE distances of 0.3 or below. Connected
subgraphs correspond to gene cluster families. Nodes are colored by their source (see top right of panel B for legend). (B) Presence-absence map of gene
cluster families. Known gene cluster families with examples in MIBiG are shown as dark green in the top annotation strip. Sample location is shown in the
left annotation strip. Dendrograms for gene cluster families and samples are derived from Euclidean clustering. (C) Example of selective sweep within a
biosynthetic gene cluster. Fst between BCI and other samples is shown as the y axis. Solid and dashed lines correspond to the Fst genome-wide average and
two standard deviations above the genome-wide average, respectively (window, 1 kb; step size, 100 bp). A nonribosomal peptide synthetase (NRPS)
biosynthetic gene cluster is shown with boundaries corresponding to the shaded region; windows within the gene cluster are shown in purple, and those
flanking it are in gray. Gene and domain structure for the biosynthetic gene cluster are shown above. C, condensation domain; A, adenylation domain; TE,
thioesterase domain; blue, NRPS genes; pink, TE domain.
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The presence of several unique biosynthetic gene clusters on BCI appears to
contribute to elevated inhibition in the island population, and a lack of certain
biosynthetic gene clusters may contribute to lower inhibition in the Costa Rican LS
population. Correlations with bioassay inhibition demonstrated that a particular bio-
synthetic gene cluster may be associated with either high or low inhibition (Fig. S3A);
however, no pairing reaches significance by location, which suggests that the presence/
absence of biosynthetic gene clusters is not driving local adaptation. At least two
cross-population biosynthetic gene clusters appear to have undergone selective
sweeps on BCI. A bacteriocin on BCI showed a significantly high Fst value compared to
that of the mainland populations (Fig. S4). Bacteriocins are generally thought to be
niche-defending compounds, so while they are unlikely to be the source of Escovopsis
inhibition, they could be involved with host-Pseudonocardia specificity either directly or
indirectly via the killing of potential invader actinobacterial strains. An NRPS biosyn-
thetic gene cluster may also have undergone a selective sweep on BCI; an Fst peak
occurs within the thioesterase domain that could potentially affect secondary metab-
olite production and concentrations by modulating a potentially rate-limiting step (60).
These results suggest that adaptation at the local level is occurring within genes and
not just through the acquisition of novel biosynthetic gene clusters.

Conclusions. A powerful utility of the GMC is that it provides a framework whereby
the historically artificial dichotomy that coevolution is either characterized by local
pairwise reciprocal selection or diffuse multispecies interactions can be abandoned,
and seeming diffuse associations can be partitioned into coevolving population-level
interactions and fixed species-level interactions (8, 10). Indeed, studies of attine-
symbiont coevolution often fall into this dichotomy, sometimes reaching the conclu-
sion that diffuse multispecies interactions are likely to negate the opportunity for
reciprocal adaptation (61) or that a single species interaction facilitates pairwise “red
queen” dynamics (62). Here, we have shown that the seemingly diffuse association
between Pseudonocardia isolates and three Escovopsis species conforms to a GMC
framework in which the interactions of brown Escovopsis pathogens are variable and
coevolving among populations, whereas those of yellow and fuzzy brown Escovopsis
pathogens appear to be fixed at the species level. Finally, our results demonstrate that
the GMC is applicable to microbes containing geographic population structure and for
which selection pressure is imposed indirectly via symbiont-symbiont interactions.

MATERIALS AND METHODS
Symbiont collection and isolation. From 2006 through 2010, we sampled Pseudonocardia and

Escovopsis isolates associated with the fungus-growing ant Apterostigma dentigerum from La Selva
Biological Station (LS) in Costa Rica and the following populations in the Canal Zone of Panama: Barro
Colorado Island (BCI), Pipeline Road (PLR), Gamboa Forest (GAM), Frijoles Peninsula (FRP), and Buena
Vista Peninsula (BVP). Ant colonies were collected aseptically in the field, using flame-sterilized
forceps and spoons to prevent lateral transfer of symbionts between nests. John T. Longino’s key to
Costa Rican Apterostigma was used to identify A. dentigerum species (http://ants.biology.utah.edu/
genera/apterostigma/specieslist.html). Pseudonocardia isolations were conducted by first removing the
ant’s head and forelegs to expose the mesosternal lobes, where the bacteria are concentrated. We then
used fine, sterilized probes to scrape small tufts of bacterium onto chitin medium. For further details on
Pseudonocardia isolation from A. dentigerum, see reference 17. To isolate garden parasites, we plated
pieces of fungal cultivar onto potato-dextrose agar (PDA) medium and subcultured Escovopsis hyphae as
they emerged (16). Escovopsis isolates were sampled from the same geographic range as Pseudonocardia
in the Panama Canal Zone, but with additional sampling of Escovopsis from Apterostigma spp. from the
Los Amigos Station in Peru (PU). A collection of 50 Pseudonocardia strains and 55 Escovopsis strains was
generated. Each symbiont strain represents a unique ant colony.

Inhibition assays and analysis. To quantify Escovopsis inhibition by Pseudonocardia, we performed
inhibition assays pairing each of the two symbionts and measured the zone of inhibition (ZOI). The in
vitro ZOI corresponds to fungus garden loss in higher attines (29) and thus provides a valuable proxy for
the impact of Escovopsis in vivo. Petri plate bioassay experiments and statistical comparisons for local
adaptation (63) were conducted as follows: Pseudonocardia cells were point inoculated in the center of
a yeast malt extract agar (YMEA) plate and allowed to grow for 3 weeks, after which Escovopsis spores
were inoculated at the edge of the plate. Plates were inspected twice a week, and when a clear ZOI had
formed in a given pairing (typically within 2 to 3 weeks after fungus inoculation), the minimum ZOI was
measured. Depending on time constraints, ZOI was either measured using calipers and recorded
immediately or standardized digital photos of the inhibition assay were taken and the ZOI was
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subsequently measured using ImageJ (64). For ImageJ measurements, the digital scale was calibrated
against a 10-cm line above the petri plate to ensure that the digital and analog measurements were
consistent.

Three separate inhibition assays (referred to as “test strain,” “within colony,” and “large/matrix”) were
conducted in 2008, 2009, and 2010, respectively. First, to obtain an initial assessment of the geographic
variation in Pseudonocardia-Escovopsis interactions, we utilized a test strain (8) approach, in which 52
Pseudonocardia isolates spanning Costa Rica and Panama were paired with each of three Escovopsis
pathogen lineages, namely, brown, yellow, and fuzzy brown. These Escovopsis lineages form distinct
phylogenetic clades and are taken to represent species with brown, fuzzy brown, and yellow morpho-
types corresponding to Escovopsis aff. multiformis, Escovopsis aff. cavatus, and Escovopsis sp. (yellow),
respectively (32, 65). Second, to examine whether within-colony symbiont selection is occurring, we
performed inhibition assays utilizing all pairings of Pseudonocardia and Escovopsis isolates from six
mature ant colonies (36 total assays) in the Canal Zone of Panama, for which we isolated both symbionts
from each nest and compared within-colony versus between-colony inhibition. Third, we conducted a
large/matrix assay utilizing all pairing of 50 Pseudonocardia and 55 Escovopsis isolates. From this large
matrix, we used average Pseudonocardia inhibition to test for differences among locations (i.e., selection
mosaics) and differences among Escovopsis lineages, and we subsampled all interactions among BCI,
PLR, and GAM (the most thoroughly sampled sites) to test for local adaptation. Paired t tests were
used to assess differences in inhibition to Escovopsis test strains. We used two-tailed t tests for
comparisons within colony versus cross-colony and within-population versus cross-population
Escovopsis-Pseudonocardia pairings. P values were adjusted using Bonferroni’s correction to reduce type
I error in multiple comparisons. F tests were performed to establish whether individual t tests should be
performed with equal or unequal variances.

Population structure. To describe the geographic population structure of Pseudonocardia, we
utilized sequence data from 71 Pseudonocardia strains that were previously genotyped at six house-
keeping loci using Sanger sequencing technology (17), and we subsequently whole-genome sequenced
a subset of 29 strains using next-generation sequencing. Both data sets were subjected to Bayesian
STRUCTURE analyses (66, 67), to assign genetic populations (K) to strains without prior information about
sampling location (the whole-genome data set additionally used fineSTRUCTURE to speed up analysis).
For the six-locus data set, we treated each polymorphic site (355 total) as an individual locus, and
simulations were run with both no-admixture and admixture/linkage models. The admixture model
assumes that each individual derives ancestry from only one population and is most appropriate for
discrete populations. For the no-admixture model, we assumed a constant � and correlated allele
frequencies, which improves clustering for closely related populations. The linkage model allows for
individuals to have mixed ancestry (i.e., admixture). Following Falush et al. (67), the linkage model
assumed correlated allele frequencies, estimated �, and treated polymorphic sites within genes as linked,
with linkage being proportional to genetic distance in base pairs. K was selected by the highest likelihood
score and by calculating the ΔK (68). All simulations were run for K � 1 to K � 20 with 20,000 iterations
following a burn-in period of 10,000. Each run was repeated five times to assess consistency and facilitate
ΔK calculations. For the three focal Panama Canal populations (GAM, PLR, and BCI) we also calculated Fk,
an Fst analog that estimates the divergence between each population and a theoretical ancestral
population. Escovopsis STRUCTURE output was taken from Gerardo and Caldera 2007 (16). Outputs from
the 71-strain, 6-locus data set are presented in Fig. S3, and fineSTRUCTURE-determined populations from
the subset of 29 whole genomes are color coded and presented in Fig. S4. The subset of fineSTRUCTURE
genomic analysis similarly recovered six genetic populations, although fineSTRUCTURE, in contrast to the
6-locus STRUCTURE analysis, was able to separate out a northern region of BCI.

Biosynthetic potential. To begin understanding the genetic mechanisms of antibiotic resistance to
Escovopsis, we whole-genome sequenced a subset (n � 29) of the Pseudonocardia strains used in
inhibition experiments and characterized the presence of conserved biosynthetic gene clusters. Sequenc-
ing of Pseudonocardia strains was performed by Duke University or Washington University in St. Louis.
Pacific Biosciences (Pseudonocardia reference genome EC080625-04; Duke University) assemblies utilized
Hierarchical Genome Assembly Process (HGAP) 1.4 (69), whereas Illumina (Washington University)
genomes were assembled using Velvet (70). Prodigal v2.60 (71) was used for protein prediction, whereas
Rfam (72) hidden Markov models and Infernal 1.1.1 (73) were used for rRNA prediction. Annotation of
protein coding genes was through TIGRFam v15 (74), PFAM v29, the Kyoto Encyclopedia of Genes and
Genomes (KEGG), actNOG (75) hidden Markov models, and HMMer 3.1 (76). In each genome, secondary
metabolite clusters were identified by antiSMASH v4.0.2 (77). Biosynthetic gene clusters were grouped
into families by BiG-SCAPE under hybrid, mix, and glocal modes (78). To assess the extent to which the
presence/absence of specific secondary metabolite clusters contributes to local adaptation, biosynthetic
gene clusters were grouped (80% nucleotide identity via nucmer [79] alignment and 50% coverage for
each segment) and Pearson correlations were calculated between biosynthetic gene clusters with ZOI by
location.

All Illumina genome assemblies were aligned to the PacBio EC080625-04 assembly using nucmer (79).
Reference single-nucleotide polymorphism (SNP) positions covered by a contig for every genome were
used for fineSTRUCTURE analysis to avoid missing data for any SNP positions. Multiple runs with various
values of c (effective number of genomic segments with contiguous ancestry) and estimated population
size had little effect on overall strain clustering, except for very high values of c merging neighboring
clusters together. The Fst value was calculated in sliding windows across the reference Pseudonocardia
genome EC080625-04. Briefly, reads for each genome were pooled to either BCI or non-BCI groups based
on their sampling location. Group reads were mapped to EC080625-04 with bwa aln v0.7.17-r1188
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(maximum edit distance of 0.01; first 100 subsequences as seed; maximum gap opens, 1; disallow long
deletions within 12 bp at 3= end; maximum gap extensions, 12) (80). SAMtools mpileup v1.7 (81) was
used to call variants between the two groups (disabled per-base alignment quality; alignment minimum
mapQ, 20; base minimum baseQ, 20). PoPoolation2 (82) was then used to calculate allele frequencies. Fst
was calculated in sliding windows with windows:steps of 1:1, 1,000:100, and 10,000:1,000 bp (maximum
coverage, 2%; minimum coverage, 50; minimum count, 6).
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