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Mutational spectrum of tobacco associated
oral squamous carcinoma and its
therapeutic significance
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Abstract: Oral squamous cell cancer (OSCC) is a common malignancy attributed to use of chewing smokeless
tobacco and smoking. Most of the targeted strategies are based on EGFR expression and mutation; however, none
of them has shown significant improvement in survival and response rates. We carried out this study to evaluate
mutational profile of tobacco associated oral carcinoma with special emphasis on EGFR and its downstream events.

Patients and methods: A total of 46 histologically proven cases were recruited between January 2017 and January
2019. Apart from detailed clinical and histological studies, the paraffin-embedded tissue was submitted for
expression of 50 genes using Next Generation Sequencing using Ion Ampliseq Cancer Hotspot Panel v2.

Results: The mean age of patients was 47.8 ± 10.9 years. Majority had tumors on buccal mucosa (24) and tongue
(13). Nineteen of these tumors were larger than 4 cm, and 5 had adjacent site involvement. Thirty one were node
positive. TP53 mutations were commonest seen in 19 followed by CDKN2A in 11, HRAS in 8, PIK3CA in 3, SMARCB1
in 2, and KIT, EGFR, BRAF, STK11, ABL1, RB1 in one case each. Concomitant TP53 mutation was identified with other
mutations like CDKN2A, HRAS, KIT, PIK3CA, STK11, SMARCB1, ABL1, and RB1 making tobacco-associated OSCC as a
heterogeneous mutational tumor with multiple events. A patient with TP53 mutations has poor disease free survival
(47.4 vs 63% p = 0.17); however, this was not statistically significant.

Conclusion: The study shows a heterogeneous mutational spectrum with multiple mutational events in OSCC. The
low EGFR mutation rates and higher mutations in EGFR downstream pathways including that in TP53 and HRAS
suggest that anti EGFR strategies may not succeed in these tumors and newer agents and therapeutic
combinations need to be tried.

Introduction
Oral squamous cell cancer (OSCC) is the most common
malignancy among males in India and the eighth most
common cancer worldwide [1]. In India, gingivobuccal
region of oral cavity is predominantly affected, compris-
ing buccal mucosa and lower gums, whereas in the west,
tongue is the most commonly involved subsite of oral
cancer [2, 3]. The risk factors for OSCC involve an inter-
action between the habits, environmental (tobacco, betel
quid, alcohol, HPV, etc.), and genetic (EGFR, TP53,
CDKN2A, etc.) factors [4–8].
EGFR is a member of receptor protein tyrosine kinase

family with 42–80% over expression in head neck
squamous cell carcinoma (HNSCC), whereas EGFR gene

amplification is seen in up to 30% of HNSCC, and yet
the results of EGFR targeting are not satisfactory. Since
the approval of EGFR targeting drug, cetuximab for lo-
cally or regionally advanced and for metastatic HNSCC
a lot of data has been generated on its use [9–12]. The
EXTREME trial showed some treatment success with
cetuximab plus platinum based chemotherapy in
HNSCC; however, EGFR expression level was not found
to be clinically useful predictive biomarker [13]. In
platinum-refractory HNSCC, the response rate with
cetuximab monotherapy is only 10% [14]. SPECTRUM
trial compared cisplatin/5-FU plus panitumumab to
cisplatin/5-FU alone in patients with metastatic/recur-
rent SCCHN and showed significant activity of panitu-
mumab [15]. Despite near universal expression of EGFR
in HNSCC, there is only modest activity of these
monoclonal antibodies.
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Other than anti-EGFR monoclonal antibodies (mAb),
EGFR tyrosine kinase inhibitors (TKI) have also been
tried with mixed success. Afatinib (selective EGFR and
HER2 inhibitor), erlotinib (an oral reversible EGFR TKI),
and gefitinib (a reversible EGFR TKI) have been used in
cases with EGFR exon 19 deletions or exon 21 (L858R)
substitution mutations as detected by an FDA-approved
test. Vamurafenib (an oral selective inhibitor of BRAF
kinase V600E oncogene) in unresectable and metastatic
melanoma with the BRAFV600E mutation have been re-
cently approved [11–16]. But still mono therapy with
TKI’s has only modest activity in EGFR mutated
HNSCC [17].
Specific genetic mutations in HNSCC had been identi-

fied by next generation sequencing (NGS), some of
which are potential targets and therapies can be tailored
to augment existed EGFR targeted therapies [18]. The
earlier results have shown mutation of the TP53,
CDKN2A, HRAS, and PIK3CA genes [19–21] in down-
stream EGFR pathways, and hence can explain moderate
activity of anti EGFR therapies in OSSC.
The Cancer Genome Atlas (TCGA) data profiling 279

HNSCCs showing mutations of the oncogene PIK3CA,
novel alterations involving loss of TRAF3, and amplifica-
tion of the cell-cycle gene E2F1 [22]. It also showed that
tobacco-associated tumors showed high frequency of
mutations in TP53 and CDKN2A [22]. Further a
mutation-based signature affecting ten genes (HRAS,
BRAF, FGFR3, SMAD4, KIT, PTEN, NOTCH1, AKT1,
CTNNB1, and PTPN11) had been found to predict dis-
ease free survival (DFS) [19]. Despite identification of
over 1500 mutation signatures in various genes in
HNSCC, the data is still insufficient to plan therapeutic
strategies based on these, and there is need to identify
and establish potential genetic biomarkers and targets.
Further, personalized medicine, identification of opti-

mal responders to targeted therapy, and creation of large
databases integrating clinical and genetic data will help
provide a panel of useful predictive biomarkers that will
subsequently change clinical practices, and this study is
a small step in this direction.

Patients and methods
This study was conducted in the Department of Surgical
Oncology, Institute of Medical Sciences, Banaras Hindu
University. Histologically proven cases of primary OSCC
with history of tobacco intake were included, and
patients with history of prior chemotherapy (for any rea-
son) or radiotherapy were excluded. After the approval
of the ethical committee and obtaining the consent, pa-
tients were recruited between 1st January 2017 and 1st
January 2019.
Comprehensive history and physical examination was

taken, and all the details were recorded in the preset pro

forma. A biopsy to establish the diagnosis and CT scan
of the head and neck to measure the tumor dimensions
and stage the disease were performed before initiation of
treatment. After the surgery the specimen was submitted
for detailed histopathological examination. The archival
tissue (formalin-fixed paraffin-embedded) was studied
for expression of 50 genes by molecular analysis using
next generation sequencing.

Next generation sequencing
DNA isolation/extraction
DNA isolation from FFPE tissue with deparaffinization
using ReliaPrep™ FFPE gDNA Miniprep System, Pro-
mega Corporation, India, was carried out following the
manufacturer’s instruction protocol. For sections ≤ 50
μm, 300 μl of mineral oil and for sections > 50 μm, 500
μl of mineral oil was used for deparaffinization and incu-
bate at 80 °C for 1 min. Added 20 μl of proteinase K dir-
ectly to the lower phase and mixed by pipetting and
incubate at 56 °C for 1 h and then at 80 °C for 4 h. The
sample was allowed to cool at room temperature. 10 μl
of RNase was added to the lysed sample in the lower
phase. The lower phase was mixed by pipetting and
incubated at room temperature (20–25 °C) for 5 min.

Template preparation
Template preparation was done by building a library of
nucleic acids (DNA or complementary DNA (cDNA)
and amplifying that library. DNA Library preparation
was carried out using an Ion PGM™ System, (Thermo
Fisher Scientific, San Francisco, CA, USA) according to
the manufacturer’s instructions. Bar coded libraries
using Ion Ampliseq Cancer Hotspot Panel v2 (Thermo
Fisher Scientific) research panel were created. The Ion
AmpliSeq™ Cancer Hotspot Panel v2 was designed to
amplify 207 amplicons covering approximately 2800
COSMIC mutations from 50 oncogenes and tumor sup-
pressor genes (ABL1, EGFR, GNAS, KRAS, PTPN11,
AKT1, ERBB2, GNAQ, MET, RB1, ALK, ERBB4,
HNF1A, MLH1, RET, APC, EZH2, HRAS, MPL,
SMAD4, ATM, FBXW7, IDH1, NOTCH1, SMARCB1,
BRAF, FGFR1, JAK2, NPM1, SMO, CDH1, FGFR2,
JAK3, NRAS, SRC, CDKN2A, FGFR3, IDH2, PDGFRA,
STK11, CSF1R, FLT3, KDR, PIK3CA, TP53, CTNNB1,
GNA11, KIT, PTEN, VHL) with specific coverage of
KRAS, HRAS, NRAS, BRAF, and EGFR exon 18–21with
performance of at least 2000× sequence coverage for
eight samples on one Ion 316 chip. In addition, the
primers in this panel were designed to produce, on aver-
age, 154-bp amplicons, so that even degraded samples
were used to generate reliable data. Bar coded libraries
were combined to a final concentration of 100 pM. The
next step was amplification of libraries which was done
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Table 1 Clinical and histopathological findings

Clinical findings Frequency Percent

Site of tumor

Tongue 13 28.3

Buccal Mucosa 24 52.2

Lower Alveolus 6 13.0

Upper Alveolus 1 2.20

Lip 2 4.30

Side

Right 18 39.1

Left 26 56.5

Midline 1 2.20

Crossing midline 1 2.20

Number lesion

Single 44 95.70

Multiple 2 4.30

Clinical size of tumor (cm)*

≥ 4 19 41.30

< 4 27 58.70

Extension to adjacent site

Yes 17 37

No 29 63

T status

T2 23 50.00

T3 8 17.40

T4 15 32.60

Clinical nodes

No 15 32.60

N1 17 37.00

N2 13 28.30

N3 1 2.20

Stage

II 17 37.00

III 11 23.90

IVa 17 37.00

IVb 1 2.20

Comorbid factors

Yes 8 17.40

No 38 82.60

ECOG performance status

0 9 19.60

1 37 80.40

Imaging

CT size (cm)

< 4 13 28.30

≥ 4 33 71.70

Table 1 Clinical and histopathological findings (Continued)

Clinical findings Frequency Percent

Neck node present 22 47.80

Involved adjacent site

Bone 9 19.60

Skin 5 10.90

Muscle 9 19.60

TNM stage (CT)

II 11 23.90

III 17 37.00

IVa 17 37.00

IVb 1 2.00

Neck dissection

SOHND 22 47.80

MRND 17 37.00

None 7 15.20

Surgical reconstruction

None 16 34.80

Pectoralis major myocutaneous flap 14 30.40

Nasolabial flap 13 28.30

Buccal pad of fat 2 4.30

Sternocleidomastoid flap 1 2.20

Total 46 100.0

Histopathological findings

HPE grade

I (well differentiated) 22 47.80

II (moderately differentiated) 22 47.80

III (poorly differentiated) 2 4.30

T size (cm)

≥ 4 11 23.90

< 4 35 76.10

Positive margin 2 4.30

Lymphovascular invasion 13 28.30

Perineural invasion 20 43.50

Depth of invasion (mm)

< 5 4 8.70

≥ 5 to < 10 24 52.20

≥ 10 18 39.10

Pathological stage

I 1 2.20

II 22 47.80

III 7 15.20

IVa 13 28.30

IVb 3 6.50

Mutations

TP53 19 41.3
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by using emulsion PCR (emPCR) on the 2 Ion One-
Touch system (Life Technologies).

Sequencing and imaging
The Ion PGMTM Torrent relied on the library fragments
which acted as a template, off which a new DNA frag-
ment was synthesized. As nucleotides were incorporated
into the growing DNA strand, they were digitally re-
corded as sequence. Sequencing primer and polymerase
were added to the final enriched ISPs prior to loading
onto 316 (100 Mb output) chips. Alignment of se-
quences was performed using Torrent Suite™ Software
(version5.2.0) on the Ion PGM™ Torrent Server.

Sequencing data analysis
After sequencing, preprocessing the data to remove
adapter sequences and low-quality reads was carried
out followed by mapping of the data to a reference gen-
ome or de novo alignment of the sequence reads, and
analysis of the compiled sequence using wide variety of
bioinformatics assessments, including genetic variant
calling for detection of SNPs or indels (i.e., the inser-
tion or deletion of bases), detection of novel genes or
regulatory elements, and assessment of transcript ex-
pression levels. Data analysis was carried out with Tor-
rent Suite Software V.5.2.0 (Life Technologies). The Ion
Reporter suite (Life Technologies) was used to filter
polymorphic variants.

Statistical analysis
Statistical analysis was performed using SPSS version
23.0 (IBM Corp., Armonk, NY). The baseline character-
istics were compared using the chi-square and Fisher
Exact test. Survival was estimated using Kaplan-Meier

method and was compared using log-rank test. Statis-
tical significance was set at P < 0.05.

Results
The mean age of patients was 47.8 ± 10.9 years. Majority
of cases were male (93.5%) followed by females with
male: female ratio of 14.3:1. Only 1 patient had family
history of cancer. Leukoplakia was present in 2 (4.3%)
cases, and others had no precancerous lesion. The clin-
ical and histopathological findings and treatment is pre-
sented in Table 1.
Out of 46 cases, 19 (41.3%) had received adjuvant

radiotherapy, and 8 (17.4%) had received adjuvant
chemotherapy. There were total 20 recurrences, 17 re-
currences occurred at primary site, 2 were the lymph
node recurrences, and 1 was the second primary. All
stage III, IVa, and IVb were advised adjuvant radiother-
apy, but 6 cases did not take, of these 2 cases had recur-
rence at primary site which could not be re-excised and
were started on palliative chemotherapy. Out of 19 cases
who were given adjuvant radiotherapy in 9 had loco-
regional recurrence.
TP53 was the most common (41.3%) mutation

followed by CDKN2A (23.9%), HRAS (17.4%), PIK3CA
(6.5%), SMARCB1 (4.3%), and KIT, EGFR, BRAF,
STK11, ABL1, RB1 (2.2% each). The relationship of
TP53, CDKN2A, PIK3CA, and HRAS mutation with
clinical-pathological factors are presented in Table 2.
The HRAS and PIK3CA mutation had significant associ-
ation with site of tumor, i.e., lower lip (p = 0.002) and
lower alveolus (p = 0.004).
The median follow-up in this study is 19.3 months,

and the median disease free survival was 16 months.
The 30 months OS rates and DFS rates of TP53,
CDKN2A, PIK3CA, and HRAS is depicted in Table 3,
the details of the identified mutation are recorded in
Table 4. The disease free survival rates were 47.4% and
63% for TP53 mutation present and absent respectively
(Log rank = 1.44; p = 0.17) (Fig. 1).

Discussion
Incidence of OSCC has increased with widespread use of
smokeless tobacco, betel quid, HPV infection, environ-
mental pollution, and genetic risk factors. Anatomically,
the oral cavity is composed of the mucosal lip, oral
tongue, floor of mouth, mandibular and maxillary gin-
giva, retromolar trigone, buccal mucosa, and hard palate
subsites controlling the speech, swallowing, and facial
projections. Surgery is the mainstay treatment for OSCC,
despite current advances in the treatment options, the
fatality of oral cancer has remained mostly unchanged.
In addition to radiotherapy, anti-EGFR strategies have
shown improved outcomes in the adjuvant setting and
have become an active area of research.

Table 1 Clinical and histopathological findings (Continued)

Clinical findings Frequency Percent

CDKN2A 11 23.9

HRAS 8 17.4

PIK3CA 3 6.5

SMARCB1 2 4.3

KIT 1 2.2

EGFR 1 2.2

BRAF 1 2.2

STK11 1 2.2

ABL1 1 2.2

RB1 1 2.2

NRAS 0 0.0

KRAS 0 0.0

*The largest numeric value of length, breadth, and depth had
been considered
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Table 2 Relationship of TP53, CDKN2A, PIK3CA, HRAS mutation with clinical-pathological factors

TP53 p value CDKN2A p value PIK3CA p value HRAS p value

Positive
(n = 19)

Negative
(n = 27)

Positive
(n = 11)

Negative
(n = 35)

Positive
(n = 3)

Negative
(n = 43)

Positive
(n = 8)

Negative
(n = 38)

HPE size (cm)

≥ 4 (n = 10) 8 3 0.032* 3 8 0.526 2 9 0.073 1 10 0.405

< 4 (n = 26) 11 24 8 27 1 34 7 28

Site

Tongue 0.462 0.330 0.261 0.882

Yes 6 7 2 11 0 13 2 11

No 13 20 9 24 3 30 6 27

Buccal mucosa 0.402 0.301 0.499 0.892

Yes 9 15 7 17 1 23 4 20

No 10 12 11 18 2 20 4 18

Lower alveolus 0.484 0.555 0.004* 0.228

Yes 3 3 1 5 2 4 0 6

No 16 24 10 30 1 39 8 32

Upper alveolus 0.413 0.239 1.000 1.000

Yes 1 0 1 0 0 1 0 1

No 18 27 10 35 3 42 8 37

Lower lip 0.339 1.000 1.000 0.002*

Yes 0 2 0 2 0 2 2 0

No 19 25 11 33 3 41 6 38

HPE grade

Moderately
differentiated

10 10 0.337 3 17 0.371 2 18 0.686 3 17 0.705

Well
differentiated

9 15 7 17 1 23 5 19

Poorly
differentiated

0 2 1 1 0 2 0 2

Vascular invasion

Yes 7 6 0.225 2 11 0.330 1 12 1.000 2 11 0.882

No 12 21 9 24 2 31 6 27

Perineural
invasion

Yes 9 11 0.442 3 17 0.187 3 17 0.041* 2 18 0.246

No 10 16 8 18 0 26 6 20

Depth invasion

< 5 3 1 0.143 1 3 0.642 0 4 0.571 0 4 0.316

5–10 7 17 7 17 1 23 6 18

> 10 9 9 3 15 2 16 2 16

Lymph node
positivity

Yes 6 8 0.570 3 11 0.556 1 13 0.910 3 11 0.633

No 13 19 8 24 2 30 5 27

Extra nodal
extension

Yes 2 5 0.457 1 6 0.459 0 7 1.000 1 6 1.000

No 17 22 10 29 3 36 7 32
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The use of next generation sequencing (NGS) in
HNSCC has led to identification of novel mutated tumor
suppressor genes (TP53, CDKN2A) and oncogenes
(PIK3CA, HRAS, EGFR) and has led to the development
of predictive biomarkers. There are several genetic alter-
ations responsible for development of OSCC; out of
which, EGFR is a validated target, other than PI3K,
PTEN, VEGF, JAK-STAT, etc. However, in presence of
downstream mutations the EGFR targeting is mostly
ineffective.
In our study, concomitant TP53 mutation was present

with other mutations like CDKN2A, HRAS, KIT,
PIK3CA, STK11, SMARCB1, ABL1, and RB1 making
oral cavity squamous cell cancer as a heterogeneous mu-
tational tumor. There were 16 different TP53 mutations
in exons 4–8, out which most commonly was found on
codon 72, c.215C>G (Pro72Arg) transversion variant in
5 patients (Table 4). This variant had been demonstrated
in oral cavity squamous cell cancers (OSCC) previously
[23]. Similarly codon 248 c.743G>A (Arg248Gln) and
codon 306 c.916C>T (Arg306Ter) had been reported
earlier [24]. An intron splice variant c.376-1G>A [25]
and mutations in codon 152 [26], 158 [27], 165 [28], 204
[29], and 241 [30] were also previously reported in
OSCC. Whereas codon 244 c.731G>C (Gly244Ala) and
codon c.799C>T (Arg267Tryp) had never been reported
in OSCC but has been reported in other cancers [31, 32].
Mutation on codon 274 c.821T>G (Val274Gly) and a de-
letion frameshift variant at codon 301 (Pro301Glnfs) had
also never been reported in OSCC or in other cancers and
were a novel finding in this study.
EGFR point mutations are reported in 9% patients in a

study conducted by Dubot et al. in 2017 [33]; however,
we have identified only one EGFR mutation on exon 19,
codon 746 (Glu746del) which is an in-frame deletion

mutation. This mutation has been previously reported
by Ragga et al. in 2006 in HNSCC [34].
The point mutations that activate RAS protoonco-

genes have been found to be located mainly at the
codons 12, 13, and 61 [35] and is estimated to be
15% [36]. In our study, the HRAS found to be
mutated in 17.4% patients. All these mutations are
previously reported in OSCC and have high incidence
in lip vermilion cancers [37–39].
V600E mutation is the most frequently identified

cancer-causing mutations in melanoma and other malig-
nancies like non-Hodgkin lymphoma, colorectal cancer,
thyroid carcinoma, non-small cell lung carcinoma, hairy
cell leukemia, and adenocarcinoma of lung. In our study,
we found a transversion mutation in BRAF exon11
codon 466 c.1397G>C (Gly466Ala), in a patient of car-
cinoma lower alveolus. This mutation has been reported
in COSMIC database and CLINVAR database within
exons 11 and 15 with a predominant nucleotide change
at codons 599 and 468 in HNSCC (pharynx) [40]. An-
other study reported BRAF mutation in exon15, codon
412 in maxillary alveolus [41]. After having a thorough
search of genetic mutation databases, we found that the
mutation in BRAF exon 11 c.1397G>C (Gly466Ala) has
never been reported in lower alveolus.
Of the 11, CDKN2A mutations identified in this study,

10 were non-sense mutations, and one was frameshift
deletion. The most common mutation which was
present in 6 patients, i.e., c.238C>T (Arg80Ter) was
found to be frequently reported mutation in OSCC.
Similarly, c.330G>A (Trp110Ter) present in three pa-
tients was also found to be a known mutation in oral
cavity SCC [42]. Further, we found a novel mutation on
codon 78, c.233-234delTC (Leu78fs) in a patient of car-
cinoma buccal mucosa.

Table 2 Relationship of TP53, CDKN2A, PIK3CA, HRAS mutation with clinical-pathological factors (Continued)

TP53 p value CDKN2A p value PIK3CA p value HRAS p value

Positive
(n = 19)

Negative
(n = 27)

Positive
(n = 11)

Negative
(n = 35)

Positive
(n = 3)

Negative
(n = 43)

Positive
(n = 8)

Negative
(n = 38)

T status

T2 8 15 0.660 8 15 0.127 0 23 0.036* 5 18 0.057

T3 4 4 0 8 0 8 3 5

T4 7 8 3 12 3 12 0 15

Stage

I 1 0 0.453 0 1 0.282 0 1 0.086 0 1 0.880

II 9 13 8 14 0 22 4 18

III 3 4 0 7 0 7 1 6

IVa 6 7 2 11 3 10 3 10

IVb 0 3 1 2 0 3 0 3

*statistically significant
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Table 3 Disease free survival and overall survival of various clinicopathological factors and studied mutations

Variables 30 month disease free survival (%) p value 30 month overall survival (%) p value

Age (year) 0.001* 0.003*

< 46 36.4 45.5

> 46 75.0 87.5

Site of tumor 0.641 0.665

Tongue 61.5 69.2

Buccal mucosa 50.0 66.7

Lower alveolus 66.7 50.0

Upper alveolus 100 100

Lower lip 50.0 100

HPE size (cm) 0.846 0.720

< 4 54.3 74.3

≥ 4 63.6 45.5

Lymph node (HPE) 0.250 0.021*

Positive 42.9 42.9

Negative 62.5 78.1

Extra nodal extension (ENE) 0.464 0.997

Present 42.9 71.4

Absent 59.0 66.7

Depth of invasion (mm) 0.731 0.008*

< 5 50.0 100

≥ 5, > 10 58.3 79.2

< 10 55.6 44.4

Vascular invasion 0.018* 0.042*

Positive 23.1 38.5

Negative 69.7 78.8

PNI 0.196 0.134

Positive 40.0 50.0

Negative 69.2 80.8

Adjuvant RT 0.731 0.042*

Yes 52.6 47.4

No 59.3 81.5

Mutations

TP53 0.176 0.082

Present 47.4 52.6

Absent 63.0 77.8

CDKN2A 0.320 0.431

Present 72.7 81.8

Absent 51.4 62.9

PIK3CA 0.148 0.221

Present 100 100

Absent 53.5 65.1

HRAS 0.629 0.761

Present 62.5 75.0

Absent 55.3 65.8

*statistically significant
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Table 4 Mutational analysis of all study subjects

S. No. Mutations Cytogenetic location Codon no. Variant Variant type Site

1 TP53 17p13.1 Codon 72 c.215C>G
(Pro72Arg)

Mis-sense
Transversion

Buccal mucosa

2 TP53 17p13.1 Codon 72 c.215C>G
(Pro72Arg)

Mis-sense
Transversion

Buccal mucosa

3 TP53 17p13.1 Codon 72 c.215C>G
(Pro72Arg)

Mis-sense
Transversion

Tongue

4 TP53 17p13.1 Codon 72 c.215C>G
(Pro72Arg)

Mis-sense
Transversion

Tongue

5 TP53 17p13.1 Codon 72 c.215C>G
(Pro72Arg)

Mis-sense
Transversion

Buccal mucosa

6 TP53 17p13.1 Codon 152 c.455C>T
(Pro152Leu)

Mis-sense
Transition

Lower alveolus

7 TP53 17p13.1 Codon 158 c.472C>T
(Arg158Cys)

Mis-sense
Transition

Tongue

8 TP53 17p13.1 Codon 165 c.493C>T
(Gln165Ter)

Non-sense Tongue

9 TP53 17p13.1 Codon 173 c.517G>A
(Val173Met)

Mis-sense
Transition

Tongue

10 TP53 17p13.1 Codon 175 c.524G>A
(Arg175His)

Mis-sense
Transition

Buccal mucosa

11 TP53 17p13.1 Codon 204 c.610G>T
(Glu204Ter)

Non-sense Buccal mucosa

12 TP53 17p13.1 Codon 213 c.638G>A
(Arg213Gln)

Mis-sense
Transition

Buccal mucosa

13 TP53 17p13.1 Codon 241 c.722C>T
(Ser241Phe)

Mis-sense
Transition

Lower alveolus

14 TP53 17p13.1 Codon 244 c.731G>C
(Gly244Ala)

Mis-sense
Transversion

Buccal mucosa

15 TP53 17p13.1 Codon 248 c.742C>T
(Arg248Trp)

Mis-sense
Transition

Buccal mucosa

16 TP53 17p13.1 Codon 248 c.742C>T
(Arg248Trp)

Mis-sense
Transition

Tongue

17 TP53 17p13.1 Codon 248 c.743G>A
(Arg248Gln)

Mis-sense
Transition

Buccal mucosa

18 TP53 17p13.1 Codon 267 c.799C>T
(Arg267Tryp)

Mis-sense
Transition

Tongue

19 TP53 17p13.1 Codon 274 c.820G>T
(Val274Phe)

Mis-sense
Tranversion

Lower alveolus

20 TP53 17p13.1 Codon 274 c.821T>G
(Val274Gly)

Mis-sense
Transversion

Buccal mucosa

21 TP53 17p13.1 Codon 301 c.902delC (pro301Glnfs) Deletion (frameshift) Tongue

22 TP53 17p13.1 Codon 306 c.916C>T
(Arg306Ter)

Non-sense Buccal mucosa

23 TP53 17p13.1 Codon 306 c.916C>T
(Arg306Ter)

Non-sense Upper alveolus

24 TP53 17p13.1 - c.376-1G>A
unknown

Intron variant
(splice site)

Buccal mucosa

25 CDKN2A 9p21.3 Codon78 c.233-234delTC
(Leu78fs)

Deletion
(frameshift)

Buccal mucosa

26 CDKN2A 9p21.3 Codon 80 c.238 C>T
(Arg80Ter)

Non-sense Buccal mucosa

27 CDKN2A 9p21.3 Codon 80 c.238 C>T
(Arg80Ter)

Non-sense Buccal mucosa
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Table 4 Mutational analysis of all study subjects (Continued)
S. No. Mutations Cytogenetic location Codon no. Variant Variant type Site

28 CDKN2A 9p21.3 Codon 80 c.238C>T
(Arg80Ter)

Non-sense Buccal mucosa

29 CDKN2A 9p21.3 Codon 80 c.238C>T
(Arg80Ter)

Non-sense Tongue

30 CDKN2A 9p21.3 Codon 80 c.238C>T
(Arg80Ter)

Non-sense Lower alveolus

31 CDKN2A 9p21.3 Codon 80 c.238C>T
(Arg80Ter)

Non-sense Tongue

32 CDKN2A 9p21.3 Codon 110 c.330G>A
(Trp110Ter)

Non-sense Buccal mucosa

33 CDKN2A 9p21.3 Codon 110 c.330G>A
(Trp110Ter)

Non-sense Buccal mucosa

34 CDKN2A 9p21.3 Codon 110 c.330G>A
(Trp110Ter)

Non-sense Upper alveolus

35 HRAS 11p15.5 Codon 12 c.34G>A
(Gly12Ser)

Mis-sense
Transition

Buccal mucosa

36 HRAS 11p15.5 Codon 12 c.34G>A
(Gly12Ser)

Mis-sense
Transition

Buccal mucosa

37 HRAS 11p15.5 Codon 12 c.34G>A
(Gly12Ser)

Mis-sense
Transition

Buccal mucosa

38 HRAS 11p15.5 Codon 12 c.35G>A
(Gly12Asp)

Mis-sense
Transition

Lower lip

39 HRAS 11p15.5 Codon 13 c.37G>C
(Gly13Arg)

Mis-sense
Transversion

Lower lip

40 HRAS 11p15.5 Codon 13 c.38G>T
(Gly13Val)

Mis-sense
Transversion

Buccal mucosa

41 HRAS 11p15.5 Codon 61 c.181C>A
(Gln61Lys)

Mis-sense
Transversion

Tongue

42 HRAS 11p15.5 Codon 61 c.182A>T
(Gln61Leu)

Mis-sense
Transversion

Tongue

43 PIK3CA 3q26.32 Codon 542 c.1625A>C
(Glu542Ala)

Mis-sense
Transversion

Lower alveolus

44 PIK3CA 3q26.3 Codon 542 c.1624G>A
(Glu542Lys)

Mis-sense
Transition

Lower alveolus

45 PIK3CA 3q26.3 Codon 1047 c.3140 A>G
(His1047Arg)

Mis-sense
Transition

Buccal mucosa

46 SMARCB1 22q11.23 - c.1146-41G>A
unknown

Intron variant Buccal mucosa

47 SMARCB1 22q11.23 - c.1146-41G>A Intron variant Buccal mucosa

48 KIT 4q12 Codon 541 c.1621A>C
(Met541Leu)

Mis-sense
Transversion

Buccal mucosa

49 BRAF 7q34 Codon 466 c.1397G>C
(Gly466Ala)

Mis-sense
Transversion

Lower alveolus

50 STK11 19p13.3 Codon 357 c.1071G>T
(Glu357Asp)

Mis-sense
Transversion

Lower alveolus

51 ABL1 9q34.12 Codon 274 c.764A>T
(Glu274Val)

Mis-sense
Transversion

Tongue

Codon 415 c.1187A>G
(His415Pro)

Mis-sense
Transition

52 EGFR 7p11.2 Codon 746 c.2234delAGG (Glu746del) Deletion
(in frame
Deletion)

Tongue

53 RB1 13q14.2 Codon 680 c.2039T>C
(Ile680Thr)

Mis-sense
Transition

Tongue
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The frequency of mutations of the PIK3CA gene has
been reported in 11% HNSCC [43]. Kozaki et al. did mu-
tational analysis of cell lines and primary tumors of
OSCC, found a significant correlation between the ad-
vanced stage of OSCC and the frequency with which
PIK3CA is mutated in exons 9 and 20 [44]. PIK3CA
mutation was the most common mutation in HPV posi-
tive HNSCC while phosphate and tensin homolog
(PTEN) loss were frequent event independent of HPV
status [45, 46]. PIK3CA is reported to be mutated in
12% − 16% of HNSCC exome/genome analysis. In our
study, percentage of PIK3CA mutation was 6.5% and
was significantly associated with lower alveolus lesions.
The codon variant His1047Arg and Glu542Lys have
been reported in many studies as hotspot mutation sites
in HNSCC, but Glu542Ala is only reported in cancers of
the breast, endometrium, prostate and esophagus [47]
and is for the first time being reported in OSCC.
KIT gene mutations have earlier been reported in

gastrointestinal stromal tumors, chronic myeloid
leukemia, etc .[48],but has never been reported in
OSCC; however, it was found in one of our patients at
exon 10, codon 541 c.1621A>C (Met541Leu) as trans-
version mutation.

STK11 is a tumor-suppressor gene involved in causing
Peutz Jeghers syndrome, but the role of STK11/LKB1
gene inactivation in neoplasia has not been conclusively
demonstrated so far. Tan et al. conducted a study in
2014 on carcinoma tongue patients, compared their gen-
etic mutations with Lung Carta 1.0 gene panel and
found 9% patients had STK11 mutations [49]. In our
study, only one patient had STK11 mutation exon 8
codon 357 c.1071G>T (Glu357Asp) transversion variant
type that is different from those reported by Tan et al.
and has never been reported before in OSCC.
SMARCB1 mutation c.1146-41G>A as intron variants

were present in two patients which were also having
Tp53 mutation along with, these mutations are not
known to play any major role in tumorigenesis. Two
ABL1 mutations were present in one patient of carcin-
oma tongue along with RB and TP53 mutations. ABL1
c.764A>T (Glu274Val) and c.1187A>G (His415Pro)
mutations are commonly seen in patients of chronic
myeloid leukemia and have never been reported in oral
cavity squamous cell cancers. RB mutation is only re-
ported in cases of carcinoma breast and thyroid, but we
found a novel mutation c.2039T>C (Ile680Thr) in one of
our patients.

Fig. 1 Kaplan-Meier survival curve showing difference in survival between p53 mutated and wild groups. The 18 months DFS rates were 53.3%
and 71.4% for TP53 mutation present and absent respectively (log rank = 1.44; p = 0.229)
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The results of the present study suggest that the muta-
tion spectrum of OSCC may be different in different
races, with Indian OSCC showing some distinct muta-
tions that has not been seen in Chinese and Caucasians
reported earlier. It also show that the mutations vary by
subsite within the oral cavity, though TP53, CDKN2A,
and PIK3CA mutations could be the common event in
all oral cavity subsites [50–52]. Despite the limitations of
the sample size this study shows that mutations in to-
bacco associated cancers are high, and concomitant
multiple mutations are a common phenomenon. Low
rate of EGFR mutations and higher mutations in EGFR
downstream pathways like those in TP53, HRAS, etc.,
suggest that anti EGFR strategies may not be very effect-
ive against OSCC, and there is need to identify more
suitable targets.

Conclusion
The present study shows a higher incidence of muta-
tions in tobacco-associated Indian OSCC, with presence
of more than one mutation in most cases. Demonstra-
tion of downstream mutations in p53 and RAS provide
evidences as to why the EGFR strategies are not effective
in these patients, suggesting the role of combination of
strategies or selection of strategies based on identifiable
genetic mutations.
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