Skip to main content
. 2019 Nov 28;9:17847. doi: 10.1038/s41598-019-54371-z

Table 4.

Average performance of logistic regression and machine learning models for predicting prognostic biomarkers and molecular subtypes.

Lymph node Tumor grade Tumor size ER PR HER2 Ki67 Molecular subtype
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC
Logistic regression 62% 0.66 67% 0.71 64% 0.69 70% 0.73 66% 0.68 78% 0.69 65% 0.70 48% 0.69
Decision tree 66% 0.65 71% 0.69 65% 0.65 72% 0.69 69% 0.67 77% 0.67 66% 0.66 50% 0.63
Naïve Bayes 53% 0.58 63% 0.70 58% 0.63 68% 0.71 65% 0.65 72% 0.69 59% 0.69 49% 0.70
Random forest 78% 0.86 80% 0.88 77% 0.85 82% 0.88 78% 0.85 83% 0.88 77% 0.85 66% 0.82
SVM 57% 0.34 63% 0.35 48% 0.42 67% 0.44 64% 0.39 79% 0.47 53% 0.35 41% 0.65
ANN 64% 0.68 68% 0.73 65% 0.71 75% 0.77 69% 0.72 76% 0.73 66% 0.71 35% 0.72

ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, AUC the area under the receiver-operating-characteristic curve, SVM support vector machine, ANN artificial neural network.