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Abstract
Developing male germ cells are extremely sensitive to heat stress; consequently, anatomic and physiologic adaptations have
evolved to maintain proper thermoregulation during mammalian spermatogenesis. At the cellular level, increased expression and
activity of HSP70 family members occur in response to heat stress in order to refold partially denatured proteins and restore
function. In addition, several kinase-mediated signaling pathways are activated in the testis upon hyperthermia. The p38 MAP
kinase (MAPK) pathway plays an important role in mitigating heat stress, and recent findings have implicated the downstream
p38 substrate, MAPKAP kinase 2 (MK2), in this process. However, the precise function that this kinase plays in spermatogenesis
is not completely understood. Using a proteomics-based screen, we identified and subsequently validated that the testis-enriched
HSP70 family member, HspA1L, is a novel substrate of MK2. We demonstrate that MK2 phosphorylates HspA1L solely on
Ser241, a residue within the N-terminal nucleotide-binding domain of the enzyme. This phosphorylation event enhances the
chaperone activity of HspA1L in vitro and renders male germ cells more resistant to heat stress–induced apoptosis. Taken
together, these findings illustrate a novel stress-induced signaling cascade that promotes the chaperone activity of HspA1L with
implications for understanding male reproductive biology.
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Introduction

Spermatogenesis is a highly orchestrated process that occurs
within the seminiferous tubules of the testes and culminates in
the production of mature sperm. The underlying developmen-
tal program is sensitive to increases in temperature of even 2–
3 °C. Adaptations present in most male mammals therefore
include maintenance of the testes outside of the body cavity at
a temperature of a few degrees below that of core body tem-
perature and a venous countercurrent exchange mechanism
within the spermatic cord that serves to cool blood in arteries
supplying the gonads.

The most relevant consequence of heat stress on the testis is
death of germ cells via apoptosis (Yin et al. 1997). Like other
cell types, male germ cells respond to environmental cues and

external stress by activating intracellular signaling pathways
that ultimately determine whether the cell will live or die
(Baum et al. 2005). Of particular importance among these
signaling cascades is the p38 MAPK pathway. This pathway
regulates both apoptosis and spermatocyte differentiation, and
several studies have demonstrated a role for this pathway in
male germ cell biology (Almog and Naor 2008; Lizama et al.
2009; Ewen et al. 2010). Upon activation, p38 phosphorylates
a downstream effector kinase, the serine/threonine kinase
MAPKAP kinase 2 (MK2). Direct p38-mediated phosphory-
lation of MK2 on two threonine residues (T222 and T334)
results in its activation (Ben-Levy et al. 1995) leading to phos-
phorylation of downstream substrate proteins. A role for MK2
in spermatogenesis was recently reported (Williams et al.
2016), demonstrating that this kinase is an emerging enzyme
in male germ cell development and suggests that MK2 may
have additional functions in gametogenesis that have yet to be
identified.

In response to heat stress, most cell types also induce ex-
pression of a group of enzymes known as heat shock proteins
(HSPs), molecular chaperones that recognize damaged or
misfolded client proteins and attempt to refold them in an
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effort to restore function, inhibit proteotoxicity, and prevent
apoptosis (Lanneau et al. 2008). The largest group of heat
shock proteins in mammals is the HSP70 (HSPA) family,
comprised of 13 members in humans (Radons 2016).
Interestingly, two of these family members, HspA2 and
HspA1L, are highly expressed in the male germ line (Vydra
et al. 2006), and multiple studies have established HspA2 as a
critical regulator of male meiotic progression and sperm func-
tion (Scieglinska and Krawczyk 2015). Even so, male germ
cells are still more sensitive to hyperthermia than somatic cells
despite the expression of these two additional HSP70 family
members, suggesting that other factors and/or pathways are
involved in regulating their activities.

The purpose of this study was to gain additional insight into
the role of the p38-MK2 signaling pathway in spermatogene-
sis. Toward that end, we demonstrate that the testis-enriched
HSP70 family member HspA1L is a substrate of the stress-
activated protein kinase MK2. We show that MK2-mediated
phosphorylation of HspA1L increases its chaperone activity
in vitro and renders male germ cells more resistant to heat
stress–induced apoptosis. Collectively, these results describe
a novel signaling pathway by which HspA1L activity is en-
hanced in response to hyperthermia during spermatogenesis.

Materials and methods

Antibodies and reagents

Anti-HspA1L (C-6; Cat. no. sc-393297), anti-GAPDH (6C5;
Cat. no. sc-32233), and anti-GFP (B-2; Cat. no. sc-9996) an-
tibodies were purchased from Santa Cruz Biotechnology.
Anti-MK2 (Cat. no. 12155), anti-phospho-MK2-T334 (Cat.
no. 3007), anti-p38 MAPK (Cat. no. 8690), anti-phospho-
p38 MAPK-T180/Y182 (Cat. no. 4511), anti-cleaved caspase
3 (Cat. no. 9664), anti-PARP (Cat. no. 9532), and anti-cleaved
PARP (Cat. no. 94885) antibodies were from Cell Signaling
Technology. Anti-thiophosphate ester antibody (51-8; Cat. no.
ab92570) and PNBM (p-nitrobenzyl mesylate) were from
Abcam. ATPγS (adenosine 5′-[3-thiotriphosphate]) was pur-
chased from Sigma Aldrich.

Plasmid construction

pcDNA5/FRT/TO-GFP-HSPA1L was a gift from Harm
Kampinga (Addgene plasmid no. 19484). To generate a con-
struct for bacterial expression of His6-tagged HspA1L, the
HSPA1L coding sequence was amplified as a BamHI-EcoRI
restriction fragment and cloned into the corresponding sites of
vector pET28a (Novagen). Generation of the S241A, S241D,
and K73E mutations was accomplished by site-directed mu-
tagenesis using the QuikChange kit (Agilent Technologies).
To generate constructs encoding N-terminal GFP-tagged

HspA1L (and mutants thereof), restriction fragments were ex-
cised from the respective pET28a-HspA1L plasmids and sub-
cloned into the BglII-EcoRI sites in vector pEGFP-C1
(Clontech). All constructs were fully sequenced. Primer se-
quences are available upon request.

Cell culture

GC-2spd cells were purchased from ATCC and grown in
DMEM supplemented with 10% fetal bovine serum (FBS)
and penicillin/streptomycin (5 μg/mL). Cells were grown at
37 °C in 5% CO2. Cells were transfected using Lipofectamine
2000 (Life Technologies) according to the manufacturer’s rec-
ommended protocol. For the generation of MK2-knockdown
GC-2spd cells, retroviral constructs targeting murine MK2
and a scrambled control shRNA construct were purchased
fromOriGene. Stably transfected GC-2spd cells were selected
with puromycin (3 μg/mL) and were maintained in medium
containing the same antibiotic (1μg/mL). Reduced expression
of MK2 was confirmed by Western blotting.

Protein expression and purification

BL21 (DE3) cells (Novagen) were transformed with plasmids
encoding His6-HspA1L, His-HspA1L S241A, His-HspA1L
S241D, or His-HspA1L K73E. Protein expression was in-
duced at 18 °C for 12 h with 1 mM isopropyl-β-D-
thiogalactoside (IPTG). After centrifugation, the pellet was
resuspended in 15 mL of lysis buffer (20 mM Tris, pH 7.4,
150 mM NaCl, 1 mM DTT, and 1 mM EDTAwith protease
inhibitors [Roche]). The lysate was sonicated on ice and cen-
trifuged at 20,000×g for 20 min at 4 °C. The supernatant was
added to 0.5 mL (packed volume) of Ni-NTA agarose beads
(Gold Biotechnology) and incubated at 4 °C for 12 h with end-
over-end tumbling. The slurry was transferred to a column and
washed extensively with wash buffer. His6-tagged fusion pro-
teins were eluted with excess imidazole in lysis buffer
(pH 7.4), and appropriate fractions were pooled. The protein
was dialyzed overnight at 4 °C into dialysis buffer (20 mM
Tris, pH 7.4, 150 mMNaCl, 1 mMDTT). Glycerol was added
to a final concentration of 10%, and the proteins were snap-
frozen and stored at − 80 °C.

In vitro kinase assays

Active recombinant MK2 (residues 40–400; SignalChem)
was incubated with 20 μg of His-HspA1L-WT, His-
HspA1L-S241A, or His-HspA1L-K73E in kinase reaction
buffer (50 mM HEPES, pH 7.5, 0.65 mM MgCl2, 0.65 mM
MnCl2, 12.5 mM NaCl) with 500 μM ATPγS. Kinase reac-
tions were incubated at 30 °C for 30 min. Following incuba-
tion, PNBM (dissolved in dimethyl sulfoxide [DMSO]) was
added to a final concentration of 2.5 mM, and reactions were
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incubated at room temperature for 1 h, followed by the addi-
tion of 6X boiling sample buffer to stop the reaction.
Reactions were then resolved by SDS-PAGE followed by im-
munoblotting with the indicated antibodies.

SDS-PAGE and Western blotting

Proteins were resolved on 10% or 12.5% polyacrylamide gels
and transferred to nitrocellulose membranes (GE Amersham)
using the Pierce G2 Fast Blotter (Thermo Scientific).
Membranes were blocked in 5% non-fat milk in Tris-
buffered saline (TBS) followed by overnight incubation with
the indicated primary antibody in the same buffer. Membranes
were washed three times the following day in TBS + 0.5%
Tween (TBS-T), incubated for 1 h with the appropriate
HRP-conjugated secondary antibody (Cell Signaling
Technology), washed three times again in TBS-T, and proc-
essed for signal detection using enhanced chemiluminescence
(Santa Cruz Biotechnology). For detection of proteins from
the same reaction or lysate that migrate at similar molecular
weights (i.e., phosphorylated and non-phosphorylated forms
of the same protein), samples were split and run on separate
gels.

Luciferase refolding assay

This assay is based on a published protocol (Lu and Cyr
1998). Briefly, QuantiLum Recombinant Luciferase
(Promega) was diluted in denaturing buffer (25 mM HEPES
pH 7.4, 50mMKCl, 5 mMMgCl2, 6M guanidine HCl, 5 mM
DTT) to a final concentration of 2.48 μM and incubated at
25 °C for 40 min. Denatured luciferase (2 μL) was then added
to 125 μL refolding buffer (25 mM HEPES pH 7.4, 50 mM
KCl, 5 mM MgCl2, 1 mM ATP) supplemented with 4 μg of
the indicated recombinant His-tagged HspA1L protein in di-
alysis buffer (20 mMTris pH 7.4, 150 mMNaCl, 1 mMDTT)
or dialysis buffer alone in a 96-well plate. Refolding was per-
formed for the indicated times at 25 °C. After refolding, 20μL
of Luciferase Assay Reagent (Promega) diluted 1:1 in
refolding buffer was added to each well, and the plate was
analyzed using a 1450 MicroBeta JET Microplate
Scintillation and Luminescence Counter (Wallac).

Immunofluorescence microscopy

GC-2spd cells were seeded on glass coverslips and transfected
for 24 h with the indicated constructs. Cells were then exposed
to heat stress for 3 h in a 43 °C incubator. After a recovery
period of 12 h at 37 °C, cells were fixed in 4% formaldehyde
and processed for immunofluorescence microscopy.
Coverslips were mounted on glass slides with Vectashield
mounting medium (Vector Laboratories), and cells were

imaged using an EVOS FL Auto microscope (ThermoFisher
Scientific) with a × 40 objective.

Statistical analysis

Quantitative results were obtained from at least three indepen-
dent experiments and are presented as the average ± standard
deviation. Where indicated, p values were calculated using
one-way ANOVA (analysis of variance).

Results

HspA1L is a novel substrate of MAPKAP kinase 2

To gain insight into the biological functions of MK2, a
proteomics-based screen was conducted to identify novel sub-
strates of this kinase (Williams et al. 2016). Using this ap-
proach, the heat shock protein HspA1L was identified as a
putative substrate. HspA1L (heat shock protein 70 kDa 1-like,
also known as HSP70-hom and Hsc70t) is highly expressed in
spermatids in the mammalian testis (Ito et al. 1998;
Tsunekawa et al. 1999) and is a member of the HSP70 family
of chaperone proteins. In response to heat stress, heat shock
proteins of the HSP70 family mediate cytoprotective effects
and prevent nonspecific aggregation and thermal denaturation
of cellular proteins (Mayer and Bukau 2005; Daugaard et al.
2007). These molecular chaperones function by virtue of their
ability to selectively recognize and associate with hydropho-
bic regions that are transiently exposed in their respective
client proteins (Schlecht et al. 2011). Via an ATP-dependent
cycle of release and rebinding, they assist in the proper
refolding of proteins (Radons 2016).

Due to their vital functions in mediating resistance to heat
stress and given the sensitivity of developing sperm to heat,
HSPs have garnered interest in the field of male germ cell
research (Dix 1997; Eddy 1999; Naaby-Hansen and Herr
2010; Dun et al. 2012). In addition to other HSP70 family
proteins, male germ cells uniquely express two additional
members of this family, HspA2 and HspA1L. Targeted dele-
tion of HSPA2 in mice results in meiotic failure and germ cell
apoptosis (Dix et al. 1996; Dix et al. 1997), and decreased
mRNA and protein expression of this chaperone has been
observed in human males with azoospermia (Son et al.
2000; Feng et al. 2001). HspA2 is expressed on the surface
of mature sperm (Lima et al. 2006; Naaby-Hansen and Herr
2010) where it plays an important role in promoting the bind-
ing of sperm to the zona pellucida of the egg (Nixon et al.
2015). HspA2 is thus important both for meiotic progression
during spermatogenesis and for successful fertilization (Eddy
1999). However, in contrast to HspA2, surprisingly little is
known about the biological function(s) of the other testis-
enriched heat shock protein HspA1L.
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To validate HspA1L as a substrate of MK2, His6-tagged
HspA1L was expressed and purified from bacteria. This fu-
sion protein was used as a substrate in an in vitro kinase assay
with ATPγS (adenosine 5′-[3-thiotriphoshate]) in the presence
or absence of constitutively active MK2. Following incuba-
tion with the alkylating agent PNBM (p-nitrobenzyl mesylate)
tha t genera tes a th iophosphate es te r moie ty on
thiophosphorylated proteins, Western blotting of the kinase
reactions using an anti-thiophosphate ester antibody demon-
strated a signal only in the presence of bothMK2 andHspA1L
(Fig. 1a). These results demonstrate that MK2 phosphorylates
HspA1L in vitro.

HspA1L is comprised of 641 amino acids and contains
several functional domains (Fig. 1b): a highly conserved N-
terminal nucleotide-binding domain that hydrolyzes ATP, a
substrate binding domain, and an EEVD motif that mediates
association with co-chaperones (Erbse et al. 2004). To deter-
mine the specific residue(s) of HspA1L that are phosphorylat-
ed by MK2, we used a bioinformatics approach, leveraging
publicly available data regarding the consensus motif for
MK2-mediated phosphorylation (www.phosphosite.org).
This motif is defined by the presence of an arginine residue
at the − 3 position (i.e., three residues N-terminal to the
phospho-acceptor site) and hydrophobic residues at the − 5
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Fig. 1 MK2 phosphorylates the
heat shock protein HspA1L at
S241. a In vitro kinase assay
using His-tagged HspA1L and
MK2. His6-HspA1L (or no
substrate) was incubated in the
presence or absence of
recombinant active MK2 and
ATPγS followed by treatment
with PNBM. Kinase reactions
were resolved by SDS-PAGE
followed by immunoblotting with
the indicated antibodies.
Molecular weight markers (in
kDa) are indicated. Western blots
shown are representative of three
independent experiments. b
Domain architecture of human
HspA1L. The putative MK2
phosphorylation site (S241) is
indicated in red. cMK2-mediated
phosphorylation of HspA1L at
S241. His-tagged HspA1L or
HspA1L-S241A proteins were
incubated with active
recombinant MK2 and ATPγS
followed by incubation with
PNBM. Kinase reactions were
resolved by SDS-PAGE followed
by immunoblotting with the
indicated antibodies. Molecular
weight markers (in kDa) are
indicated. Western blots shown
are representative of three
independent experiments
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and − 6 positions (Stokoe et al. 1993). Analysis of the primary
sequence of HspA1L revealed a serine residue (S241) in the
N-terminal ATPase domain located within a potential consen-
sus motif for MK2 phosphorylation. This site is evolutionarily
conserved and is also present in HspA2 (Radons 2016;
Wisniewska et al. 2010). To test if this residue is phosphory-
lated by MK2 in vitro, we used site-directed mutagenesis to
generate a mutant in which this serine was replaced with non-
phosphorylatable alanine (S241A). This mutant was
expressed and purified from bacteria as a His-tagged fusion
protein as was done with the wild-type protein and used as a
substrate in an in vitro kinase assay along with wild-type
HspA1L as a control (Fig. 1c). Mutation of this residue abro-
gated the signal in the in vitro kinase assay, indicating that
S241 is the sole site of MK2-mediated phosphorylation.
Together, these data demonstrate that HspA1L is a bona fide
substrate of MK2 and that HspA1L is phosphorylated by this
kinase solely at S241.

MK2-mediated phosphorylation of S241 enhances
HspA1L chaperone activity in vitro

Given the location of the phosphorylated residue in the
HspA1L ATP-binding domain, we hypothesized that phos-
phorylation by MK2 may affect the catalytic activity of the
enzyme. To test if MK2-mediated phosphorylation of
HspA1L at S241 affects its chaperone activity, an in vitro
luciferase refolding assay was conducted (Lu and Cyr 1998).
In this experiment, purified luciferase was incubated in dena-
turing buffer resulting in unfolding of the enzyme. Denatured
luciferase was then added to a fixed concentration of either
wild-type HspA1L or a phosphomimetic form of the enzyme,
HspA1L-S241D, and luciferase activity wasmeasured follow-
ing addition of luciferin substrate. As shown, wild-type
HspA1L displayed little refolding ability over time and was
only slightly higher than the control (Fig. 2a). Strikingly, how-
ever, the refolding of luciferase was significantly enhanced
upon incubation with HspA1L-S241D. To confirm this result
via a strategy that avoids the use of mutant proteins (as
phosphomimetic mutations often do not faithfully recapitulate
phosphorylation), we coupled the previously described kinase
assay with the luciferase refolding assay (Fig. 2b).Whenwild-
type HspA1L was pre-incubated with MK2 and phosphory-
lated, the refolding activity was increased over non-
phosphorylated HspA1L andwas comparable to that observed
with HspA1L-S241D (Fig. 2a). Furthermore, when the lucif-
erase refolding assay was performed using a catalytically dead
mutant, HspA1L-K73E (Rajapandi et al. 1998; Hasson et al.
2013), the refolding activity was comparable to control (Fig.
2a), despite MK2-mediated phosphorylation of this mutant
(Fig. 2b). Collectively, these results demonstrate that phos-
phorylation of HspA1L by MK2 at S241 enhances its chap-
erone activity in vitro.

MK2-HspA1L signaling renders male germ cells more
resistant to heat stress

We then sought to determine whether this post-translational
modification is physiologically relevant. To address this in an
appropriate model system, we used murine GC-2spd cells that
display spermatid-like features and that have been used to
study various aspects of male germ cell biology (Zhang
et al. 2012). Western blot analysis of GC-2spd cell lysates
indicated that these cells express endogenous HspA1L and
relevant components of the p38-MK2 signaling pathway
(Fig. 3a). Moreover, the p38-MK2 signaling axis is activated
in response to a transient supraphysiologic (i.e., higher than
core body temperature) heat stress in this cell type (Fig. 3a),
conditions known to impair mammalian spermatogenesis
in vivo (Paul et al. 2008).

To determine if MK2 plays a role in mediating resistance to
heat stress–induced apoptosis in GC-2spd cells, expression of
MK2 in these cells was reduced by shRNA-mediated knock-
down. Successful knockdown of MK2 was confirmed by
Western blotting while levels of endogenous HspA1L
remained unaltered compared with cells expressing control
shRNA (Fig. 3b). These cells were then exposed or not to heat
stress and apoptosis was assessed by analyzing levels of
cleaved poly-ADP ribose polymerase (PARP), an established
marker of apoptosis. The results indicate that knockdown of
MK2 sensitizes GC-2spd cells to heat stress–induced apopto-
sis as elevated levels of cleaved PARP were detected in the
MK2 knockdown cells relative to control (Fig. 3c), suggesting
thatMK2 plays a critical role in mediating the response to heat
stress.

We then tested if we could rescue the sensitivity of
MK2 knockdown cells to heat-induced apoptosis by
overexpression of HspA1L or mutants thereof. For this
experiment, constructs encoding GFP-tagged wild-type
HspA1L, HspA1L-S241A, or HspA1L-S241D were
transfected into MK2-knockdown GC-2spd cells.
Subsequent immunoblotting of whole cell lysates dem-
onstrated equal expression of the wild-type and mutant
proteins (Fig. 4a). These cells were then exposed or not
to heat stress, and the percentage of GFP-positive cells
that were also positive for the apoptotic marker cleaved
caspase-3 was determined by immunofluorescence mi-
croscopy (Fig. 4b). As expected, untransfected cells
displayed a substantial amount of cell death upon expo-
sure to heat that was slightly reduced by overexpression
of wild-type HspA1L. However, overexpression of the
phosphomimetic mutant (HspA1L-S241D) significantly
enhanced cell survival while cells overexpressing the
non-phosphorylatable mutant (HspA1L-S241A) did not
(Fig. 4b). Collectively, these data indicate that MK2-
mediated phosphorylation of HspA1L promotes the sur-
vival of male germ cells exposed to heat stress.
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Discussion

This study demonstrates novel site-specific phosphorylation
of the testis-enriched chaperone HspA1L by the stress-
activated protein kinase MK2. Phosphorylation of HspA1L
at serine 241 results in enhanced enzymatic activity in an
in vitro refolding assay and protects male germ cells from heat
stress–induced apoptosis. Thus, activation of the p38-MK2
stress signaling axis coupled with subsequent phosphorylation
and stimulation of HspA1L activity is a mechanism for these
cells to mitigate heat stress. Moreover, as HspA1L is consti-
tutively expressed and is not transcriptionally induced by heat,
these results describe a pathway for rapid upregulation of
HspA1L enzymatic activity driven by post-translational mod-
ification. Interestingly, a rare single nucleotide polymorphism

in HSPA1L associated with spontaneous preterm birth results
in a substitution of alanine at residue 268 with threonine and
thus introduces a potential disease-associated phosphorylation
site in close proximity to serine 241 (Huusko et al. 2018).
However, whether this site is phosphorylated in vivo is not
known.

HSP70 directly binds to MK2 during myoblast differenti-
ation and modulates the stability of p38 by regulating the p38-
MK2 interaction (Fan et al. 2018) but whether MK2 directly
phosphorylates HSP70 was not investigated in this study.
Along these lines, whether HspA2 is also phosphorylated
and regulated by MK2 remains to be tested, although given
the conservation of this serine residue and the surrounding
sequence (Wisniewska et al. 2010), we predict that this is
likely to be the case.
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Interestingly, one of the first identified substrates ofMK2 is
another heat shock protein, the small heat shock protein
Hsp27 (Freshney et al. 1994; Engel et al. 1995). Hsp27 forms
multimers in the non-phosphorylated state but dissociates into
monomers when phosphorylated by MK2 (Lambert et al.
1999; Kato et al. 2001). Monomeric Hsp27 functions in the
de-capping of actin polymers, resulting in cytoskeletal rear-
rangement and increased cell migration (Doshi et al. 2009). It
is intriguing, although perhaps not surprising, that MK2 phos-
phorylates members of multiples families of heat shock pro-
teins, given the central role of MK2 in regulating the cellular
stress response. The findings described here thus expand the
repertoire of heat shock proteins whose activities are regulated
in an MK2-dependent manner.

During spermatogenesis, MK2 phosphorylates the RNA-
binding protein Dazl (deleted in azoospermia-like) (Williams
et al. 2016). This post-translational modification negatively
regulates the function of Dazl and inhibits mRNA translation
resulting in increased germ cell death. These results are, at first
glance, paradoxical in terms of understanding how the same
kinase can promote both apoptosis and cell survival in re-
sponse to stress in the same cell type. However, this apparent
issue can be reconciled by examining the temporal expression
of these two MK2 substrates during spermatogenesis. While
Dazl is primarily expressed during early germ cell develop-
ment in primordial germ cells (Niederberger et al. 1997),
HspA1L expression is detected later on during spermatogen-
esis, specifically during spermiogenesis in early and late
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immunoblotted with the indicated antibodies. Molecular weight markers

(in kDa) are indicated. Western blots shown are representative of three
independent experiments. c Increased apoptosis in male germ cells with
reduced expression of MK2 in response to heat stress. GC-2spd cells
stably expressing either control shRNA or MK2 shRNA were exposed
to heat stress (43 °C for 3 h followed by a 12-h recovery at 37 °C). Cell
lysates were prepared, resolved by SDS-PAGE, and immunoblotted with
the indicated antibodies. Molecular weight markers (in kDa) are
indicated. Western blots shown are representative of three independent
experiments
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spermatids (Tsunekawa et al. 1999). Thus, due to the differ-
ential expression patterns of Dazl and HspA1L during sper-
matogenesis, the activation of MK2 may result in different
cellular outcomes in different stages of sperm development.

In addition to its classical role in mitigating heat stress,
HspA1L has moonlighting functions such as promoting
Parkin translocation to mitochondria during mitophagy
(Hasson et al. 2013) and stabilizing the prion protein PrPc in
colorectal cancer cells (Lee et al. 2017). Moreover, mutations
in HSPA1L are associated with the development of inflamma-
tory bowel disease (Takahashi et al. 2017), and increased
levels ofHSPA1LmRNA have been observed in graft vs. host
disease (Atarod et al. 2015). HspA1L is therefore likely in-
volved inmodulating the stress response in a variety of disease
states, and whether MK2 regulates HspA1L activity in these
pathological contexts has yet to be determined.
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