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Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma and is characterized by a
dysregulation of changes in cellular metabolism. Altered lipid metabolism contributes to ccRCC progression and malignancy.
Method Associations among survival potential and each gene ontology (GO) term were analyzed by univariate Cox
regression. The results revealed that membrane lipid metabolism had the greatest hazard ratio (HR). Weighted gene co-
expression network analysis (WGCNA) was applied to determine the key genes associated with membrane lipid metab-
olism. Consensus clustering was used to identify novel molecular subtypes based on the key genes. LASSO Cox regres-
sion was performed to build a membrane lipid metabolism–based signature. The random forest algorithm was applied to
find the most important mutations associated with membrane lipid metabolism. Decision trees and nomograms were
constructed to quantify risks for individual patients.
Result Membrane lipid metabolism stratified ccRCC patients into high- and low-risk groups. Key genes were identified by
WGCNA. Membrane lipid metabolism–based signatures exhibited higher prediction efficiency than other clinicopathological
traits in both whole cohort and subgroup analyses. The random forest algorithm revealed high associations among the membrane
lipid metabolism–based signature and BAP1, PBRM1 and VHL mutations. Decision trees and nomograms indicated high
efficiency for risk stratification.
Conclusion Our study might contribute to the optimization of risk stratification for survival and personalized management of
ccRCC patients.

Keywords Clear cell renal cell carcinoma (ccRCC) . Membrane lipid metabolism . Gene signature . Somatic mutations . von
Hippel-Lindau (VHL) . Risk assessment . Overall survival . Patient stratification . Decision tree . Algorithm . Gene
co-expression network analysis . Predictive preventive personalizedmedicine (PPPM)

Introduction

Clear cell renal cell carcinoma (ccRCC) is the most com-
mon type of renal cell carcinoma and is characterized by a
dysregulation of changes in cellular metabolism [1]. High-
frequency biallelic von Hippel-Lindau (VHL) inactivation
caused by allelic deletion or loss of heterozygosity on
chromosome 3p (> 90%) along with gene mutation (∼
50%) or promoter hypermethylation (5–10%) is the ca-
nonical molecular alteration in ccRCC [2, 3]. VHL inac-
tivation triggers the constitutive activation of HIF1 and
HIF2 through the stabilization of oxygen labile HIFα sub-
units and aberrant cancer metabolism change [4].
Abnormal cancer metabolism leads to changes in fatty
acid fates, including shifts in ccRCC towards excessive
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lipid storage [5]. Thus, ccRCC cells appear as malignant
epithelial cells with clear cytoplasm due to the presence of
vast lipid and glycogen deposits.

While the overall 5-year survival rate is 60% for kidney
cancer, this level drops to 10% in patients with metastatic
disease [6]. Therefore, alternative approaches are urgently re-
quired to prolong patient survival to replace surgical resection
as the only curative treatment for ccRCC. Hence, precise
methods for predicting survival time are critical issues in the
management of ccRCC patients. Current prognostic methods
to evaluate the survival time are based on clinicopathological
features, such as AJCC-TNM stage and histologic grade.
However, these variables have limited predictive accuracy.

Conventionally, high-throughput techniques, such as
RNA-sequencing (RNA-seq) and scRNA seq, have provided
new insights into transcriptome profiling. This has facilitated
the utilization of molecules as diagnostic and prognostic bio-
marker [7–10]. Machine learning methods also provide new
hints in utilizing high-dimension datasets [8, 11, 12].

In this study, we analyzed the associations among survival
potential and each gene ontology (GO) term by ssGSEA
method and univariate Cox regression. Membrane lipid me-
tabolism had the greatest HR ratio in the Cox regression.
WGCNA was used to determine the hub-genes associated

with membrane lipid metabolism. Consensus clustering was
applied based on the hub-gene to build novel molecular sub-
types in ccRCC. Moreover, we constructed a lipid metabolic
signature by LASSO Cox regression to predict the OS of
ccRCC patients. A survival decision tree and a binary decision
tree were built to stratify the ccRCC patients. Finally, a nomo-
gram was generated with risk score and other important clin-
icopathological traits as a quantitative tool to predict survival
probabilities for individual ccRCC patients during follow-up.
These results may facilitate the development of predictive,
preventive and personalized medicine (PPPM) in ccRCC
patients.

Method

Data download and ssGSEA implementation

TCGA RNA-seq datasets and clinical data for ccRCC were
downloaded by UCSC Xena browser (https://xenabrowser.
net/). The detailed information of the clinic dataset was in
supplementary file 1. The ssGSEA programme was applied
to derive the enrichment scores of each GO term using R
package Bgsva^ [13].

Fig. 1 Correlation of ssGSEA score and overall survival of ccRCC
patients. a Gene ontology term with greatest HR in univariate Cox
regression. b Membrane lipid metabolism ssGSEA distribution in living

and deceased ccRCC patients. c Kaplan-Meier plot for patients with high
and low membrane lipid metabolism ssGSEA scores
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Fig. 2 Identification of novel molecular subtypes. a Correlation between
modules and ssGSEA score. b Cox coefficients and p values from
univariate Cox regression for the genes in the greenyellow module. c
Consensus clustering cumulative distribution function (CDF) for k = 2

to 6. d Relative change in the area under the CDF curve for k = 2 to 6. e
Consensus matrix similarity for 2 clusters in the ccRCC cohorts. f
Membrane lipid metabolism ssGSEA distribution in two clusters. g
Kaplan-Meier plot for patients in cluster 1 and cluster 2
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WGCNA based on RNA-seq data

The weighted correlation network analysis (WGCNA) was
used to apply K-means clustering based on the whole tran-
scriptome [14, 15]. Co-expression similarity si, j was defined
as the absolute value of the correlation coefficient between the
profiles of nodes i and j:

si; j ¼ jcor xi; x j
� �j

where xi and xj are expression values for genes i and j, and si, j
represents Pearson’s correlation coefficients of genes i and j.

A weighed network adjacency was defined by raising the
co-expression similarity to a power β:

ai; j ¼ sβi; j

with β≥1. We selected the power of β = 9 and scale-free R2 =
0.95 as soft-thresholding parameters to ensure a signed scale-
free co-expression gene network. By evaluating the correla-
tions between the membrane lipid metabolism ssGSEA score
and the eigenvalue of each module, the yellowgreen module
was selected for further analysis. Hub-genes were identified as
the genes in the yellowgreen module with gene significance
(gene significance: Pearson’s coefficient between genes and
ssGSEA score) greater than 0.3 and significantly associated
with the OS of ccRCC patients.

Molecular subtype identification

R package BConsensusClusterPlus^ was applied to identify the
molecular subtype based on the hub-genes [16]. Consensus
CDF and delta area were used to estimate clustering effects.

LASSO regularization

LASSO (least absolute shrinkage and selection operator) is an
important regularization in many regression analysis methods
(e.g. COX regression and logistic regression) [17]. An L1-
norm is used to penalize the weight of the model parameters.
Assuming a model has a set of parameters, the LASSO

regularization can be defined as:

λ � ∑
n

i¼0
wik k1

which can also be expressed as a constraint to the targeted
objective function:

∑ Y−Y *
�� ��

2
; s:t: wik k1 < t

An important property of the LASSO regularization term is
that it can force the parameter values to be 0, thus generating a
sparse parameter space, which is a desirable characteristic for
feature selection. A risk score (RS) formula was established
by including individual normalized gene expression value
weighted by their LASSO Cox coefficients as follows:

∑
i
Coefficient mRNAið Þ � Expression mRNAið Þ

Decision tree and random forest construction

Recursive partitioning analysis (RPA) was performed to con-
struct decision trees using Brpart^ package. The decision tree
was plotted by Brpart.plot^ package. KM plot was used to
illustrate the survival outcome in different nodes of the sur-
vival decision tree. Confusion matrix was calculated to esti-
mate the accuracy of the binary decision tree. BrandomForest^
and Branger^ packages were applied to determine the key gene
mutation associated with risk score. The optimal parameter
was calculated by ranger function.

Statistical analysis

P values and hazard ratios for survival outcome analyses were
obtained from univariate and multivariate Cox proportional-
hazards regression models using the R package Bsurvival^.
Multivariate Cox regressionwas used to calculate the coefficients
in the nomogram. The nomogram was plotted by the Brms^
package. The time-dependent AUC value was calculated by
the BsurvivalROC^ package. One-way ANOVAwas applied to
obtain the P value for risk score distribution in groups of AJCC-
TNM stage and histologic grade. The response to immunothera-
py was calculated by TIDE (http://tide.dfci.harvard.edu/).

Result

ssGSEA for ccRCC tumour tissues and the relationship
of ssGSEA enrichment with survival of ccRCC patients

ssGSEA method was applied for each ccRCC tumour tissue.
Univariate Cox analysis was performed based on the OS of

�Fig. 3 Signature-based risk score is a promisingmarker in ccRCC cohort.
a, b LASSO Cox analysis identified genes most correlated with overall
survival. c Cox coefficients distribution of the gene signature. d Risk
score distribution in living and dead patients. e Correlation between
membrane lipid metabolism ssGSEA score and signature-based risk
score. f Correlation between EPAS1 expression and signature-based risk
score. g Risk score distribution. h Survival overview. i Patients in the
high-risk group exhibited worse overall survival compared with those
in the low-risk group. j AUC(t) of multivariable models indicated the
membrane lipid metabolism–based signature had the highest predictive
power for overall survival. h Membrane lipid metabolism–based risk
score distribution in living and deceased ccRCC patients
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ccRCC patients and the ssGSEA score of each GO term per
patient. The results indicated that membrane lipid metabolism
was the most significant term associated with the OS of
ccRCC patients (Fig. 1a and Supplementary file 2). The mem-
brane lipid metabolism ssGSEA score was higher in dead
patients compared with living patients (Fig. 1b). The KM plot
showed that patients with higher membrane lipid metabolism
ssGSEA scores had favourable survival outcomes (HR = 3.69,
p < 0.0001) (Fig. 1c).

Molecular subtype identification in ccRCC patients

WGCNAwas applied on the transcriptome of ccRCC tumour
tissues. The correlation between the eigenvalue of each cluster
and the membrane lipid metabolism ssGSEA score was ana-
lyzed by Pearson’s coefficient, indicating the greenyellow
module had the highest correlation with membrane lipid me-
tabolism ssGSEA score (Fig. 2a). The genes in the
greenyellow cluster were extracted for further analysis.
Univariate Cox analysis was performed for each gene. The
genes with gene significance greater than 0.3 and significant
association with ccRCC patient survival were defined as the
hub-genes (Fig. 2b and supplementary file 3). Based on the
transcriptome profiles of the hub-genes, consensus clustering
was performed to identify the molecular subtypes of ccRCC
tumour tissues (Fig. 2c–e). The results indicated k = 2 was an
adequate selection with clustering stability increasing from k =
2 to 6. The consensus matrix showed a similarity in the two
subtypes (k = 1 and k = 2). The samples in cluster 1 had a
greater membrane lipid metabolism ssGSEA score compared

with that of cluster 2 (Fig. 2f). Moreover, the KM plot re-
vealed that cluster 1 had poorer survival probability compared
with that of cluster 2 (Fig. 2g). Taking together, these results
indicated membrane lipid metabolism and related hub-genes
would stratify ccRCC patients into different molecular sub-
types and influence their survival.

Construction of the membrane lipid
metabolism–based signature

The identified hub-genes were used to build the lipid metabolic
signature for predicting the OS of ccRCC patients. By forcing
the sum of the absolute values of the regression coefficients to
be less than a fixed value, certain coefficients were reduced to
exactly zero, and the most powerful prognostic genes were
identified with relative regression coefficients (Fig. 3a–c).
Cross-validation was applied to prevent over-fitting (Fig. 3b).
A 34-gene membrane lipid metabolism–based signature was
constructed according to the individual coefficients of the
genes. The deceased patients had a greater risk score than that
of living patients (Fig. 3d). Moreover, the risk score showed
high correlations with the lipid metabolic ssGSEA, suggesting
a relationship between the risk score and lipidmetabolism (Fig.
3e). The dysregulation of EPAS1 involves the progression and
oncogenic lipid metabolism of ccRCC. Hence, we investigated
the relationship between risk score and EPAS1 expression. The
results revealed that high-risk scores were associated with low
EPAS1 expression levels, suggesting a potential correlation
between the lipid metabolic signature and VHL pathway
(Fig. 3f). Then, we ranked the risk score of each ccRCC patient

Fig. 4 Survival analysis in subgroups. Signature-based risk score is a promising marker for overall survival in young (a), old (b), low histologic grade (I–
II) (c), high histologic grade (III–IV) (d), low AJCC-TNM stage (I–II) (e) and high AJCC-TNM stage (III–IV) (f)
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(Fig. 3g). 263 patients had high-risk scores, and 262 patients
had low-risk scores. Figure 3h shows the survival overview of
the ccRCC patients. The Kaplan-Meier curve and Cox regres-
sion analyses suggested that patients with low-risk scores (n =
262) had significantly better OS than those with high-risk
scores (n = 263) (HR = 0.4, p < 0.001) (Fig. 3i). Time-
dependent ROC analyses indicated that the lipid metabolic
signature had higher prediction accuracy than other clinico-
pathological traits (Fig. 3j).

Subgroup analysis

As shown in Fig. 4, the signature-based risk score also
serves as a promising marker to predict overall survival in
different subgroups, including young (HR = 10.25, p <
0.001) (Fig. 4a), old (HR = 5.19, p < 0.001) (Fig. 4b),
histologic grade I–II (HR = 8.08, p < 0.001) (Fig. 4c),
histologic grade III–IV (HR = 5.32, p = 0.008) (Fig.
4d), AJCC-TNM stage I–II (HR = 6.14, p < 0.001) (Fig.
4e) and AJCC-TNM stage III–IV (HR = 5.45, p < 0.001)
(Fig. 4f) patients, respectively.

The association of gene mutation and membrane
lipid metabolism–based signature

Correlations among total mutations and signature-based risk
scores were analyzed. The results revealed a positive correla-
tion between risk scores and total mutations in ccRCC patients
(Fig. 5a). Furthermore, the most correlated somatic mutations

(BAP1, PBRM1 and VHL) were identified by random forest
algorithm (Fig. 5b).

Combination with clinicopathological traits
to improve risk stratification and survival prediction

Recursive partitioning analysis (RPA) was performed to con-
struct a survival decision tree to improve risk stratification for
overall survival. Four parameters, including stage, grade, age
and risk score, were used as inputs for decision tree construc-
tion. Clusters 1–5 (C1–5) with different labels were identified
as the outputs of the decision tree. C1 were merged as a low-
risk subgroup, C2–3 as an intermediate subgroup and C4–5 as
a high-risk subgroup. A Kaplan-Meier plot showed that the
three risk subgroups differed remarkably in overall survival
(Fig. 6b). Furthermore, a binary decision tree was constructed
to illustrate the relationship between survival status and clin-
icopathological traits (Fig. 6c). Three parameters, including
stage, grade and risk score, were identified as inputs of deci-
sion tree construction in the training sets. The accuracy of the
binary decision tree was tested in the validation sets. A con-
fusion matrix showed a high accuracy of the decision tree
(80.2%) (Fig. 6d).

Risk score and membrane lipid metabolism ssGSEA
showed significantly different distribution in different his-
tologic grade and AJCC-TNM stage (Fig. 7a–f). A nomo-
gram was generated with risk scores and other important
clinicopathological traits as a quantitative tool to predict
the survival probability for individual ccRCC patients
during follow-up (Fig. 7g). Calibration curves revealed

Fig. 5 Random forest identified the most important gene mutations. a
Correlation between the membrane lipid metabolism–based signature and
somatic mutations. b Distribution of somatic mutations correlated with
the membrane lipid metabolism–based signature. The upper bar plot

indicates OS per patient, whereas the left bar plot shows the importance
of the somatic mutations correlated with the membrane lipid metabolism–
based signature
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the 3-year and 5-year predictive lines were close to the
ideal 45° dotted line (Fig. 7h). In general, the nomogram
showed high levels of predictive power and accuracy.
Moreover, patients with higher risk score showed worse
overall survival among those who received chemo(radio)-
therapy (Fig. 7i) and exhibited poor response to immuno-
therapy (Fig. 7j).

Discussion

ccRCC is the most common type of renal cell carcinoma with
high frequency of VHL inactivation. Somatic mutations or
methylation dysregulation–induced VHL alterations have been

estimated to occur in near 90% of all ccRCC tumour tissues [2].
VHL inactivation leads to the constitutive activation of HIF1
and HIF2 and subsequent activation of hypoxic gene expres-
sion, which is believed to be a major driving force in ccRCC
development. HIFs affect gene expression change and lead to
the dysregulation of cellular processes in cancer, including an-
giogenesis, cell metabolism and tumour metastasis [18–21].
ccRCC is characterized by vast accumulations of lipids and
glycogen in cytoplasm [22]. One study revealed that altered
lipid metabolism contributed to ccRCC progression and linked
altered lipid metabolism to VHL inactivation in ccRCC [4]. In
this study, we analyzed the association between survival poten-
tial and each GO term by ssGSEA method and univariate Cox
regression. Membrane lipid metabolism had the greatest HR

Fig. 6 Decision trees were generated to improve risk stratification. a A
survival decision tree was generated to optimize risk stratification, and
three risk subgroups were identified. b Kaplan-Meier plot showed three
risk subgroups differed remarkably in overall survival of ccRCC patients.

c A binary decision tree was generated to identify the survival status of
ccRCC patients. d Confusion matrix was generated to illustrate the accu-
racy of the binary decision tree

390 EPMA Journal (2019) 10:383–393



ratio in the Cox regression. K-means clustering was used to
identify the hub-genes associated with membrane lipid metab-
olism. Consensus clustering was applied based on the hub-gene
to build novel molecular subtypes in ccRCC. Moreover, we
constructed a lipid metabolic signature by LASSO Cox regres-
sion. A survival decision tree and a binary decision tree were

built to stratify the ccRCC patients. Finally, a nomogram was
generated with risk scores and other important clinicopatholog-
ical traits as a quantitative tool to predict survival probabilities
for individual ccRCC patients during follow-up.

Metabolic adaptation in ccRCC leads to the activation of
lipid storage pathways, which plays crucial roles in the

Fig. 7 A nomogram was constructed to personalize risk for individual
patients. a–c Risk score distribution in young and old, histologic G1–G4,
AJCC Stage 1–4 status. d–f Membrane lipid metabolism ssGSEA distri-
bution in young and old, histologic G1–G4, AJCC Stage 1–4 status. g

Nomogram. h Calibration curves of survival prediction at different times
were close to ideal performance. i, j Patients with higher risk score ex-
hibited worse overall survival among those who received adjuvant ther-
apies including chemo(radio)therapy and immunotherapy
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development of ccRCC malignancy. Metabolic changes in
ccRCC include shifts to anaerobic metabolism by HIF-
dependent activation of glycolytic pathways and increased
utilization of the pentose phosphate pathway, leading to lipid
deposit formations in the cytoplasm [23, 24]. Hypoxia-
induced lipid storage in breast and glioma cell lines serves
as protective barriers against oxidative stress–induced toxicity
[25, 26]. Interruption of the lipid storage pathway decreased
lipid droplets and the tumourigenic capacity of xenografts in
mice [25]. In our study, we found that the dysregulation of
membrane lipid metabolism could be a new target for treating
ccRCC patients. Membrane lipid metabolism had the greatest
HR compared with other GO terms, suggesting that the dys-
regulation of membrane lipid metabolism was involved in
ccRCC malignancy. The membrane lipid metabolism–based
molecular subtypes cluster 1 and cluster 2 had different sur-
vival probabilities, which further confirmed the importance of
membrane lipid metabolism in ccRCC. Palmitoyltransferase
1A (CPT1A) is a direct HIF target gene. Repression of
CPT1A by HIF1 and HIF2 reduces fatty acid transport into
the mitochondria and forces fatty acids to lipid droplets for
storage [5]. Pearson’s coefficient showed that the membrane
lipid metabolism–based gene signature had a high correlation
with CPT1A, suggesting a relationship between membrane
lipid metabolism and lipid droplet deposits. Some biomarkers
involved in our gene signature have been investigated in can-
cer. For instance, AMMECR1 is mediated by both miR-124
and MEG3 in ccRCC and regulate the growth and metastasis
of renal cell carcinoma [27]. SMC4 is a core subunit of
condensin complexes that mainly contributes to chromosome
condensation and segregation. One study revealed SMC4 is
closely related to cell cycle, cell adhesion in lung carcinogen-
esis and acts as an independent prognostic factor in lung ade-
nocarcinoma [28]. KIF18A has been reported to correlate with
unfavourable prognoses in colorectal cancer and participates
in breast cancer malignancy [29, 30]. Additionally, CDCA7
increased the expression of EZH2, a marker of aggressive
breast cancer involved in tumour progression, by enhancing
the transcriptional activity of its promoter [31]. However, the
biological roles and clinical significance of the biomarker
genes in the signature require further investigation in ccRCC.

Pearson’s coefficient revealed a positive correlation be-
tween the membrane lipid metabolism–based risk score and
total mutations in ccRCC patients. A random forest algorithm
revealed BAP1, PBRM1 and VHL were the most important
mutations associated with membrane lipid metabolism–based
risk scores. BAP1, PBRM1 andVHL genemutations are three
of the most commonly mutated genes in ccRCC. PBRM1, a
subunit of the PBAF SWI/SNF chromatin remodelling com-
plex, and histone deubiquitinase BAP1 were recently found to
be altered in ccRCC [4]. BAP1 and PBRM1 act as chromatin
regulators and are involved in the ccRCC tumourigenesis met-
abolic remodelling process [32]. VHL mutation leads to the

stabilization of hypoxia inducible factors. Our analysis re-
vealed a potential relationship between membrane lipid me-
tabolism and newly emerging chromatin remodelling/histone
methylation pathways in ccRCC.

The lipid metabolism–based risk scores and ssGSEA
scores showed different distributions in AJCC-TNM stages
and histologic grades, indicating the involvement of mem-
brane lipid metabolism in tumour progression. The decision
tree and nomogram analyses integrated the membrane lipid
metabolism–based gene signature and other clinicopathologi-
cal traits and showed high accuracy for predicting the survival
of ccRCC patients. Overall, the membrane lipid metabolism–
based gene signature can be a promising biomarker useful for
improving the prediction accuracy of ccRCC patient survival.

Expert recommendations

We recommend utilization of omics dataset and machine
learning methods in ccRCC research. ccRCC is the most com-
mon type of renal cell carcinoma and is involved in multiple
levels of molecular alterations in genome, transcriptome, pro-
teome and metabolome. Big data analysis of multi-omics
could help identify the key regulators in the change of cellular
metabolism in ccRCC. Our utilization of transcriptome data
and personalized ccRCC survival prediction model building
rooting in the advanced concept of PPPM may improve ser-
vices to ccRCC patients in the PPPM context. For follow-up
developments, we will further optimize the model and com-
bine molecular experiments to explore the important mecha-
nism in ccRCC progression.

Conclusion

We determined that the dysregulation of membrane lipid me-
tabolism is an important biological process in ccRCC malig-
nancy. Molecular subtypes were identified based on the hub-
genes associated with membrane lipid metabolism. We also
established a gene expression signature to predict OS for
PPPM in ccRCC patients. Integrated with clinicopathological
features, a decision tree was generated to improve risk strati-
fication, and a nomogram was constructed to quantify risk for
individual patients. This analysis of membrane lipid metabo-
lism may facilitate PPPM in ccRCC patients.
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