Skip to main content
. 2019 Nov 22;10:1182. doi: 10.3389/fgene.2019.01182

Table 1.

The performance among GEDFN + SVM, RF + SVM, GEDFN + DF and RF + DF.

# GEDFN + SVM RF + SVM GEDGN+DF RF+DF
P R F1 P R F1 P R F1 P R F1
10 0.733 1 0.846 0.675 1 0.806 0.733 1 0.846 0.785 0.871 0.825
15 0.745 1 0.854 0.675 1 0.806 0.745 1 0.854 0.722 0.909 0.800
20 0.752 1 0.858 0.675 1 0.806 0.750 0.991 0.854 0.717 0.927 0.805
25 0.706 1 0.828 0.675 1 0.806 0.705 0.991 0.824 0.765 0.907 0.829
30 0.707 1 0.828 0.675 1 0.806 0.707 0.983 0.823 0.718 0.957 0.821
35 0.698 1 0.822 0.675 1 0.806 0.698 1 0.822 0.692 0.977 0.810
40 0.704 1 0.826 0.675 1 0.806 0.709 0.985 0.824 0.706 0.962 0.813
45 0.707 1 0.828 0.675 1 0.806 0.707 1 0.828 0.687 0.991 0.811
50 0.697 1 0.822 0.675 1 0.806 0.697 1 0.822 0.695 0.974 0.810

#, number of top features; P, precision; R, recall; F1= 2×P×RP+R . The best F1 scores are marked as bold.