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Abstract

ageing.

The identification of biomarkers that discriminate individual ageing trajectories is a principal target of ageing research.
Some of the most promising predictors of biological ageing have been developed using DNA methylation. One recent
candidate, which tracks age-related phenotypes in addition to chronological age, is 'DNAmM PhenoAge’. Here, we
performed a phenome-wide association analysis of this biomarker in a cohort of older adults to assess its relationship
with a comprehensive set of both historical, and contemporaneously-measured, phenotypes. Higher than expected
DNAm PhenoAge compared with chronological age, known as epigenetic age acceleration, was found to associate
with a number of blood, cognitive, physical fitness and lifestyle variables, and with mortality. Notably, DNAm
PhenoAge, assessed at age 70, was associated with cognitive ability at age 11, and with educational attainment.
Adjusting for age 11 cognitive ability attenuated the majority of the cross-sectional later-life associations between
DNAmM PhenoAge and health outcomes. These results highlight the importance of early life factors on healthy older

Introduction

A key objective in ageing research is the development of
biomarkers that distinguish individuals on different ageing
trajectories. Owing to the distinct and calculable pattern of
age-related changes in DNA methylation across the gen-
ome with chronological age, a number of DNA
methylation-based biomarkers of ageing, or ‘epigenetic
clocks’, have been developed. Accelerated epigenetic age-
ing has been linked with a number of age-related mor-
bidities and with increased risk of mortality"”. Whereas
the first-generation of epigenetic clocks were developed
using solely chronological age as the reference, a more-
recent effort additionally incorporated age-related pheno-
types including blood cell profiles and inflammatory
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markers®. This newer clock, termed DNAm PhenoAge,
aimed to capture a truer and more efficacious epigenetic
biomarker of physiological age, one which discriminates
morbidity and mortality more definitively among indivi-
duals of the same chronological age.

DNAm PhenoAge was found to associate with diverse
morbidities and mortality, with improved predictive
power over other epigenetic clocks®. However, many of
the associations were with general composite indices of
health outcomes, rather than individual phenotypes.
Moreover, the associations between DNAm PhenoAge
and early life factors are currently unknown. It has been
acknowledged that childhood and life-course traits and
circumstances might have an enduring impact on later
health. For example, greater childhood deprivation, lower
childhood intelligence, relatively little formal education,
and more manual adult occupations have been associated
with increased morbidity and mortality risk in older age®~”.
Accordingly, for a more complete picture of the validity of

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecormmons.org/licenses/by/4.0/.


http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://orcid.org/0000-0002-0198-4588
http://creativecommons.org/licenses/by/4.0/
mailto:riccardo.marioni@ed.ac.uk

Stevenson et al. Translational Psychiatry (2019)9:323

DNAm PhenoAge, in addition to testing its relationship
with individual ageing outcomes and mortality, it would
be desirable to examine whether it can be predicted by
these life history variables.

Here, we conduct a phenome-wide association study
(PheWAS), in which multiple phenotypes are related to a
single outcome, to investigate the link between acceler-
ated DNAm PhenoAge and a comprehensive set of both
historical, and contemporaneously-assessed, phenotypes
in a large, longitudinal cohort study of ageing: the Lothian
Birth Cohort 1936 (LBC1936). This cohort is unusually
valuable because data are available on their general cog-
nitive ability and social circumstances at age 11, which
can inform the understanding of possible early life con-
founders of later-life outcomes.

Methods
Study population

The Lothian Birth Cohort 1936 (LBC1936) is a long-
itudinal study of ageing. The cohort comprises a
community-dwelling sample of participants born in 1936,
most of whom undertook a general intelligence test—the
Moray House Test No. 12—in 1947, aged ~11 years. In
total 1091 participants were recruited to the study at a
mean age of ~70 years (Wave 1), and have subsequently
been re-examined at three furthers waves, aged ~73, 76
and 79 years. Participants have been comprehensively
phenotyped at each wave of the study with data collected
on cognitive measures, physical and health outcomes,
genetics, lifestyle factors and psycho-social aspects of
ageing. Full details on the background, recruitment and
data collection procedures of the study are provided
elsewhere®”,

Ethics and consent

Ethical permission for LBC1936 was obtained from the
Multi-Centre Research Ethics Committee for Scotland
(MREC/01/0/56) and the Lothian Research Ethics Com-
mittee (Wave 1: LREC/2003/2/29) and the Scotland A
Research Ethics Committee (Waves 2, 3 and 4: 07/
MREO00/58). Written informed consent was obtained from
all participants.

LBC1936 DNA methylation

The LBC1936 methylation profiling has been fully
detailed previously'®'". In brief, DNA was extracted from
whole-blood samples at Wave 1 (baseline—age ~70 years)
of the study and methylation was measured at 485,512
probes. Quality control analysis resulted in the removal of
CpG sites with a low detection rate (<95% at p <0.01).
Probes with low quality (inadequate hybridisation, bisul-
fite conversion, nucleotide extension, and staining signal)
were additionally identified and removed after manual

Page 2 of 8

inspection of the array control probe signals. Finally,
probes with a low call rate (<450,000 probes detected at
p <0.01), XY probes and samples in which the predicted
sex did not match the reported sex, were excluded.

DNAm PhenoAge

The DNAm PhenoAge biomarker was developed in a two-
step process by Levine et al>. In brief, a novel measure of
‘phenotypic age’ was developed using penalised regression
where the hazard of ageing-related mortality was regressed
on 42 clinical markers from the third National Health and
Nutrition Examination Survey (NHANES-IIL; # = 9926, age:
>20 years). The optimal model selected nine variables
(albumin, creatinine, serum glucose (HbA;;), C-reactive
protein (CRP), percentage lymphocytes, mean cell volume,
red cell distribution width, alkaline phosphatase, and white
blood cell count) in addition to chronological age for inclu-
sion in the phenotypic age predictor. This predictor was
derived independently of DNA methylation data. Phenotypic
age was then calculated in an independent data set—the
Invecchiare in Chianti InCHIANTT) cohort (7 = 456 at two
time-points, age range: 21-100 years)'. Finally, a penalised
regression model of DNA methylation on phenotypic age in
InCHIANTI generated a DNA methylation proxy of phe-
notypic age (labelled DNAm PhenoAge) based on methyla-
tion profiles at 513 CpGs. DNAm PhenoAge allows for an
estimate of phenotypic age from a single array, obviating the
need for multiple assays to measure the nine blood-based
components of phenotypic age.

DNAm PhenoAge was calculated in LBC1936 by mul-
tiplying CpG methylation levels with the regression
weights from the above analysis®. One CpG (cg06533629)
from the 513 used in the original computation was not
available in the LBC1936 methylation data. At Wave 1,
889 individuals (81.5%) within the LBC1936 cohort had
full methylation data available for the calculation of
DNAm PhenoAge.

Phenotypic data

The PheWAS included 107 phenotypes broadly asso-
ciated with health and wellbeing. The phenotypes
encompassed seven subgroups: blood, cardiovascular,
cognitive, personality and mood, lifestyle, physical, and
life history, and were measured on a binary (n=15),
continuous (7 = 89), or ordinal (7 = 3) scale. Six of the
phenotypes included in the PheWAS (white cell counts,
blood glucose, CRP, creatinine, albumin and mean cell
volume) were incorporated in the original phenotypic age
estimate.

Descriptive statistics for the phenotypes are presented
in Supplementary Table 1. Data collection protocols are
detailed in Supplementary File 1 and have been described
fully previously'®.
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Statistical analysis

DNAm PhenoAge acceleration (DNAm PhenoA-
geAccel)—defined as the residuals resulting from regres-
sing DNAm PhenoAge on chronological age—was
calculated for all participants at LBC1936’s Wave 1, at a
mean age of 70 years. DNAm PhenoAgeAccel captures
the difference between DNAm PhenoAge and chron-
ological age, with positive values indicating a faster epi-
genetic ageing rate. The acceleration measure was used in
analyses in order to account for the correlation between
DNAm PhenoAge and chronological age.

Linear regression models were used to obtain the
associations between the continuous variables with
DNAm PhenoAgeAccel. All continuous variables were
scaled to have a mean of zero and unit variance to ensure
comparable effect sizes across all traits. Generalised linear
models with a logit link function (logistic regression) were
used to investigate the association between the binary
variables and DNAm PhenoAgeAccel, and ordinal
regression models were used for the ordered categorical
measures of smoking (three levels), physical activity (five
levels) and occupational social class (six levels). DNAm
PhenoAgeAccel was the independent variable of interest
in each regression model. Height and smoking status
(Wave 1) were included as covariates in the models for
lung function (forced expiratory volume FEV; forced vital
capacity: FVC; forced expiratory ratio: FER; and peak
expiratory flow: PEF). All models were adjusted for
chronological age and sex. To investigate the influence of
childhood cognitive ability, all models that showed sig-
nificant associations with DNAm PhenoAgeAccel were
repeated adjusting for age 11 IQ scores.

In the longitudinal analysis, linear mixed-effects models
were used to assess if baseline DNAm PhenoAgeAccel
was associated with longitudinal change over the four
waves of data (~70 years to ~79 years) in a subset of the
cognitive and physical phenotypes that are known to
decline with age and correlate with functional impair-
ment. Here, Wave 1 DNAm PhenoAgeAccel was included
as a fixed-effect interaction with chronological age, and
participant was added as a random-effect intercept term.
As above, height and smoking status were included in the
models for lung function, and all models co-varied for sex.
Cox proportional-hazard models were implemented for
survival (time-to-death) analyses.

Given the correlation structure between phenotypes
within each group, we applied correction for multiple
testing using the false discovery rate (FDR) method to each
group of variables individually'*, We additionally tested
how results changed using a more conservative Bonferroni
adjustment; first, a principal component analysis was run
on the 107 phenotypes, which indicated 80% of the variance
was explained by 47 principal components. A Bonferroni
correction of 0.05/47 (adjusted P < 0.001) was then applied.
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Statistical analysis was conducted in R version 3.5.0
using the 1m’ and ‘glm’ function in the ‘stats’ library and
the ‘Ime4’, ‘ImerTest’, ‘rms’ and ‘Survival’ packages'>~>°,

Results
Cohort information

Details of the baseline (Wave 1) characteristics of
LBC1936 are presented in Supplementary Table 1. In all,
49.5% of the cohort was female. Mean chronological age
for both males and females was 69.5 years (SD 0.8) and
mean DNAm PhenoAge was 57.8 years (females =56.7
(SD=28.1), males=58.8 (SD 8.2)). The discrepancy
between the chronological and epigenetic age measures is
probably reflective of the overall good health of the cohort.

PheWAS

Only associations with an FDR-corrected significant p
value (<0.05) are presented here and in Fig. 1. P values
represent the significance of the association between
DNAm PhenoAgeAccel and individual phenotypes. Full
results are presented in Supplementary Figs 1-7 and
Supplementary Table 2.

Blood

Significant associations between DNAm PhenoA-
geAccel and blood phenotypes are presented in Fig. 1. Full
results are presented in Supplementary Fig. 1 and Sup-
plementary Table 2. Of the six measures included in the
phenotypic age reference, three significant positive asso-
ciations were found with DNAm PhenoAgeAccel: white
cell counts (8=0.22, SE=0.03, p=2.5x10"°) HbA,,
(8=0.13, SE=0.03, p=5.8x10"*) and C-reactive pro-
tein (CRP; f=0.11, SE =0.03, p = 0.006).

Significant positive relationships were additionally
identified between DNAm PhenoAgeAccel and neu-
trophils (8= 0.25, SE = 0.03, p = 2.9 x 10~ '), monocytes
(8=0.14, SE=0.03, p=1.6 x 10 *) and fibrinogen (8=
0.09, SE=0.03, p=0.043). A negative association was
found between DNAm PhenoAgeAccel and total choles-
terol levels (8= —0.09, SE =0.03, p = 0.043).

Cardiovascular

No significant associations were found between DNAm
PhenoAgeAccel and any of the cardiovascular variables
(Supplementary Fig. 2 and Supplementary Table 2, FDR-
corrected p > 0.12).

Cognitive

Significant associations between DNAm PhenoA-
geAccel and cognitive phenotypes are presented in Fig. 1.
Full results are presented in Supplementary Fig. 3 and
Supplementary Table 2. Higher DNAm PhenoAgeAccel
associated with lower scores on one test of the processing
speed domain (digit symbol coding: = —0.11, SE = 0.03,
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Fig. 1 FDR-corrected significant associations between DNAm PhenoAgeAccel and blood, cognitive, lifestyle, physical and life-history
variables. Standardised model 3 coefficients (for continuous variables) or log odds (for binary variables) are presented along the x axes. Phenotypes
are presented along the y axes. Error bars show the 95% confidence interval. CRP: C-reactive protein; Dep: deprivation; VPA: verbal paired associates;
verb: verbal; NART: National Adult Reading Test; MMSE: Mini-Mental State Examination; grip: grip strength; FEV1: forced expiratory volume in 1's; FVC:
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p =0.015), one test of the memory domain (verbal paired
associates: = —0.09, SE=0.03, p =0.034), the mini-
mental state examination (8= —0.10, SE=0.03, p=
0.034) and two tests of crystallised ability (national adult
reading test: = —0.09, SE=10.03, p =0.034; verbal flu-
ency: B=—0.09, SE = 0.03, p = 0.034).

Personality and mood

No significant associations were found between DNAm
PhenoAgeAccel and any of the personality and mood
phenotypes (Supplementary Fig. 4 and Supplementary
Table 2).

Physical

Significant associations between DNAm PhenoAgeAccel
and physical phenotypes are presented in Fig. 1. Full
results are presented in Supplementary Fig. 5 and Sup-
plementary Table 2. We found significant inverse asso-
ciations between DNAm PhenoAgeAccel and FEV;
(B =—0.07, SE=0.02, p =0.023), FVC (8= —0.07, SE=
0.02, p =0.023), and grip strength in both right and left
hands (both: = —0.05, SE=0.02, p=0.045). Higher
DNAm PhenoAgeAccel was associated with a self-
reported diagnosis of diabetes (OR = 1.39, 95% CI (1.01,
1.78), p = 0.038), a slower six metre walk time (5 =0.01,
SE=0.03, p =0.038), and a higher score on the Town-
send’s Disability Scale (activities of daily living; 8= 0.09,
SE =0.03, p = 0.045).

Lifestyle

Significant associations between DNAm PhenoAgeAccel
and lifestyle phenotypes are presented in Fig. 1. Full results
are presented in Supplementary Fig. 6 and Supplementary
Table 2. A significant inverse association was found
between baseline DNAm PhenoAgeAccel and the depri-
vation index, such that a higher epigenetic age associated
with a score indicative of greater deprivation (8= —0.08,
SE =0.03, p =0.025). In addition, a higher DNAm Phe-
noAgeAccel was associated with lower levels of physical
activity (OR = 0.77, 95% CI (0.67, 0.88), p = 0.0003) and
with higher odds of being either a current, or an ex-,
smoker, compared with a never smoker (OR=1.31, 95%
CI (1.15, 1.49), p = 0.0003).

Life-history

Significant associations between DNAm PhenoA-
geAccel and life history phenotypes are presented in Fig.
1. Full results are presented in Supplementary Fig. 7 and
Supplementary Table 2. A higher baseline DNAm Phe-
noAgeAccel was associated with a lower age 11 IQ
(8=-0.13, SE=0.03, p=0.001) and fewer years of
education (= —0.09, SE =0.03, p = 0.013).

Sensitivity analysis

A Bonferroni correction (adjusted P < 0.001) resulted in
the attenuation of 15 of the 24 originally significant
associations identified with DNAm PhenoAgeAccel. Age
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11 IQ, smoking and physical activity remained significant,
in addition to the cognitive test of processing speed (digit
symbol coding) and five of the blood variables. These
results are presented in Supplementary Table 2.

DNAm PhenoAge and survival

We tested the association of DNAm PhenoAge with all-
cause mortality (Mgeans = 209, over 9 years of follow-up,
average age of death =76.8 years, SD 3.3) and found that
a higher DNAm PhenoAgeAccel was significantly asso-
ciated with risk of death (HR=1.17 per SD increase in
DNAm PhenoAgeAccel, 95% CI (1.02, 1.34), p = 0.025). A
Kaplan—Meier survival curve for DNAm PhenoAgeAccel,
split into highest and lowest quartiles, is presented in Fig.
2, illustrating the higher mortality risk for those with a
higher DNAm PhenoAgeAccel.

To assess the performance of DNAm PhenoAgeAccel
in relation to mortality risk, we ran additional survival
analyses using other markers previously associated with
mortality” >*, Each of the assessed markers out-
performed DNAm PhenoAgeAccel: BMI (HR = 1.21 per
SD increase in BMI, 95% CI (1.07, 1.38), p =0.003),
smoking status (HR = 1.78 for ex-smokers, 95% CI (1.29,
2.45), p = 0.0004; HR = 4.38 for current smokers, 95% CI
(3.01, 6.36), p=9.23 x 10 '%), grip strength (HR = 0.63
per SD increase in mean grip strength, 95% CI (0.51,
0.78), p = 1.59 x 10°) and walking speed (HR = 1.39 per
SD increase in walking speed, 95% CI (1.27, 1.52), p =
1.74 x 10~ *?). Kaplan—Meier plots for each of these
variables are presented in Supplementary Fig. 8.
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Adjusting for Age 11 1Q

To test for potential confounding of the associations by
childhood intelligence, the models for all of the significant
associations identified in the PheWAS were re-run
adjusting for age 11 IQ. Results are presented in Fig. 1
and Table 1.

The associations with 12 out of the 23 phenotypes that
were originally found to be significant in the PheWAS,
became non-significant upon adjustment, inclusive of all
the cognitive associations. Of the associations that became
non-significant, the effect sizes were attenuated by a mean
of 39% (range: 13.4—82.4%). The survival model was also
no longer significant following adjustment for age 11 I1Q
(HR=1.13, 95% CI (0.98, 1.31), p = 0.08).

All of the associations with blood phenotypes, excepting
fibrinogen, remained significant following adjustment for
age 11 IQ, as did the lung function measures, smoking
status, physical activity and diabetes.

Longitudinal association between DNAm PhenoAgeAccel
and phenotypes

All the cognitive and physical fitness measures included
in the longitudinal analysis showed changes over time that
were consistent with declining health (Supplementary
Table 3). The rate of decline ranged from 0.02 SDs per
year (digit span backwards) to 0.08 SDs per year (telomere
length). Six metre walk time increased by 0.1 SDs per year
(all p<2x107%).

Baseline DNAm PhenoAgeAccel was not found to
associate with subsequent change in any of the assessed
phenotypes (FDR-corrected p > 0.322, Table 2).

Discussion

In this study, we performed a comprehensive phenome-
wide association study to investigate the associations
between 107 phenotypes with a new epigenetic estimate
of health—DNAm PhenoAge—in a large cohort of older
adults. We identified significant correlations at a mean
age of 70 years between accelerated DNAm PhenoAge
and a number of blood-based, physical, cognitive, and
lifestyle phenotypes, in addition to mortality. Importantly,
we found that the life-history variables of general cogni-
tive ability, measured at age 11, and number of years of
education, related to DNAm PhenoAge at age 70. More-
over, adjustment for age 11 cognitive ability attenuated
the majority of the cross-sectional later-life associations
between DNAm PhenoAge and health outcomes.

DNAm PhenoAge was developed referencing a surro-
gate measure of phenotypic age, instead of solely chron-
ological age, in an attempt to better capture the
considerable between-person disparities in susceptibility
to disease and death. However, our findings suggest that
this novel epigenetic clock may be somewhat qualified in
its capacity as a biomarker of physiological ageing.
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Table 1

Results before and after adjusting models for age 11 1Q.
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Before age 11 1Q adjustment

After age 11 IQ adjustment

Phenotype Standardised 8 Standard error FDR-corrected p  Standardised 8  FDR-corrected p % attenuation
Neutrophils 0.245 0033 9.26x 10 ' 0.241 347x107 " 17
White cell count 0.222 0.034 8.24x107° 0214 422x10°8 3.7
Monocytes 0.143 0.033 53x10°* 0.143 272x10°* 0
HbA ¢ 0.129 0.033 0.002 0.110 0.004 14.5
C-reactive protein 0.112 0.033 0.012 0.108 0.006 32
Forced expiratory volume (1's) —0.108 0.023 0.023 —0.076 0.006 30
Forced vital capacity —0.089 0.023 0.023 —0.069 0.008 22.1
Cholesterol —0.086 0.032 0.043 —0.088 0.021 —26
Fibrinogen 0.089 0.034 0.043 0.074 0.062 16.6
Grip strength (1) —0.053 0.022 0.045 —0.046 0.062 133
6-m walk time (s) 0.097 0.035 0.037 0.073 0.068 249
Deprivation index —0.082 0.033 0.025 —0.061 0.088 258
Digit symbol coding —0.11 0.033 0.015 —0.057 0.089 48.1
Grip strength () —0.053 0.021 0.045 —0.040 0.094 253
Activities of daily living 0.086 0.034 0.045 0.062 0.098 276
Mini-mental state examination —0.095 0.034 0.034 —0.048 0.140 49.2
Verbal paired associates —0.087 0.034 0.034 —0.051 0.142 419
Years of education —0.09 0.033 0.012 —0.039 0.216 56.3
Verbal fluency —0.087 0.033 0.034 —0.040 0216 535
National adult reading test —0.087 0.033 0.034 —0.015 0.536 824
Log odds
Smoking category 0.267 0.067 0.002 0.224 0.004 16.2
Physical activity —0.266 0.069 0.002 —0.242 0.003 89
Diabetes 0.335 0.124 0.002 0.303 0.039 9.7

Standardised {3 are presented for continuous variables and log odds for binary or ordinal phenotypes. FDR-corrected significant results are highlighted in bold

Though we identified associations between DNAm Phe-
noAge and a number of pertinent ageing outcomes,
including measures of age-related physical fitness, it did
not appear to robustly capture morbidity and mortality
outcomes. Although accelerated DNAm PhenoAge did
associate with a higher risk of all-cause mortality, its
performance was surpassed by four other biomarkers. In
addition, we found no evidence to suggest that DNAm
PhenoAgeAccel associates with longitudinal phenotypic
change, limiting its potential as a prospective biomarker
of ageing.

The association between DNAm PhenoAgeAccel with
IQ measured almost 60 years previously is a key finding
and is indicative of a lifelong, enduring association
between cognition and epigenetic ageing. This bolsters
cognitive epidemiology findings indicating that general

intelligence in childhood, as measured by psychometric
tests, is associated with substantial life-course differences
in health and morbidity®>*°. Various, non-exclusive,
mechanisms are thought to govern this association,
including better health literacy and disease management,
higher socioeconomic standing, and the ‘system integrity’
hypothesis, which postulates that higher scores on cogni-
tive ability tests are capturing a systemic level of good
functioning rather than isolated brain efficiency®’. It is
possible that individual differences in DNAm PhenoA-
geAccel in older age are, in part, caused by intelligence
differences over the life-course, or that both are a result of
a shared genetic architecture or early environmental event.

All of the associations found between DNAm PhenoA-
geAccel and contemporaneous cognitive, physical fitness,
education and socioeconomic status measures ceased to be
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Table 2 Longitudinal associations between baseline DNAm PhenoAgeAccel and phenotypes.

Phenotype Standardised f8 Standard error Raw p FDR-corrected p
Grip strength (1) 0.010 0.008 0.189 0.448
Grip strength () 0.008 0.008 0.288 0.448
Forced expiratory volume (1s) 0.009 0.008 0.261 0448
Forced vital capacity 0011 0.009 0.192 0448
Forced expiratory ratio 0.021 0.015 0.175 0448
Peak expiratory flow 0.006 0.0M1 0613 0.859
Digit span backwards <0.001 0.013 0.952 0.952
Symbol search —0.003 0.013 0.821 0952
Digit symbol coding 0.019 0.009 0.046 0.322
Matrix reasoning 0.004 0.013 0.713 0.908
Letter number sequencing —0.018 0.013 0.180 0448
Block design —0.011 0.011 0.282 0448
6-m walk time (s) <0.001 0.014 0.945 0.952
Telomere length —0.025 0012 0.041 0.322

Significant values are bold

significant following adjustment for age 11 IQ. The only
exceptions were the measures of lung function, diabetes,
blood biomarkers (that are highly correlated with the com-
ponent parts of Phenotypic Age), smoking and physical
activity. This indicates that the relationship between DNAm
PhenoAgeAccel and the majority of our contemporaneously
measured phenotypes may be partially mediated through
childhood cognitive ability. These findings are consistent
with a theory of reverse causation.

Although we focused on testing for confounding via
adjustment for childhood cognitive ability, it is unlikely
that is the sole confounding variable. For instance, life-
course smoking and socioeconomic status are associated
with accelerated DNAm PhenoAge and may similarly
confound the identified associations. However, childhood
intelligence typically predates these confounders, allowing
for the stratification of individuals from a very young age,
prior to the manifestation of other traits.

Strengths and limitations

This is the first independent test of DNAm PhenoAge in
a large cohort of older adults with the availability of his-
torical variables, as well as longitudinal measures for an
extensive number of health and ageing-related pheno-
types. Moreover, these data are available across the 8th
decade, a time when risk of dementia and functional
decline increases substantially. Critically, the availability
of childhood IQ measures enabled us to show that many
cross-sectional associations between DNAm PhenoAge
and health are confounded by early life cognitive ability.

LBC1936 are a predominantly healthy older ageing
cohort, reflected by the young estimation of DNAm
PhenoAge compared with chronological age, which might
preclude the generalisation of these findings to the
broader ageing population. Furthermore, most of the
disease assessments within the study are concluded from
self-reports, which are often unreliable, limiting their use
as indicators of verifiable pathologies. These aspects
perhaps hindered additional findings of disease-related
associations. In addition, it should be acknowledged that
the blood cell profiles and inflammatory markers that
DNAm PhenoAge approximates might affect, or be
affected by, DNA methylation. Future studies using
longitudinal data or causal inference methods may help
determine the direction of these associations. Finally, the
paucity of data sets with childhood intelligence, later-life
phenotypes and methylation data complicates the further
replication of our findings.

Conclusion

We have verified associations between an innovative
marker of epigenetic age and a number of pertinent,
proxy health-related phenotypes and mortality in older
adults. Notably, educational attainment and cognitive
ability and age 11 were found to associate with DNAm
PhenoAge at age 70. Adjusting models for the latter of
these attenuated over half of the late-life associations
between health and DNAm PhenoAge by 13—-82%. While
it does seem DNAm PhenoAge may independently
capture some measures of age-related functional fitness
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and blood-based phenotypes, it does not seem to
robustly associate with health phenotypes and is vul-
nerable to confounding.
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