
Discovery and Cross-Validation of Peripheral Blood and Renal 
Biopsy Gene Expression Signatures from Ethnically Diverse 
Kidney Transplant Populations

Carlucci Gualberto Ventura1, Thomas Whisenant2, Terri Gelbart3, Daisa S.R. David1, 
Fabiana Agena1, Daniel R. Salomon3, Elias David-Neto1, Sunil M. Kurian4

1Renal Transplant Service, Hospital das Clinicas - University of Sao Paulo School of Medicine, 
Sao Paulo, Brazil

2University of California, San Diego, School of Medicine, Center for Computational Biology and 
Bioinformatics, La Jolla, California

3Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, 
California

4Scripps Center for Organ Transplantation, Scripps Green Hospital, La Jolla, California

Abstract

We determined peripheral blood (PB) and biopsy (Bx) RNA expression signatures in a Brazilian 

and US cohort of kidney transplant patients. Phenotypes assigned by precise histology were: Acute 

Rejection, (AR) IFTA/Chronic Rejection (CR), excellent functioning transplants (TX), and 

Glomerulonephritis recurrence (GN). Samples were analyzed on microarrays and profiles from 

each cohort cross-validated on the other cohort with similar phenotypes. We discovered signatures 

for each tissue: 1) AR vs TX; 2) CR vs TX and 3) GN vs TX using the Random Forests algorithm. 

We validated biopsies signatures of AR vs TX (AUC 0.97) and CR vs TX (AUC 0.87). We also 

validated both PB and Bx signatures of AR vs TX and CR vs TX with varying degrees of 

accuracy. Several biological pathways were shared between AR and CR suggesting similar 

rejection mechanisms in these two clinical phenotypes. Thus, we identified gene expression 

signatures for AR and CR in transplant patients and validated them in independent cohorts of 

significantly different racial/ethnic backgrounds. These results reveal that there are strong unifying 

immune mechanisms driving transplant diseases and identified in the signatures discovered in each 

cohort suggesting that molecular diagnostics across populations are feasible despite ethnic and 

environmental differences.
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Introduction

Interstitial Fibrosis/Tubular Atrophy (IFTA) and Acute Rejection (AR) are leading causes of 

late graft loss amongst kidney transplant patients. Despite huge strides in 

immunosuppressive regimens over the past few decades, the incidence of IFTA and AR has 

remained relatively flat with no beneficial decrease in improved long-term outcomes. The 

rates of subclinical Acute Rejection (subAR), a relatively newer clinical entity defined as the 

presence of histologically documented AR on a surveillance biopsy has also shown to be 

between 17%−23% (1–7). Arguably, the two major causes for the high rates of subAR, AR 

and IFTA are first, the lack of proper and accurate diagnostic tools to detect and treat these 

kidney phenotypes early during the post-transplant period and second, due to inadequate 

immunosuppression which is a possible cause of the latter. Despite being in the era of potent 

immunosuppressive agents we still rely on antiquated measures of graft injury such as serum 

creatinine which has shown to be both a lagging indicator of graft injury as well as a poor 

correlate of graft outcomes (8). Current diagnosis of the above clinical phenotypes also 

relies heavily on the kidney transplant biopsy which remains the gold standard despite its 

many disadvantages (9, 10).

Numerous studies have suggested the utility of non-invasive molecular biomarkers to 

monitor recipients of kidney transplants using urine and PB. Studies using urine qPCR have 

shown high diagnostic accuracy in separating AR from samples with stable graft function 

(11–13). Others have shown that gene signatures using DNA microarrays in the PB and then 

transferred to a qPCR platform have been able to distinguish kidney transplant phenotypes 

effectively(14–16).

We recently published molecular signatures in the PB of kidney transplant recipients that 

can distinguish AR from patients with stable graft function. Our discovery signatures were 

derived and validated in a US population which was predominantly Caucasian, and in a 

clinical setting typical of the standard of care in the US (17). There have been very few 

studies in the literature describing molecular signatures of AR or Chronic Rejection (CR) in 

the PB and/or biopsies of kidney transplant patients from other ethnic populations such as 

Asian and Latin American and certainly none describing genome-wide profiling signatures 

of these transplant disease phenotypes in this population. Molecular detection of subAR in 

peripheral blood has been previously addressed in studies. The kidney Solid Organ Response 

Test (kSORT), used in two studies (18, 19), primarily predicted acute rejection. In the AART 

study (18), only a small proportion of blood samples were paired with surveillance biopsies. 

Another study, of paired blood samples and biopsies, was able to discover GEPs for subAR 

in both the blood and graft compartments, but these were not subjected to external validation 

using independent cohorts (20). Instead, the authors showed in a proof-of-concept study that 

orthogonal validation could be achieved across different genomic technologies and 

platforms. The most comprehensive study till date is the CTOT-08 multicenter study which 

developed a blood-based molecular biomarker for subAR using peripheral blood paired with 

surveillance biopsies and strict clinical phenotyping algorithms for discovery and validation 

(21). At a predefined threshold, 72% to 75% of KT recipients achieved a negative biomarker 

test correlating with the absence of subAR (negative predictive value: 78%–88%), while a 
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positive test was obtained in 25% to 28% correlating with the presence of subAR (positive 

predictive value: 47%–61%).

In the current study, we describe the discovery of microarray-based, PB and Bx gene 

expression signatures in Brazilian kidney transplant recipients capable of distinguishing 

biopsy documented AR, CR and TX. We also describe a novel proof-of-concept, internally 

validated signature for recurrent glomerulonephritis (GN). All discovery signature models 

were locked and externally validated on an independent cohort of US patients with similar 

histological phenotypes which were done as part of an NIH consortium, The Transplant 

Genomics Collaborative Group (TGCG). We also compared the differentially expressed 

genes in both blood and biopsies of AR and CR/IFTA using pathway mapping tools to 

assess whether there are shared and/or unique pathways in these different tissue 

compartments.

Methods

Clinical data for both cohorts were collected using an electronic medical report system. 

Inclusion criteria were recipients aged 18–70 years from either a living donor or a deceased 

donor with time post-transplant up to three months. Recipients of multiple organs or patients 

with inadequate kidney biopsies were excluded. The study was approved by the local 

Institutional Review Board and all patients provided written informed consent. The Brazilian 

cohort was from the University of Sao Paulo, Brazil. Samples were shipped for analysis at 

the Scripps Research Institute, La Jolla, CA. Inclusion and exclusion criteria were similar 

for both the cohorts.

Patient population

A total of 84 kidney transplant biopsies (“for cause”) of 84 patients collected between March 

2012 and June 2013 were included in the study. Patients were assigned by histological 

phenotype into four groups: 1) Transplant excellent (TX) were considered excellent 

functioning Transplants (patients with stable eGFR >60 mL/min, no proteinuria and biopsy-

proven normal histology); 2) Acute Rejection (AR) included T-cell Mediated Rejection and 

Borderline changes; 3) Chronic Rejection (CR) included IFTA and Chronic Active T-cell 

Mediated Rejection; 4) Glomerulonephritis (GN) was any kind of graft recurrence GN. 

Matched blood samples collected at the time of biopsy were available for 72 of the subjects. 

Ten patients from TX group did not have matched Bx and PB samples included were defined 

clinically as TX by eGFR>60 mL/min, no proteinuria in previous visits. The numbers of 

samples (peripheral blood/biopsy) for each group were: Transplant excellent (TX; PB=27/

Bx=17), Acute Rejection (AR; PB=19/ Bx=26), IFTA/plus Chronic Active T-cell Mediated 

Rejection (CR PB=22/ Bx=27), and Glomerulonephritis recurrence (GN; n=14/Bx=14). The 

composition of phenotypes for blood and biopsy samples in discovered and validation 

cohorts is shown in Figure 1a and b.

All patients received induction with thymoglobulin (Genzyme, Cambridge, USA) or 

Basiliximab (Novartis, Basel, Switzerland) and maintenance therapy with a calcineurin 

inhibitor (tacrolimus or cyclosporine), an antimetabolite (azathioprine or mycophenolate 

mofetil) and prednisone. Estimated GFR (eGFR) was calculated using the abbreviated 
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Modification of Diet in Renal Disease (MDRD-4) formula(22). Validation of phenotype-

specific signatures was performed on a similar clinically and histologically defined cohort of 

113 matched blood and biopsy samples from the TGCG biorepository. The phenotypes 

analyzed were Transplant excellent (TX; PB=29/Bx=29), Acute Rejection (AR; PB=57/ 

Bx=57), IFTA/plus Chronic Active T-cell Mediated Rejection (CR PB=27/ Bx=27). 

Demographics and clinical characteristics of both cohorts are described in Tables 1a and b.

Histological analysis

Allograft tissue was obtained under ultrasound guidance by a 16-gauge Tru-Cut needle. In 

addition to a standard histopathology core, another core was collected for gene expression 

studies. All biopsies were evaluated by light microscopy and immunofluorescence and 

classified by the Banff 2013 (discovery cohort) (23) and Banff 2007 (validation cohort) 

criteria (24). C4d staining was performed by immunofluorescence (IF) (25). Diagnosis was 

done first by a local pathologist and the reports reviewed by CV and DRS to make final 

phenotypic assignments (discovery) and by a site-specific local pathologist and a central 

TGCG pathologist (validation). Both assessments (local and central) were performed 

blinded to the microarray results.

Gene expression analysis

Biopsy cores were placed in RNALater (Qiagen, Valencia, CA), at room temperature for 4 

hours, and then transferred to −80 °C. For whole-blood, 2.5 mL of peripheral blood was 

collected into PAXgene tubes (Qiagen, Valencia, CA) containing an RNA-stabilizing 

solution and then transferred to −80 °C. Total RNA was extracted from kidney tissue using 

(21) Trizol (Life Technologies Inc, MD, USA). Biotinylated cRNA was prepared using 

Ambion Message Amp Biotin II kit (Ambion) and hybridized on Affimetrix Human 

Genome U133 Plus 2.0 Arrays (Affymetrix Inc, Santa Clara, California) according to 

standard protocols (http://affymetrix.com/index.affx). Differential expression was performed 

using linear models and differential expression for microarray data (LIMMA) (26) and class 

predictions using the Random Forests algorithm with bootstrapping employing custom R 

scripts (21)

Classifier development and external validation

All signatures were derived using a Random Forests algorithm with bootstrapping (R 

package e1071;https://cran.r-project.org/web/packages/e1071/index.html). Signatures were 

tested for accuracy using a range of feature sizes (50– 500 probesets) from the list of 

significantly differentially expressed genes. Once the signatures were determined they were 

“locked” and tested on the appropriate external validation cohort of similar phenotypes. 

Signatures were discovered in both cohorts and cross-validated on the other cohort 

respectively, except for the GN cohort whose molecular signatures, we report for the first 

time in this study. Threshold selection was based on “out-of-bag” performance metrics of the 

discovery cohort. Based on dichotomous outcomes (either positive or negative predicted 

probabilities above or below the threshold), profiles were compared with the clinical 

phenotypes to determine the performance of the classifiers. We selected a random forests 

model optimizing for area under the curve and then selected the “best” predicted probability 

threshold for each classifier based on its overall performance on the discovery cohort.
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Diagnostic Metrics

Predictive accuracy was calculated as (true positives + true negatives)/(true positives + false 

positives + false negatives + true negatives). Sensitivity, Specificity, PPV, NPV, and AUC 

were calculated and Receiver operating characteristic (ROC) curves generated using 

pROC(27). Pathway mapping was performed using Ingenuity Pathway Analsyis (Qiagen, 

Valencia, CA). Chi-square analysis was done using GraphPad (GraphPad Software, La Jolla 

California USA). CEL files and normalized signal intensities will be posted at the NIH Gene 

Expression Omnibus http://www.ncbi.nlm.nih.gov/geo.

Results

Clinical characteristics of Brazilian cohort

The median time to biopsy for AR was shorter compared toCR and GN phenotypes (Table 

1a). The AR and CR groups had a significantly higher non-white recipient race. Female 

donors were higher in the AR and TX groups. As expected, MDRD was significantly higher 

in transplant excellent (TX) compared with the other three groups of patients.

Clinical characteristics of TGCG cohort

There were significant differences in recipient race (more Caucasians in the TX group), 

more deceased donors in the AR and CR groups and higher time to Bx in the CR group 

(Table 1b). There were also a higher number of female donors in the AR and CR group 

while the creatinine was higher as expected in the AR and CR groups.

Discovery of gene expression signatures and shared genes in the Brazilian phenotypes

Using the gene expression data from the PB and the Bx in the Brazilian cohort, we identified 

three signatures for each tissue type: 1) AR vs. TX; 2) CR vs TX and 3) GN vs. TX. There 

were 1044 and 1388 differentially expressed genes for the AR vs. TX and CR vs. TX 

comparisons respectively at a False Discovery rate (FDR) of 5% in the PB. For the biopsies, 

there were as many as 12766 differentially expressed genes for the AR vs. TX and 1422 

differentially expressed genes and CR vs. TX respectively, at FDR<5%.

In blood, there were ~18% shared genes between AR and CR comparisons. Interestingly all 

30% of the shared genes were differentially expressed in the same direction (up or 

downregulated) in the AR and CR PB samples. In the Bx, there was a significantly higher 

shared expression (~94%), again with all genes differentially expressed in the same 

direction.

There were 622 genes that were differentially expressed between the GN and TX PB at an 

FDR<10%. There was higher sharing of differentially expressed genes between GN and CR 

(44%) when compared to GN and AR (17%) in the PB, but a similar difference was not 

observed for the same comparisons in the Bx (2694 differentially expressed genes) where 

the sharing was 71% and 86%, respectively.

Pathway mapping of peripheral blood samples: We mapped the differentially 

expressed genes from each comparison (AR vs. TX and CR vs. TX) to canonical pathways 
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using Ingenuity Pathway Analysis (IPA). There were 7 significant pathways in the AR vs. 

TX comparison after applying a Benjamini Hochberg correction for False Discovery 

(p<0.05). In contrast, for the CR vs. TX comparison, there were 11 significant pathways. 

The Ephrin receptor signaling pathways was the only shared pathway between AR and CR. 

We did not validate any of the AR vs. TX or CR vs TX significant pathways from the 

Brazilian cohort in the US cohort. A list of all PB significant pathways from both cohorts is 

shown in Supplementary Table 1.

Pathway mapping of biopsies: In the Bx, here were 54 significant pathways in the AR 

vs. TX and for the CR vs. TX comparison, there were 5 significant pathways. In the Bx, 6 

and 25 pathways were shared between AR and CR in the Brazilian an US cohorts. A list of 

all PB significant pathways from both cohorts is shown in Supplementary Table 2. We 

validated 16 pathways for AR vs. TX comparison from the Brazilian cohort in the US cohort 

and for the CR vs. TX comparisons (Supplementary Table 3), we validated 4 pathwaysfrom 

the Brazilian cohort in the external cohort (Supplementary Table 4). The AR and CR 

comparison showed ~89% shared expression, again with all genes differentially expressed in 

the same direction.

Discovery of gene expression signatures and shared genes in the US (TGCG) phenotypes

In the US cohort, we also identified three signatures for each tissue type: 1) AR vs. TX; 2) 

CR vs TX and 3) GN vs. TX. There were 520 and 4521 differentially expressed genes for 

the AR vs. TX and CR vs. TX comparisons respectively at a False Discovery rate (FDR) of 

5%. For the biopsies, there were 8793 differentially expressed genes for the AR vs. TX and 

7191 differentially expressed genes and CR vs. TX respectively, at FDR<10%.

In blood, there were ~86% shared genes between AR and CR comparisons and in the Bx, 

there was 76% sharing, again with all genes differentially expressed in the same direction.

Comparison of gene expression profiles in the biopsies and peripheral blood

We compared the gene expression profiles in the PB and Bx for the AR vs. TX and CR vs. 

TX phenotypes. For the AR vs. TX, there were 435 differentially expressed genes found in 

both PB and Bx up or downregulated in the same direction. Similarly, for the CR vs. TX, 

there were 314 differentially expressed genes found in both blood and biopsy up or 

downregulated in the same direction.

We also illustrate the sharing between the blood and the biopsy compartments for AR vs. TX 

and CR vs. TX in Figures 2a and 2b. The plots show that for both the AR and CR 

comparisons there were more shared downregulated genes and that the PB had fewer 

differentially expressed genes when compared to the Bx.

Discovery and validation of gene expression signatures

For blood, the internal validation of an AR vs TX classifier in the Brazilian cohort 

comprised of 88 probesets gave an Area Under the Curve (AUC) of 0.97. This translated to 

79% specificity and 50% sensitivity on the TGCG cohort. Similarly, a 56 probeset classifier 
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distinguished the CR vs. TX samples on the Brazilian discovery cohort with an AUC of 0.97 

which had a specificity of 79% and sensitivity of44% in the TCGG cohort.

When signatures were discovered in the blood in the TGCG cohort and validated on the 

Brazilian cohort the AR vs TX classifier comprised on 281 probes (AUC – 0.96) validated 

very well with an 88% specificity and 96% sensitivity on the Brazilian cohort. A 183 

probeset classifier distinguished the CR vs. TX phenotypes (AUC of 0.95) with a specificity 

of 88% and sensitivity of 72% in the Brazilian cohort.

For the biopsies a 230 probeset AR vs TX classifier (Brazilian cohort, AUC of 0.94), 

validated the TCCG cohort with 70% specificity and 94% sensitivity. For the CR vs TX 

comparison, a 52 probeset (AUC of 0.94), had a specificity of only 32% but was highly 

sensitive at 98%. The AUC’s on the external cohort showed expected reductions for both the 

PB and tissue profiles. ROC curves from both blood and biopsy samples discovered in the 

Brazilian cohort and validated in the TGCG cohort are shown in Figures 3 a–d and ROC 

curves discovered on the TGCG cohort and validated on the Brazilian cohort are shown in 

Figures 4 a–d. Of note, in the Brazilian PB classifier there was a shift towards a higher 

specificity at the cost of decreased sensitivity in the external TGCG cohort, but this trend 

was not seen in the TGCG PB classifier. The overall the results from the external validation 

cohorts were comparable to the results seen in the internal validation, showing that the 

identified classifiers were robust in a blinded external validation using a “locked” classifier.

We also compared our blood classifier gene lists to those of the kSORT assay. Only one of 

the 17 genes in the kSORT, Natural Killer Trigger Receptor (NKTR) was also identified in 

our signature. A similar comparison of a tissue-based classifier comprised of 30 genes (28) 

capable of identifying TCMR showed no overlap with genes identified in our biopsy 

classifiers.

Discussion

We describe a microarray-based, PB and Bx gene expression signatures in a Brazilian and a 

US cohort of kidney transplant patients capable of distinguishing biopsy documented AR, 

CR/IFTA and transplant excellent TX. We also show a first proof-of-concept, internally 

validated signature for recurrent Glomerulonephritis (GN) in the Brazilian population. Since 

a semi-invasive test is amenable to serial profiling, the primary goal was to establish 

signatures from PB and Bx in two ethnically diverse populations of kidney transplant 

recipients, first a Latin-American population from Brazil and second a US population that is 

ethnically different and predominantly Caucasian. We wanted to test the hypothesis that 

these signatures will validate in the other population to provide a proof of concept that 

despite ethnic differences, there are signatures that are robust enough in both populations to 

distinguish kidney transplant dysfunction phenotypes.

Our discovery gene signatures from biopsies in both cohorts show robust AUCs for both AR 

(AUC 94–96%) and CR (AUC 94–95%) classifiers. In, the PB there were similar discovery 

cohort AUCs: AR vs. TX (AUC 93–97%) and CR vs. TX (AUC 92–97%). However, since 

the true value can only be established in an external independent cohort we tested the 
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classifiers discovered in one cohort on the other. The accuracies for the Bx was higher (73–

93%) compared to the PB (54–65%). However, strategic optimization based on sensitivity or 

specificity (56–79%) of the test can improve the clinical utility of the classifier for a 

physician looking for a specific type of diagnostic. A possible use of the classifier in the 

peripheral blood could be as a “rule out test” or “rule in” test based on NPV and PPV for AR 

and CR in the external validations. An example would be the FDA approved Allomap (XDx, 

Inc., South San Francisco, CA) heart test that identifies heart transplant patients with stable 

allograft function and is used to rule out the presence of acute cellular rejection in low-risk 

patients, between six months and five years after heart transplant. The Allomap test has 

NPVs >97% but PPV <10% (29). Another example would be the subAR classifier recently 

published by us which had NPVs ranging from 78–88% but PPVs of only 47–61% (21). 

Therefore, the Bx classifiers outperformed the PB classifiers though all classifiers validated 

satisfactorily in an ethnically diverse population of patients suggesting potential common 

mechanisms in play for acute and chronic rejection in unrelated ethnicities.

Our results in the tissue demonstrate a high number of shared genes between AR and CR in 

the biopsies (~89%) with all genes differentially expressed in the same direction. There was 

lesser sharing (~30%) of genes in the PB between AR and CR. However, all shared genes 

were directionally the same (up or downregulated) in AR and CR suggesting similar 

mechanisms. The higher number of shared genes in the biopsies is not surprising since the 

tissue is the site of injury, whereas the PB may only mirror some of the injury processes and 

the constant fluctuations in the cell subsets may make this a dynamic process. We recently 

showed using gene expression profiles of 234 graft biopsy samples, that IFTA (CR) 

phenotypes were strongly enriched for dysregulated gene pathways and were shared by the 

biopsy profiles of AR, including IFTA samples without histological evidence of 

inflammation (30).

Our hypothesis that ethnic differences though relevant, may not be the major factor driving 

transcriptomic changes in acute and chronic rejection, is further strengthened by our results 

comparing the pathways between the two cohorts where validated common pathways in both 

the blood and the biopsy for AR and CR. Shared pathways and their constituent genes reveal 

common mechanistic insights into the rejection process as well as reassure a clinician that 

gene expression signatures from one ethnic cohort can be used in an ethnically different 

population. We also recently demonstrated that there are a number of shared differentially 

expressed genes and pathways between subAR and AR using microarray and sequencing 

platforms strongly suggesting that these two clinical phenotypes form a continuum of 

alloimmune activation(20). However, our signatures need to be tested in a prospective study 

in both the Brazilian population as well as other ethnic groups.

The absence or a low overlap in terms of genes between our classifiers and previously 

published classifiers does not necessarily mean that the genes comprised of any classifiers 

are irrelevant. Classifiers genes are usually picked based on the best performance in a 

training set of samples and often many hundreds of genes that are not picked as part of a 

final classifier are still able to distinguish phenotypes. However, the any best-performing 

classifier has to be locked down and then validated an independent cohort of samples. 

Therefore, it is possible that genes which may have not been chosen in a given classifier 
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have the potential to be good candidates for classification. Therefore, a simple comparison 

between two published classifier sets though intuitive is not likely to be the best way to 

identify genes relevant to a disease process. In the development of the kSORT assay for 

acute rejection classifier genes expanded to 17 from a first 5 gene set previously reported as 

part of the evolution of the test.

There are obvious limitations to this study. Firstly, this was a single center study in a 

Brazilian population which was validated in a cross-sectional external cohort that was 

ethnically different. While one of the objectives of this study was to test the performance of 

a gene expression classifier in a cross-ethnic cohort and since there are few studies that have 

evaluated gene expression signatures in an ethnically different population, we acknowledge 

that the ideal cohort for validation would have been a prospectively collected cohort which is 

currently underway. Though we were still adequately powered to perform gene expression 

analyses in both peripheral blood and biopsies, a larger sample size for the discovery cohort 

might have helped identify even more robust classifiers. However, the robustness of our 

signatures is reflected by the external validation accuracy and diagnostic metrics. Though we 

demonstrated a preliminary signature for glomerulonephritis, we unfortunately did not have 

an independent cohort to validate our finding. Finally, a proportion of our TX patients (10 

(37%) did not have a biopsy but were designated as TX by clinical parameters. Therefore, 

(2–3 patients, 7–11%) of all TX patients could possibly have a subAR phenotype. We would 

however like to emphasize that our classifiers have been discovered and validated on 

subjects with active rejection (acute or chronic) and not on subclinical rejection phenotypes. 

Therefore, it is possible that our classifiers may incorrectly call these potential subAR 

phenotypes.

In conclusion, we present comprehensive gene expression profiling in both peripheral blood 

and matched biopsies in two cohorts of ethnically diverse kidney transplant patients with 

histological phenotypes of acute and chronic rejection and a proof of concept transplant 

glomerulonephritis signature. We cross-validated our blood and biopsy signatures for AR 

and CR in both cohorts with different racial/ethnic backgrounds. We show that there are 

shared pathways between AR and CR as well as between blood and biopsy suggesting 

similar mechanisms at play in the rejection processes. We hope this study will serve as the 

first step in the design of larger global cross-ethnic studies to refine diagnostic signatures 

and mechanistic pathways in kidney transplant rejection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AR Acute Rejection

Ventura et al. Page 9

Am J Transplant. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AUC Area Under the Curve

CR Chronic Rejection

DEG Differentially expressed genes

eGFR Estimated Glomerular Filtration Rate

FDA Food and Drug Administration

FDR False Discovery Rate

GN Glomerulonephritis recurrence

IFTA Interstitial Fibrosis/Tubular Atrophy

IPA Ingenuity Pathway Analysis

KTPs Kidney Transplant patients

MDRD Modification of Diet in Renal Disease

NPV Negative Predictive Value

PPV Positive Predictive Value

qPCR Real-Time Polymerase Chain Reaction

ROC Receiver Operating Curves

subAR Subclinical Acute Rejection

TX Transplant excellent
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Figure 1a& 1b. 
Composition of phenotypes for blood and biopsy samples in the discovery (1a) and 

validation (1b) cohort.
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Figure 2a. 
Comparison of the directionality of fold changes for AR vs. TX among shared genes and 

DEGs in the blood and biopsies by microarrays. Blue dots denote DEGs in biopsies, red dots 

denote DEGs in blood and green dots shared genes between biopsies and blood. Acute 

Rejection; DEG, differentially expressed genes; TX, transplant excellent.
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Figure 2b. 
Comparison of the directionality of fold changes for CR vs. TX among shared genes and 

DEGs in the blood and biopsies by microarrays. Blue dots denote DEGs in biopsies, red dots 

denote DEGs in blood and green dots shared genes between biopsies and blood. DEGs, 

differentially expressed genes; CR, IFTA/Chronic Rejection; TX, transplant excellent.
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Figure 3a 3b 3c & 3d. 
(3a) Receiver Operating Characteristic Curves from biopsies for AR vs. TX. ROC in solid 

line represents the performance of the AR vs TX biopsy classifier on the TGCG Training Set 

(AUC - 0.96) and the ROC in the dotted line represents the performance of the AR vs TX 

biopsy classifier on the Brazilian Validation Set (AUC - 0.93). (3b) Receiver Operating 

Characteristic Curves from biopsies for CR vs. TX. ROC in solid line represents the 

performance of the CR vs TX biopsy classifier on the TGCG Training Set (AUC - 0.95) and 

the ROC in the dotted line represents the performance of the CR vs TX biopsy classifier on 

the Brazilian Validation Set (AUC - 0.85). (3c) Receiver Operating Characteristic Curves 

from peripheral blood for AR vs. TX. ROC in solid line represents the performance of the 

AR vs TX blood classifier on the TGCG Training Set (AUC - 0.93) and the ROC in the 

dotted line represents the performance of the AR vs TX blood classifier on the Brazilian 

Validation Set (AUC - 0.69). (3d) Receiver Operating Characteristic Curves from peripheral 

blood for CR vs. TX. ROC in solid line represents the performance of the CR vs TX blood 

classifier on the TGCG Training Set (AUC - 0.92) and the ROC in the dotted line represents 

the performance of the CR vs TX blood classifier on the Brazilian Validation Set (AUC - 

0.75). AR, Acute Rejection; CR, IFTA/Chronic Rejection; TX, transplant excellent.
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Figure 4a, 4b, 4c & 4d. 
(4a) Receiver Operating Characteristic Curves from biopsies for AR vs. TX. ROC in solid 

line represents the performance of the AR vs TX biopsy classifier on the Brazilian 

Validation Set (AUC - 0.94) and the ROC in the dotted line represents the performance of 

the AR vs TX biopsy classifier on the TGCG Training Set (AUC - 0.94). (4b) Receiver 

Operating Characteristic Curves from biopsies for CR vs. TX. ROC in solid line represents 

the performance of the CR vs TX biopsy classifier on the Brazilian Validation Set (AUC - 

0.94) and the ROC in the dotted line represents the performance of the CR vs TX biopsy 

classifier on the TGCG Training Set (AUC - 0.90). (4c) Receiver Operating Characteristic 

Curves from peripheral blood for AR vs. TX. ROC in solid line represents the performance 

of the AR vs TX blood classifier on the Brazilian Validation Set (AUC - 0.97) and the ROC 

in the dotted line represents the performance of the AR vs TX blood classifier on the TGCG 

Training Set (AUC - 0.66). (4d) Receiver Operating Characteristic Curves from peripheral 

blood for CR vs. TX. ROC in solid line represents the performance of the CR vs TX blood 

classifier on the Brazilian Validation Set (AUC - 0.97) and the ROC in the dotted line 

represents the performance of the CR vs TX blood classifier on the TGCG Training Set 

(AUC - 0.68). AR, Acute Rejection; CR, IFTA/Chronic Rejection; TX, transplant excellent.
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Table 1A.

Demographics and clinical data of Brazilian patients grouped by histological phenotypes.

AR
n=26

CR
n=27

GN
n=14

TX
n=17 p

Recipient age (years) 42 ± 3 40 ± 2 47 ± 3 48 ± 3 NS

Female recipients (%) 11 (48%) 13 (48%) 6 (43%) 8 (47%) NS

Recipient race (W/NW) 6/20 10/17 11/3 10/7 0.05

Deceased donor (%) 13 (50%) 14 (52%) 6 (43%) 4 (24%) NS

HLA mismatch 3.2 ± 0.3 2.3 ± 0.3 2.6 ± 0.4 2.8 ± 0.4 NS

PRA ≥ 20 (%) 6 (27%) 6 (%) 5 (36%) 4 (23.5%) NS

Induction therapy‡ (%) 26 (100%) 26 (96%) 13 (93%) 15 (88%) NS

C4d positive 3 (11%) 4 (15%) 0 0 NS

Time to biopsy (median months; IQR) 13 (6 – 30) 48 (24 – 90) 50 (27 −140) 36 (27–65) 0.001

eGFR (mL/min/1.73m2) (median ; IQR) 28.4 (17.5 – 41.8) 28.9 (26.0 – 38.3) 24.2 (18.2 – 39.5) 72.8 (58.2 – 83.8) 0.001

IS at biopsy TAC/EC-MPS/Pred (%) 20 18 8 11 NS

CSA/EC-MPS/Pred (%) 1 1 2 0 NS

mTORi/TAC/Pred (%) 3 3 0 2 NS

mTORi/EC-MPS/Pred (%) 2 3 1 3 NS

Others 0 2 3 1 NS

Death-censored graft loss 8 (35%) 10 (37%) 9 (64%) 0 NS

Patient death (%) 1 (3.8%) 2 (7%) 1 (7%) 0 NS

Donor age (years) 43 ± 10 47 ± 12 48 ± 13 39 ± 9 NS

Female donor (%) 20 (77%) 11 (41%) 7 (50%) 11 (65%) 0.03

Values are expressed as mean ± standard deviation unless otherwise indicated. interquartile range (IQR); NS, not significant; AR, Acute Rejection; 
CR (IFTA/Chronic rejection); GN, glomerular disease recurrence; TX, excellent functioning kidney; HLA, Human Leukocyte Antigen; PRA, Panel 
Reactive Antibody; W; white; NW (black, brown and mulatto).
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Table 1B.

Demographics and clinical data of TGCG patients grouped by histological phenotypes.

AR
n=57

CR
n=27

TX
n=29 p

Recipient age (years) 44.7+13.9 45.1+15.7 52.9+14.2 NS

Female recipients (%) 33.3 44.4 24.4 NS

Recipient race (W/NW) 38.6/61.4 46.3/53.7 72.4/27.6 0.01

Deceased donor (%) 63.2 61.1 44.8 0.04

HLA mismatch 5.0+2.0 5.0+2.0 4.38+3.4 NS

PRA ≥ 20 (%) 13.1 19.4 25.0 NS

Induction therapy‡ (%) 35.1 37.1 44.8 NS

Time to biopsy (median months; IQR) 34.7+39.2 55.9+48.1 32.3+47.6 0.01

IS at biopsy TAC/MMF/Pred (%) 48.0 43.1 86.3 NS

CSA/MMF/Pred (%) 28.0 29.4 4.6 NS

mTORi/MMF/Pred (%) 20.0 15.7 4.6 NS

Donor age (years) 40.3+13.9 41.1+15.2 38.9+14.3 NS

Female donor (%) 43.9 59.3 24.4 0.005

Creatinine 3.4+2.8 3.1+2.2 2.1+1.9 0.03

Values are expressed as mean ± standard deviation unless otherwise indicated. NS, not significant; AR, Acute Rejection; CR (IFTA/Chronic 
rejection); TX, excellent functioning kidney; HLA, Human Leukocyte Antigen; PRA, Panel Reactive Antibody; W; white; NW (Non-White – other 
races).
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